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Abstract: In this study, a new dynamic data allocation algoritlnn for non-replicated Distributed Database 
Systems (DDS), name1y tbe ıbresho1d a1goritbm, is formulated and proposed. The ıbresho1d a1goritbm 
reallocates data with respect to changing data access patterns. The proposed algoritlnn İs distributed İn the 
sense that each node autonomously decides whether to transfer the ownership of a fragınent İn DDS to another 
node or not. The transfer decİsİon depends on the past access es of the fragınent. Each fragınent continuously 
migrates from the node where it İs not access ed locaııy more than a certaİn number of past accesses, namely 
a threshold value. The threshold algoritlnn İs modeled for a fragınent of the clatabase as a finite Markov chain 
with constant node access probabilities. In the model, a special case, where aıı nodes have equal access 
probabilities except one with a different access probability, is analyzed. it has been shown that for positive 
threshold values the fragment wiıı tend to remain at the node with the higher access probability. it is also sho"\iVIl 
that the greater the threshold values are, the greater the tendency of the fragment to remain at the node with 
higher access probability wiıı be. The threshold algoritlnn is especiaııy suitable for a DDS where data access 
pattem changes dynamicaııy. 

Key words: Distributed databases, dynamic data aııocation, Markov chain 

INTRODUCTION 

Developments ın database and networking 

technologies in the past few decades led to advances in 
distributed database systems. A DDS is a coııection of 

sites connected by a commllIlİcation network, in which 
each site is a database system in its own right, but the 

sites have agreed to work together, so that a user at any 
site can access data anywhere in the network exactly as if 

the data were aıı stored at the user's own site 
(Date, 1990; Özsu and Va1duriez, 199 1). 

The primary concem of a DDS is to design the 
fragmentation and aııocation of the llIlderlying database. 

Fragmentation llIlit can be a file where aııocation issue 
becomes the file aııocation problem. File aııocation 

problem is studied extensively in the literature, started by 
Chu (1969) and conlinued for non-replicated and 
replicated mode1s (Apers, 1988; Casey, 1972; OTapa and 
Belford, 1977; Mahmoud and Riordan 1976; Morgan and 

Levin, 1977; Ramamoorthy and Wah, 1983; Wlıitney, 
1970). Some studies considered dynarnic file aııocation 

(Ames, 1977; Smith, 198 1; Wah, 1979; Wang and Chen, 
2005; Alın and Kim, 2005). 

Data aııocation problem was introduced when 
Eswaran (1974) first proposed the data fragmentalion. 

Studies on vertical fragmentation (Babad, 1977; 
Ceri el aL., 1989; Hoffer, 1976; Navatbe el aL., 1984), 
horizontal fragmentation (Ceri et aL., 1983) and mixed 
fragmentalion (Chang and Cheng, 1980; Cheng el aL., 
2002; March,I 983; Sacca and Wieder ho1d, 1985; Sacco, 
1986; Zhang and Orlowska, 1994) were conducted. The 
aııocation of the fragments is also studied extensively 
(Ahmad el aL., 2002; Apers, 1988; Bakker, 2000; Chang, 
2002; Kwokeıal., 1996; So el aL., 1999;Zhoueıal., 1999; 
Gorawski el aL., 2005). 

In these studies, data aııocation has been proposed 
prior to the design of a database depending on some 
static data access patterns and/or static query patterns. in 
a static environment where the access probabilities of 
nodes to the fragments never change, a static aııocation 
of fragments provides the best solution. However, in a 
dynamic environment where these probabilities change 
over time, the static aııocation solution would degrade the 
database performance. lnitial studies on dynamic data 
aııocation give a framework for data redistribution (Wilson 
and N avathe, 1986) and demonstrate how to perform the 
redistribution process in minimum possible time 
(Rivera-Vega el aL., 1990). In (Brunstrom el aL., 1995), a 
dynamic data aııocation algoritlnn for non-replicated 
database systems is propose d, but no modeling is done 
to analyze the algoritlnn. Instead, the paper focused on 
load balancing issue. 
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This study proposes a new dynamic data allocation 
algoritlnn for non-replicated distributed elatabases and 
analyzes the algoritlnn using a finİte-state Markov ehain. 
Present study İs based on the research conducted by 
Ulus. (1999). In this study. horizontal. verlical or mixed 
fragınentation can be used. Allocation lUlİt can even be as 
small as a record or an attribute. 

