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CHAPTER I
INTRODUCTION

This study is devoted largely to a presentation of three
theorems of modern analysis: The Stone-Welerstrass approximation theorem,
the Stone representation theorem for Boolean algebras, and a representation
for L- spaces of abstract measure spaces based on a theoreh by Kakutani.
The proofs of these theorems illustrate some applications of topology and
algebra to analysis.

Chapter II c¢ontains an expository account of the Stone-Weierstrass
theorem. In the theorem necessary and sufficient conditions are given
that a continuous real-valued function defined on a compact topological
space be the unifeorm limit of a sequence of linear combinations of pro-
ducts of functions in some given set of continuous functions on the space.
The analog of the theorem for the complex case is presented;as well as the
extension of the theorem to locally compact spaces. The proof, a modified
version of that given by Stone, makes use of minimality arguments applied
repeatedly to lattices, vector lattices, and algebras of functions.

Chapter III contains a proof of the Stone representation theorem
for Boolean algebras. The Stone representation theorem states that given
any Boolean algebra there exists a totally disconnected, compact Hausdorff
space such that the original Boolean algebra is a lattice isomorphic
image of the Boolean algebra of all open-closed subsets of the space.

The proof is a modification of that found in WALLMAN [1]. The usefulness

of this theorem first becomes evident in Chapter 1V, where it plays a




major role in the proof of the representation theorem of that chap-
ter.

If (X, &@ p) 1is a complete measure space, the L space of the
measure space is the space of all equivalence classes of functions whose
integrals, with respect to the measure p, exist and are finite. Two
functions are said to be equivalent if they agree almost everywhere on
X with respect to p. In Chapter IV it is proved that the L space
of any complete measure space is isometric and isomorphic, as a normed
linear space, to the L space of a complete measure space whose g¢g-ring
of measurable sets is a completion of the Baire g-ring in some locally
compact Hausdorff space. This measure space has the property that all
continuous functions which vanish at infinity are measurable.

The statement and proof of this theorem are based upon a much more
general theorem of Kakutani. In his original paper, Kakutani proves
that certain types of partially ordered Banach spaces are isomorphic and
isometric, as normed linear spaces, to L spaces of tomplete measure
spaces in locally compact, totally disconnected Hausdorff spaces.

The representation theorem of Chapter IV is less general than the
original theorem of Kakutani. For this reason a more elementary proof
is possible. The theorem of Chapter 1V is formulated in measure-theoretic
terms and is proved largely by appeals to measure-theoretic properties of
the spaces concerned. Of necessity, the proof of the original theorem
employs an elaborate superstructure manufactured from algebraic and
order-theoretic properties of the space to be represented. The present

proof does not seem to appear anywhere else in the literature.




All lattice-theoretic terms are defined either in the text or in
the glossary. Non-standard definitions from topology and real variable
theory are also included. Symbols such as (x.y), where x and vy
are integers, are used to refer to theorems, lemmas and remarks. The
first integer denotes the chapter in which the numbered item appears.
The second integer indicates the position of the item within the chap-
ter. The end of a proof is indicated by the symbol B. The symbol —»

is to be read "implies,” and the symbol & is to be read "if and only

ifo"



CHAPTER II

THE STONE-WEIERSTRASS APPROXIMATION THEOREM

This chapter contains an expository account of the Stone-Weier-
strass approximation theorem. The theorem, a generalization of the
classical approximation theorem of Weierstrass,was first proved by Stone
in 1937. The theorems and proofs presented in this chapter are modified
versions of those in STONE [i].

The Weierstrass approximation theorem states that any continuous
function defined on a closed and bounded interval of the real line is the
uniform limit of a sequence of polynomials. The setting for the Stone-
Welerstrass theorem is a compact topological space X. In the theorem
necessary and sufficient conditions are given that a continuous function
on X be the uniform limit of a sequence of linear combinations of pro-
ducts of functions in some given set of continuous functions on X.