THE THRESHOLD ALGORITHM 

In some cases, due to extra storage space need, it 
could be very costly to use the optimal algorithrn (Ulus, 
1999) İn its original fonn. For a less costly algorithm, the 
solution İs to deerease the need for extra storage space. 
The proposed threshold algorithrn in this paper serves 
this purpose. 

Let the number of nodes be II and let X, denote the 
access probability of a node to a particular fragınent. 
Suppose the fragınent İs stored in this partieular node (i. e., 
it is the owner node). For the sake of simplicity, let Xd 
denote the access probability of all the other nodes to this 
particular fragment. The O"\iVIler does local access, whereas 
the remaining nodes do remote access to the fragment. 

The probability that the owner node does not access 
the fragment is (n-i) Xd. The probability that the owner 
node does not perform two successive access es is 
((n-1) xY Similarly. the probability that the owner node 
does not perform m successive access es is ((n-I) xdt. 
Therefore, the probability that the O"\iVIler node 
performs at least one access of m successive access es 
is 1 -((n-i) Xdr. 

Table 1 shows the probabilities that the owner node 
performs at least one access out of m successive 
accesses, where Xs ranges from 0.1 through 0 .9 and where 
m is 5 .  10. 25. 50 and 100. The values in the table are 
tnmcated to five decimal digits. 

According to the table. the probability that the owner 
node with the access probability of 0.1 performs at least 
one access of ten successive access es is 0 .6 5 132.  it is 
trivial from the table that as the access probability of 
owner node increases, so as the probability that at least 
one local access occurs in m accesses. 

Applying the same idea, a new threshold based 
algoritlıiu (or threshold algoritlıiu) can be proposed. In 
threshold algorithrn, only one cOlUlter per fragment is 
stored. Figure 1 shows fragment i together with its 
cmınter. Comparing it to the optimal algorithrn, this 
radically decreases the extra amolUlt of storage space to 
just one value compared to an array of values in the 
optimal algorithrn. 

In the threshold algorithrn, the initial value of the 
cOlUlter is zero. The cmınter value is increased by one for 
each remote access to the fragment. it is reset to zero for 
a local access. In other words, the cOlUlter always shows 
the number of successive remote accesses. Whenever the 
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Table 1: The probability that at least one local access OCCtlfS in m accesses 
y, m=5 m=lO m=25 m=50 m=100 
0.1 0.40951 0.65132 0.92821 0.99485 0.99997 
0.2 0.67232 0.89263 0.99622 0.99999 1.00000 
0.3 0.83193 0.97175 0.99987 1.00000 1.00000 
0.4 0.92224 0.99395 1.00000 1.00000 1.00000 
0.5 0.96875 0.99902 1.00000 1.00000 1.00000 
0.6 0.98976 0.99990 1.00000 1.00000 1.00000 
0.7 0.99757 0.99999 1.00000 1.00000 1.00000 
0.8 0.99968 1.00000 1.00000 1.00000 1.00000 
0.9 0.99999 1.00000 1.00000 1.00000 1.00000 

Fig. 1 :  Any fragment i in threshold algoritlıiu 

ı. For each (locally) stored ftagmen1, initia1ize the counter va1ues to 
zero. (Set sı = O for evet)' st.oıed:lhıgm.ent i). 

2. Process an a.coess request for the st:ored fragment 

3. if it is a local access, rese1: the counier of the coıresponding 
fragm.ent to O (if node j a.coesses fragm.ent i, set sı = O). Go to step 2. 

4. if it is a remcıte access, increase the couıder of1he corresponding 
fragment by one. (if fragment i is accessed remcıtely, set sı = sı + 1). 

5. if the counter of the fragment is greaterthan the threshold value, 
reset its counter to zero and transfer the fmgınent to the remote 
node. (if sı > 1, set sı = O and the fragm.ent to remote node) 

6. 00",...,2. 

Fig. 2 :  Threshold algoritlıiu 

cmınter exceeds a predetermined threshold value, 
the o"\iVIlership of the fragment is transferred to 
another node. 

At this point, the critical question is which node will 
be the fragment's new O"\iVIler. The algorithrn gives very 
little information about the past accesses to the fragment. 
In fact, throughout the entİre access history only the last 
node that accessed the fragment is kno"\iVIl. So, there are 
two strategies to select the new O"\iVIler. Either it is chosen 
randomly, or the last accessing node is chosen. In the 
former, the randomly chosen node could be one that has 
never access ed the fragment before. So picking the latter 
strategy is heuristically more reasonable. 

Initially, all fragments are distributed to the nodes 
according to any method. A threshold value t is chosen. 
Afterwards, any node j, rlUlS the threshold algorithrn 
given in Fig. 2 for every fragment i, that it stores. 

Threshold algorithrn overcomes the volley of a 
fragment between two nodes provided that a threshold 
value greater than one is chosen. The algorithrn 
guarantees the stay of the fragment for at least (H i) 
accesses in the new node af ter a migration. In other 
words, it delays the migration of the fragment from any 
node for at least (t+1) accesses. 
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An important point in the algorithrn İs the choİce of 

threshold value. This value will directiy affect the mobility 

of the fragınents. it İs trivial that as the threshold value 

increases, the fragınent will tend to stay more at a node; 

and as the threshold value decreases, the fragınent will 

tend to visit more nodes. 

Another point İn the algorithrn İs the distribution 

of the access probabilities. If the access probabilities 

of all nodes for a particular fragınent are equal, the 

fragınent will visit all the nodes. The same applies for two 

nodes when there are two highest equal access 

probabilities. 

MARKOV CHAIN MODEL OF THRESHOLD 

ALGORITHM 

General Case: Let there be II nodes (n E Z+), denoted 

by O through (n - l )o Let the threshold value be t 

(t E Z u {O}). For simplicity. suppose the access 

probabilities of the nodes are diserete random varİables. 

Assume the nodes have access probabilities xo through 

�-ı for a partieular fragınent, subscripts showing the node 

index. The following ıs satisfied for the access 

probabilities where X, E [O. 1 1 for all i � O •..• n -1. 

Figure 3 shows the finite state diagram of the system 

described. 

In the diagram, two numbers determine the name of 

each state; first number denotes the node name where the 

fragment is currently stored, and the second number 

denotes the successive remote access cmınter. For 

example, when the system is in state 00, this means that 

the fragment is currently stored in node O, and the current 

successive remote access cmınter is O (which implies that 

either last access performed on the fragment is local or the 

fragment has just migrated to node O). 

There are (t+ 1) states per node. In all these states, the 

fragment is stored in that particular node. These states 

correspond to the different values of successive remote 

access cmınter for the node. 

The state transition probabilities are given next to 

each transition indicated by the arrows. For example, for 

the state 00 there are several incoming and outgoing 

transitions. One transition is both incoming and outgoing 

with a probability of xo. This transition implies that with 

a probability of xo, node O access es the fragment, and the 

cowıter, that is aıready zero, is reset to zero and the 

fragment stays at node O. As a result, the system does 

not change a state. Besides this transition, there is only 
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Fig.3: Finite-state diagram of the system in general case 

one outgoing transition to state ol with a probability 

of (l -xo). This transition implies that with a probability of 

( l -xo) a remote node accesses the fragment, and the 

cowıter is increased by one, to one. As a result, the 

fragment stilI stays at node O, but a state change from 00 
to ol takes place. Besides these two transitions, there are 

two groups of incoming transitions all with a probability 

of xo. One group of transitions comes from the states ol 

through Ot. A local access causes these transitions. As a 

result of these transitions, the cowıter is reset to zero and 

the fragment stilI stays in node O, but it leads to a state 

chauge from the previous state (OL through Ot) to 00. The 

other group of transitions comes from the states Ot 

through (n-l )t. Before these transitions, the fragment is in 

a node other than node O and the cowıter is t. The 

transition occurs when node O accesses the fragment. As 

a result, the cowıter value exceeds the predetermined 

threshold value and the fragment is transferred to the 

ownership of node o. Hence a state change from the 

previous state (Ot through (n-l )t) to 00 OCCUfS. 

Figure 3 shows a Markov chain due to its memory 

less property. it is memory less because, for any state the 

system can enter, the next state entered depends solely 

on the current state of the system. Furthermore, this 

Markov chain has discrete-time, finite-state, irreducible, 

aperiodic and recurrent properties. it is discrete-time, 

because the state transitions occur in discrete times 

(when an access to the fragment is performed) and state 

transition duration is negligible. it is finite-state, because 

the number of states is finite. it is irreducible, because 

every state can be reached from every other state. This 
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Markov ehain İs aperiodic, because for every state, the 

entrance to the same state İs not periodic. This Markov 

ehain İs recurrent, because it İs finİte-state and İrreducible 

(Kleimoek. 1975). 