Both the real and the complex cases of the theorem are presented.
In the latter part of the chapter the extension of the Stone-Weierstrass
theorem to locally compact spaces is given.

The terms lattice, vector lattice, algebra, topological space,

compact, and locally compact are used throughout this chapter. Definitions

of these terms appear in the glossary.

(2.1) Definitions and Conventions

Let X be a compact topological space and let cr(x) denote the

space of all real-valued functions defined and continuous on X.




For f, g e Cr(X) the symbol f < g will mean f(x) < g(x)
for all x e X. Under the relation < defined above, the space cr(x)
is a partially ordered set. If f, g ¢ Cr(X) then the function {f . “g)
defined on X by (f /Ag)(x) = min. (f(x}, g(x)) is clearly the greatest
lower bound in CI(X) for f and g. The function f Vg defined on
X by (£V g)(x) = max. (f{x), g{x)) 1is the least upper bound for f
and g in Cr(X)g Thus Cr(X) is a lattice and, with algebraic opera-
tions defined pointwise, Cr(x) is a vector lattice and a real algebra.

For each f & Cr(X), let [Iffl = sup [f(x)]:xe Xr. A short
computation shows that the function |l {| on CT(X) is a norm on Cr(X);
In the topology induced on cr(x) by the norm f |, CI(X) is a closed
lattice, a closed vector lattice, and a closed algebra. Whenever closed
lattices, vector lattices or algebras are mentioned in this chapter it will
be tacitly assumed that the word "closed" means closed with respect to the
topology induced on CI(X) by the norm | {l.

The proofs of all the assertions made above are straightforward
computations based on definitions listed in the glossary.

If A 1is any non-empty subset of Cr(X), let

L{A) be the intersection of all sublattices of cr(x) containing A,

v{(A) be the intersection of all vector sublattices of Cr(X) containing A,

A(A) be the intersection of all subalgebras of Cr(X) containing A,

L(A) be the intersection of all closed sublattices of cr(x) containing A,

V(A) be the intersection of all closed vector sublattices of Cr(X)
containing A, and

L(A) be the intersection of all closed subalgebras of Cr(X) containing A.




It is clear that L(A) 1is a sublattice of cr(x); v(A) is a
vector sublattice of Cr(X); a{A} 1is a subalgebra of Cr(X); L(A) is
a closed sublattice of Cr(X); V(A) 1is a closed vector sublattice of
Cr(X); and O(A) is a closed subalgebra of CI(X)u Each of these sets
contains A, and each is minimal in the following sense: If L' 1is a
sublattice of Cr(X) and L‘:2 A, then L1°® D L(A). Analogous asser-

tions are valid for V(A), a(A), L{A), V(A), and Q(A).

(2.2) Definition: A non-empty subset A of cr(x) has separation
property I if and only if: Given x, ye X with x #y, and any
real numbers a, b, there exists a function f £ A& such that f(x) = a
and f(y) = b,

A non-empty subset B of Cr(X) has separation property II if

and only if: Given x, ye X with x # y, there exists a function

f e A such that f(x) # f(y).

(2.3) Definition: If A is a non-empty subset of CI(X), the set of

+
all non-negative linear relations satisfied by A is denoted by A (A),

and defined to be the following subset of (X x X) x (R x R):l

At(ay = (x, y3 *, *°) ¢ x, ye X; r, ' € Ry rex* > O and}

rf(x) = r'f(y) for all fe A .

(2.4) Definition: Let A be a non-empty subset of Cr(X), and let

X, Y& X. Let

Alx, y) = {(£(x), £(y)) + fe A},

lIn this chapter the letter R will denote the real line. The
symbcl R x R then denotes the Cartesian product of the real line with
itself,




and

[Q(a)](x, y) = {(f(x), f(y)) : fe Q} , where Q is any one of

the symbols L, V, 0, L, V, &, Note that A{x, y) C R x R and

(Q(A)](x, ¥) € R xR,
(2.5) Lemma: Let the order relation "<" be defined on R x R by
(a, b) < (¢, d) &= a<c and b<d,

where (a, b) and (¢, d) are points in R x R, If (a, b), f{c, d)e R xR

then

g9.1.b.{{a, b), (c, d)}

l.u.b. {(a, b), (c, d)}

(mina{é, b} , mina{b, d} )

(maxo{a, b} , maxo{c, d} ) .