Let TC be a 1 by II probability vector whose elements 

TCk> show the steady state probability that the system İs in 

sta!e k. 

Let P be the II by II state transition probability matrix 

whose elements p'l' show the state transition probability 

from state i to state j. 

Poo p" Po(n_ı) 

p� 
p" p" Pı(n_ı) 

::P'J :. 
P(n_ı)o P(n_ı)ı P(n_ı)(n_ı) o. 

Equation 1 defines the steady state of a discrete-time, 

finite-state, irreducible, aperiodic and reClilTent Markov 

chain. Given the state transition probability matrix F, the 

system deterrnİnes the steady-state probability vector TC 
(Kleimoek. 1975). 

TC=TCF ( l )  

Readjus!ing Eq. i and 2 is obtained. 

(P-L )· n· � O (2) 

are n equations and n wıknowns. But sİnce one of the 

equations is linearly dependent on the others, one more 

Xo I-xo O O O O 
Xo O I-xo O O O 

Xo O O I-xo O O 
Xo O O O X, O 
O O O O x, I-Xı 

O 
O 

O 
O 
O 

O O O O X, O I-Xı 

Pg= O O O O X, O O 
Xo O O O X, O O 

O O O O O O O 
O O O O O O O 

O O O O O O O 
Xo O O O x, O O 
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equation İs needed to solve the system (Kleimoek, 1975). 

Last equation is, the one that shows the summation of the 

steady state probabilities, given by Eq. 3. 

(3) 

Replaeing the [irs! equation in Eq. 2 by Eq. 3 and 4 is 

obtained. 

Qn'= r (4) 

In Eq. 4, Q, TC' and r are as follows. 

Q� 
Po, Pıı -1 P(n_ı)ı 

Po(n_ı) Pı(n_ı) P (n_l)(n_l) -1 � 

no 
n, O 

n'= r� 

n(n_ı) O 

These equatiollS can be adapted to system in Fig. 3. For 

the threshold algorithrn model İn general case of Fig. 3, let 

TCg be the 1 by II probability vector and Pg be the II by II 

state transition probability matrix. They are as follows. 

TCg = [TCoo TCo!· TCoı TC!o TC!!. TCL! 

O O O O 
O O O O 

O O O O 
O xn_l O O 
O O O O 
O O O O 

I-Xı O O O 
O xn_l O O 

O xn_l 1- xn_l O 
O xn_l O I-xn_ı 

O xn_l O O 
O xn_l O O 

O 
O 

O 
O 
O 
O 

O 
O 

O 
O 

1-
O 
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Notice that TCg elements have two indices. First index İs the node name and the second index İs the successİve remote 

access cülmter. And finally, Qg İs as follows. 

Xo -1 O O O O O O 
O I-xo -1 O O O O O 

O O O I-xo -1 O O O 
O O O O x, Xı - 1  x, x, 
O O O O O I-x, -1 O 
O O O O O O I-x, -1 

Qg= 

O O O O O O O O 

O O O O xn_ı O O O 
O O O O O O O O 
O O O O O O O O 

O O O O O O O O 

After solving for TCg vector in Eq. 4, the probabilities, that 

the fragınent İs İn a particular node, are calculated as 

follows for all i � O •..• (n-I) where O, denotes the 

probability that the fragınent İs İn node i (here notice that 

the node names are used as subscripts in caleulation). 

O �L> . .. ,-o 
(5) 

Since the number of wıknowns, namely the equilibriurn 

probabilities in the general case İs very large, it İs very 

hard to investigate the general case sİtuation. For the sake 

of sirnplicity, a special case, that will deerease the number 

of urıkrıo\VIls to just two, will be examİned. 

Special case: Assume an n node DDS. Assume further 

that one particular node denoted by s has an access 

probability ofx, to a particular fragment ofDDS. Suppose 

all the other nodes denoted by d, through ci,. , have 

the equal access probabilities of xd to the same 

fragment. The following equation is satisfied for the 

access probabilities where XE[O,l ]  and xdE[O.I ]  

X. + (n -l)xo � 1 

The finite-state diagram of this system is given 

in Fig. 6. 

In the Fig. 4 ,  states sO through st corresponds to 

node s that has an access probability of x, to the fragment. 

F or the rest of the nodes dı through d".j, there are the 

states c\0 through C\!, (n-i) of each. 
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O O O O O O O 
O O O O O O O 

O O O O O O O 
x, x, O O O O x, 
O O O O O O O 
O O O O O O O 

I-x, -1 O O O O O 

O xn_ı xn_ı - ı Xn_ı Xn_ı Xn_ı 
O O l-xn_ı -1 O O O 
O O O l-xn_ı -1 O O 

O O O O O l-xn_ı -1 

Fig. 4:  Finite-state diagram of the system in special case 

Lemma 1: For the system of Fig. 4 ,  the steady state 
probabilities of all nodes, except node s, corresponding to 
a particular threshold value 1, is equal. In other words, 

where h shows any node index varying from 1 to (n-I)  and 

f shows any threshold value varying from O to t. 

Proof: (Ulus .• 1999). 
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The finite-state diagram of the system after Lemma 1 

İs given İn Fig. 5. 

In Fig. 5 ,  states sO through st corresponds to node s 

that has an access probability of x, to the fragınent. For 

the rest of the nodes dı through d,,-b there are the states 

dO through dt as a corollary to Lemma I .  

For the threshold algoritlım model of Fig. 7 .  let TIm be 
a i by n(t+ i) steady state probability vector and let P m be 
the n(t+!) by n(t+l) state transition probabilily matrix. 
They are as follows. 

x, I-x, 
x. 

x. 
x. 
O 
O 

x. 

O 
O 

O 
x. 

o 

O 
O 
O 
O 

O 
O 

O 
O 

O 
O 

o 
I-x, 

O 
O 
O 
O 

O 
O 

O 
O 

O 
O 

o o 
O O 

I-x. O 
O x, 
O 
O 

O 
O 

O 
O 

O 
O 

x, 

x, 
x, 

O 
O 

O 
x, 

o 
O 

O 
O 

O 

O 
O 

O 
O 

O 
O 

o 
O 

O 
O 
O 

O 
O 

O 
O 

O 
O 

n � [n ın .0 

o 
O 

O 
O 
O 
O 

O 
O 

O 
O 

O 
O 

O 
x, 
O 
O 

O 
x, 

x, 

x, 
x, 

O 
O 

O 
O 
O 
O 

O 
O 

O 

O 
O 

O 
O 

O 
O 
O 
O 

O 
O 

O 

O 
O 

O 
O 

O 
O 
O 
O 

O 
O 

O 
O 

l
O 

it can be easily seen that İn TIm vector the elements TCdD through TCdırepeat themselves (n-I) times. The dimensİon of the 

system can be deereased as shown İn Lemma 2. 

Lemma 2: Let TI, be a i by 2(t+1) steady state probability vector and let P, be the 2(t+l) by 2(t+l) state transition 
probability matrix as sho\VIl below. 

P. � 

x, I-x, 
x. 

x. 
x. 
x. 
O 
O 

O 
O 
x. 

O 

O 
O 
O 
O 
O 

O 
O 
O 

n � [n . " 

O 
I-x, 

(n-l)n,,] 

O O O O O 
O O O O O 

O 
O 
O 
O 
O 

1-x. O O O O 

O 
O 
O 

O 1-x. O O O 
O O I-x. O O 
O O Xd I-xd O 
O O Xd O 1-xd 

O O x, O O 
O O x, O O 
O O I-x. O O 

The system of equatiollS given by TIm =TCm P ın and TCr=TC�r are the same 

170 

O O 
O O 

O O 
O O 
O O 
O O 
O O 

I-xd O 
O l-
O O 
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Fig. 5: Simplified finite-state diagram of the system İn 
special case 

Proof: (Ulus. 1999) 

Theorem 1: Assume that the fragments of a DDS are 
allocaled lo n nodes. denoled by O through (n-1). Assume 
all nodes have equal access probability of Xd to a 
partieular fragınent except node 0 ,  which has a different 
access probabilily of x, where x. E [O. 1 1 and x d E [O. 1]. 
When the thresho1d a1goritlım with a thresho1d i is used. 
the fragınent will be in node O with the probability 0, 
given by 

o � x,(l-xJ[l-(l-x.r' ] 
. 