The vector space R x R with its usual topology becomes a closed vector

lattice in which

(2.5.1) (a, ) A (¢, d) {min. {a, b}, min, {c, d} ),

(2:5.2) {a, b)YV {c, d) (max. {a, b}, max. {c, d} )

are valid for all (a, b}, (¢, d) € R x R.

The proof is a straightforward computation and is omitted.

(2.6) Lemma: Every closed subalgebra of cr(x) is also a closed vector

sublattice of Cr(X)o

Proof: Let & be a closed subalgebra of Cr(X). Since @ is, by

definition, a closed vector subspace of Cr(X), it suffices to show that

(L is a sublattice of Cr()()n Since for f, g e cr(x), and for each

(2.6.1) (£V g)(x) = max(£(x), g(x)) = Hxl+ a(x) ’2r|f(><) X-1E10




(2.6.2)  (FA9)(x) = min. (£(x), o(x)) = £xL+a(x) élfh)-gh)|g

it suffices to show that if f e (., then the function [f]|, defined on
X by |fl(x) = |f(x)], is also in Q.

let & > 0 be given. Since |t| is a continuous function of
the real variable t, by the Weierstrass approximation theorem there

exists a polynomial P* with the property that | [t]-pP*(t) | < %

for every t 1in the closed interval [-HfH9 Hf]]n If P 1is the poly-
nomial which results from replacing the constant term P?(0) of P°® by

0, then P 1is a polynomial with O as its constant term which has the

property that | |f] - P(t)|< &€ for every t in [-[ltll, |If{l]- Since &
is an algebra, the function P(f) in C_(X) is in a.

By the way P was selected | |[f{x)] - P(f{x))| < & for all
x € X, and from this it follows that |l |f]| - P(f)ll < e. This implies

that if f e (L then |f] is a limit point of & and since @ is

closed, |[f] e (L,

{2,7) Lemma. If A is a non-empty subset of Cr(X), then for any

given x, ye X,

(2.7.1) [V(A)](x,y) = {(a,p):r a = r'p for some fixed r_ _, r!
XY XY
Xy Y X, Y

such that r-r' > d}
X ¥ XY

Proof: It will first be shown that [V(A)](x,y) is a vector sub-

lattice of R x R.

Let (a,3), (v,8) ¢ [V(A)](x,y)u Then a = f(x), B = fly),

1]

y = g(x) and & = g(y), for some f, g ¢ V(A). Thus (a + v, B +5)

= ((f +g)x, (£ +9)y) e [V(A)J(x,y). If X 1is real, then (xa, AB)




= {((Mf)x, (Af)y)e [V(A)](x,y), so that [V(A)] {x,y} is a vector

subspace of R x R. Also

(a, BYV (v, d) = (max.(f(x), 9{x)), max.(f(y), aly)) =

((£Vg) x, (£V g)y)e [V(A)Ux, v),

and similarly (a, B)A (v, 8)e [V(a)](x, y). It follows that [V(A)](x,y)
is a vector sublattice of R x R.