xJ1-xJ+ (1-x.r' [ 1-(1-xJ] 
(6) 

Proof: (Ulus, I 999) 

Theorem 2: Assume that the fragments of a DDS are 
allocaled lo n nodes, denoled by O through (n-1). Assume 
all nodes have equal access probability of Xd to a 
partieular fragınent except node 0 ,  which has a different 
access probabilily of x, where x, E [O, 1 1 and x d  E [O, 1]. 
When the thresho1d a1goritlım with a thresho1d i is used, 
the fragınent will be in the nodes other than node O with 
the probabilily 0d given by 

o � (l-x.r [l-(l-x,r] 
, 

x,(l-x.)' + (l-x.r' [l-(l-x.)' ] 
(7) 
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Proof: (Ulus, I 999) 

Equation 6 gives the probability that the fragınent İs 

İn node 0, whereas Eq. 7 gives the probability that the 

fragınent İs in the other nodes. Since the fragınent İs either 

İn node O or in a node other than node 0, the surn of 0, 
and Od is 1 .  

RESULTS 

Let us investigate Eq. 6 and 7. Since, O,+Od=l' 

investigating only 0, is sufficient. 

In Eq. 6, the parameters are x" Xd and t. In other words, 
the probability that the fragınent is in node ° is detenuined 

by the access probability of node 0, the access probability 

of the other nodes and the threshold value. Furthenuore, 

the number of nodes, :rı, is another parameter, since it 

specifies the relationship between x, and Xd with the 

following fonuula. 

x, + (n-1) xd�1 

Now, let us find how a change in the access 

probabilities and the thresho1d value effecl the probabilily 

that the fragınent is in any node. 

Change İn Access Probability: The relation between x, 

and Xd is given by the following equation. 

Since x, and Xd are access probabilities, the following 

inequalities are satisfied. 

When n is held constant, x, and Xd are inversely 
proportionaL. So, it is sufficient to investigate only the 

change in x, of O,. 

Lemma 3: When X, � 1, O, � 1. 

Proof: "When x, = 1, all TC� values of 0, given by Eq. 5 are 
° except TC,o value. TC,o value is 1 whichınakes 0, value 1 as 

welL. 

Lemma 4: "When x, = 0, 0, = O. 

Proof: "When x, = 0, all TC� values of 0, given by Eq. 5 are 
° which ınakes 0, value ° as well. 

Lemma 5: 0, is strictly increasing with respect to x, in the 
inlerva10f (O,l). 
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Proof: Let us investigate the change in 0, with respect to 

X,. The partial derivative of 0, with respect to x, gives the 
change İn 0, with respect to X,. The partial derivative İs as 

shown below where Oj and O2 are the nomİnator and the 
denominator of 0" respectively. 

(t + IXI- x.l' [x,(l-xJO, + [1- (1-xJ ]O,J 

[OJ 

it İs obvioliS that the partial derivative İs positive for 

all x,E[O,l]. Therefore, 0, İs strictly increasing with 
respeet to x, in (0.1). 

Figure 6 shows the behaviour of 0, as a flUletion of 
X, in a five-node system. Figure 6 İs dra\VIl for three 

different threshold values. O. 3 and 10. 
For the threshold 0[0,0, İs a ıınear fimction ofx, with 

a slope of 1 .  This means that when the threshold İs 0, the 
access probability of a node directly gives the 

steady-state probability that the fragınent İs İn the 
corresponding node. 

For threshold values of 3 and 10, notice the 
change in steepness of the curve. 

Change İn threshold value: Threshold t can take only 

non-negative integer values. Let us investigate Wlder 
which circurnstances 0, is increasing or decreasing with 

respect to t. 

Lemma 6: The following holds for the change in O, with 
respect to 1, provided that X,f.O, Xdf.O and x,f.I: 

• When x, = Xd, 0, is constant with respect to t. 
• 
• 

When x,>xd, 0, is increasing with respect to t. 
When x,<xd, 0, is decreasing with respect to t. 

Proof: To investigate the behaviour of O, with respect to 

the threshold, the partial deriyatiye of 0, with respect to 
t should be examined. But since 0, is defined only for 

non-negative integer values of t, it is not continuous for 
t. Therefore it is not possible to find the partial deriyatiye 

of 0, with respect to t. Instead, to investigate the sign of 
the differenee O,(r + 1) - O,(r). for any positive integer r. 

would be sufficient. If the sign of this expression is 
positive, the probability will be increasing. Otherwise it 

will be decreasing. 
For simplicity, let us substitute a and b given by the 

equations a = I-x, and b = I-xd in Eq. 6. The difference will 
be as follows. 

O,(r+ I)-O,(r) 
(1-b)C'lf [b-a+aH'(I-b)-W'(I-a)] 
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Fig. 6: 0, as a fwıction of x ,in a five-node system for 
thresholds O. 3 and 10. 

In this expression, all the terms except (b_a+ar+2 

( l _b)_br+2 ( l -a) in the nominator are positive provided 
that X,f.O, Xdf.O and X,f.l . Only the sign of this term 
determines the sign of the whole expression. Let D denote 
this term and let us substitute a and b expressions back 
in. The result is as follows. 

D � x. [1 -(1-x,r ]- x,[l -(1-x.r ] 

Let us multipIy and divide D by X,xd and readjust it. The 
expression takes the following form. 

[ [ı-cı-x,r] D = x ,xd 
X, 

Applying Eq. C.2. D is found as follows. 

� 
D � x.x,2]cı-xJ' -(1-x)] 

,=0 

The sign of D depends on the relation between x, and 
Xd. According to this: 

• If x, = Xd, D is zero. Therefore, when x ,  = X" 0 ,  is 
constant with respect to t. 

• If x,>xd, D is positive. Therefore, when xi> x" 0, is 
increasing with respect to t. 

• If x,<xd, D is negatiye. Therefore when x,<xd, 0, is 
decreasing with respect to t. 

Lemma 7: Lirnit 0, =1 provided that Xdf.O. 

Proof: Readjusting Eq.6. the following fonuula ıs 
obtained: 
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Fig. 7: 0, as a fwıction of t in a five-node system for x, 
va1ues of 0.28, 0.24, 0.16, 0.12 and 0.2 

0, 
x,[l-(l-x,rı 
(l-x t' [l-(l-x YL 

x + ' d 
, 

(I-x,)' 

Using this formula, provided that xd'" o: 

Lirnitü, = 
Xd X 1 

Ox1 
x + --, O 

�=1 
x, 

Figure 7 shows the behavour of 0, as a fwıction of t 

İn a five-node system. Figure 7 İs drawn for five different 
access probabilities x. of 0.28, 0.24, 0.2, 0.16 and 0.12. 

For 0.28 and 0.24, 0, converges to one. This İs 
because x,>xd_ Noticing the change İn steepness of two 

curves, it converges faster for greater access probabilities. 
For 0.2,0, İs constant at 0.2. This İs because x, = Xd- In this 

case, the access probability of a node directly gives the 
steady-state probability that the fragınent İs İn the 

corresponding node. 
For 0.16 and 0.12, 0, converges to zero. This is 

because X,<Xd. Noticing the change in steepness of two 
curves, it converges faster for smaller access probabilities. 

CONCLUSIONS 

In this study, a new dynarnic data allocation 

algorithrn, namely threshold algorithrn, for non-replicated 
DSSs is introduced. In the thresho1d a1goritlım, the 

fragments, previously distributed over a DDS, are 
continuously reallocated according to the changing data 

access patterns. The node in which a fragment is stored 
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is considered the O"\iVIler of that particular fragment. "When 

its O"\iVIler in the past few successive accesses, specified 
by the threshold value, never access es a fragmeni, the 

ownership of the fragment is transferred to another node. 
The threshold algorithrn is modeled using a finite

state Markov chain. To simplify the model, a special case 
where the access probabilities of the nodes are all equal 
except a single node is examined. The equilibriurn 
probabilities for a fragment in any node are obtained in 
terms of access probabilities and the threshold value. The 
behavior of a fragmeni, in reaction to a change in access 
probabilities or to a change in threshold value, is 
investigated. it is shown that the fragment tends to stay 
at the node with higher access probability. As the access 
probability of the node increases, the tendency to remain 
at this node also increases. it is also shown that as the 
threshold value increases, the fragment will tend to stay 
more at the node with higher access probability. 

Threshold algorithrn can be used for dynamic data 
allocation to enhance the performance of non-replicated 
DDSs. For further research, the algorithrn can be extended 
to use on the replicated DSSs as in (Sistla et al., 1998; 
Wolfson el al., 1995, 1997). 
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