Since [V(A)](x,y) is a vector subspace of R x R it must have
the form

- r
(2.7.2)  [V(A))(x, y) = i(a, B):ra = r'p, for some fixed real r_ ,r_ ).
XY XY AL

Since V(A) is a vector sublattice of Cr(X), it contains the zero
function. Hence, if f ¢ V(A), then |f|=2(fV 0) - f so that
| f]e V(A). This implies that if (a, P)e [V(A)](x,y) then (Ja|, |B|)e-

V(A (x . With r rt as in (2.7.2 if r r' <O
(v(a)](x, v) %,y Tx,y ( ) %,y T,y

then (rx,y’ rx,y)s [V(AY)(x,y) and hence (lrx,y|’ |rx,y|)£ (VA (x,y).
This would imply that r |r! | = r! |r_ |, thus contradicting the
X,y XY Xy¥' XY
assumption that ror; < 0. It follows that ror; > 0 must be the
X,y 77 X,Y !

case, and hence that [V(A)](x, y) must have the form (2°7°l)ﬂl
(2.8) Lemma: If A is a non-empty subset of cr(x), then L(A) = L{A)

and Q(A) = 2(4). [The symbols L(A) and a(A) denote the closures of

the sets L(A) and Q(A) in the norm topology on Cr(x)o]

proof: If f, g& L(A), then there exist sequences {fn} C L(A) and

W] u
{gn} C L(A) such that fn — f and 9, — g. Since
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£ (x)+g (x)+ [f (x)-g ()]
(f v g )(x) = £ (x)V g (x)=max(f (x), g (x)) = 5 5

it follows that f V g_ Y, f—;-ﬂ + J-%ﬁl = £V g, Similarly

U
(fn/\ gn) — A g. Thus £\ g and f /\g are limits of sequences of

members of L(A), and hence £V g and f/\'g are in L({A). By the

At

preceding argument, it follows that L{A) 1is a lattice., Since L(A)

is closed and contains A, L(A) contains L({A). However L(A) 1is a

lattice containing A, so that L(A) contains L(A). Since L(A) is

i ——

= L(A) 2 L{A). Thus L(A) 2 L{A) D L(a),

closed this implies that L(A)

and hence L(A) = L(A).
By an analogous argument C-L(A) = CL(AJ|

(2.9) Lemma: Let A be a non-empty subset of Cr(X)= Then

L(A) = {f : fe cr(x) and, given € > 0 and x,ye X, there exists

a function f eL(A) such that [f{x) - f_ (x)] <e and
XY XY

s

[£0y) - £, (¥)] <e}

Proof: Let the set on the right be denoted by S, Since by Lemma (2.8)

L(A) = L{A), it follows that L{A) C S. Now let fe 53 let e >0
be givens let x e X be fixed; and for each ye X let GY denote the

open set

GY = {z : f(z) - fx,y(z) < e} o

Since f e S5, it follows that x, vy e Gy and hence that

X = U GYu By compactness of X there exist points YysooesYy, such
ye X '
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n n
that UGy =X. Let g = \/f_ . If ze X then ze G for some
Y: .
s-1 1 DS 41 Yk
k = 1,2,...5n, and hence g_(z) > f_(z) > f(z) - €. Since fe S,
X = XY

[ £({x) - fxy(x)l < e for each y & X, and hence fxy(x) < f(x) +e for
i
each i=1,.,.,n, This implies gx(x) < f(x) +e,

For each x e X let Hx denote the open set

Ho={z:g(z) < £(z) +e} .

By the argument just given x e Hx for each x g X and hence U [{x: X,
xe X
m
By compactness of X there exist points X 5o X such that (J Hxn = X,
a=l 1
m i
Let h= Ag, . If ze X then ze H, for some k = 1,2,...,m,
ij=1 1 k

and hence h(z) < gxk(z) < f(z) +e. Since by the preceding gx(z) > f(z) -«
for all z e X and for any given xe X, it follows that h(z) > f(z) - ¢
for all z & X. This implies f(z) - & < h{z) < f(z) +¢ for all ze X,

and hence |f(z) - h(z)| <& for all ze X.

m m n
Since h= Ag = /N\(\Vf, ), with f, e L{A) for
i=1 % i=1 j=1 (1Y 1Y

i=1l,..0,mand j = 1,...,n, it follows that he L(A). Since & 1is an

arbitrary positive number this implies that f ¢ L(A) and by Lemma (2.8)

fe L(A). Thus S g; L{a) and, in view of the preceding, §S = L(A),

(2.9.1) Corollary: If L(A) has separation property (I), then

L(A) = c (X).

Proof: Let f ¢ Cr(X) and let x, ye X. By definition (2.2) there
exists a function fx e L (A) such that f_ (x) = f(x) and f_ (y)= f(y).

'Y Xy Y Xy

(2.9.2) Corollary: L(A) = {f : (£(x), f(y))e'[L(A)](x,y) for all x, yeX

such that x # y}.
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Proof: If fe L(A), then (f{x), f(y)) e [L{A)](xy) T TL(A)T(x,y)
for all x, ye X. Conversely, if (f(x), f(y)) ¢ [L(A Ti x,y) for all
x, ye X such that x # vy, then given ¢ > 0 and x, ye X; there

exists a function f_ e L {(A) such that [f(x) - f
X, Y XY

|f(y) - £. (y)| <e. By Lemma (2.9), fe L(A).

XY l

(2.9.3) Corollary: If L(A) = A, then

x)] <e and

A = {f : fe Cr(X), (f{x), f(y)) ¢ A(x,y) for all x, ye X such

that x # y} .

Proof: Let the set on the right in the above equation be denoted by B.

By definition (2.4), A C B. Let fe B. Then

(F(x), £(y)) e Alx,y) © [L(a)](x,y) € [L(A)T(x,y)

for all x, ye X, such that x # y. By Corollary (2.9.2), fe L(A) = A.

(2.10)  Theorem V(a) = {f : fecC_(X) and aAt({eh D A+(A)}

Proof: It will first be shown that A+(G(A)) = [9]A)« Since A & V(A),
it follows that A+(V(A)) gA+(A). If A+(A) is empty this part of the

proof is complete, Otherwise let
_ . + +
v= {f:fec () and AT{£]) =N

Now let (x, y; r, r') e[}+(A), and let f, ge V. Then
(x, ys T,v)e07(A) C aT{hHNa" (o), so that rf(x) = r'f(y) and

rg(x) = r'g(y). Hence for any real scalars a and B

raf +Bg)(x) = r(af(x) +pg(x)) = r'(af(y) +pgly)) = r'(af +Bg)(y).
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o0

It follows that of + pgev. If {fn'} C voand f L5 ¢, then

‘n=1
rfn(x) = r'fn(y) for every n, and hence rf(x) = r'f(y). Thus feV.
This implies that v 1is a closed vector subspace of cr(x)a

Now recall that, by Definition (2.3}, r.r* > Q. If f, geV
and r > 0, then r(f Vg)(x) = r+max{f(x), g(x)) = max(r-f{x), r.g{(x) =
max (r'fly), r'g(y)) = r'-max(f(y), a(y)) = r'(f Vo)(y). 1If £, gev
and 1 < O, then r-(fV g)x = remax(f(x), g{x)) = min(r f (x), rg(x) =
min{r'f(y), r'gly)) = r'max(£(y), g{y)) = r' (£ V g){y). Thus if f, geV,
then £V gev. A similar argument implies that if f, g € Vv, then
fA gev. It follows that V 1is a closed vector sublattice of cr(x)
containing A. By minimality of V{(A)}, V 2 V(A). This implies that
At (W(a)) D aT(v). Ssince for each f eV, A+({f}) D AT(a), it follows
that A (V) 2 A+(A), and hence that A (V(A)) - At(a). since the reverse
inclusion has already been established, A+(A) = A+(V(A))a

In the course of the argument just given the inclusion V 2 V({a)
was established. To complete the proof it suffices to show that Vv C V(A).

By Lemma (2.7), if x, y ¢ X then

[V(a (x, ¥) {(a, : = r;’yﬁ, for some fixed rx,y’ rx,y

such that or! > d}u
X, Y Xy¥ <

tet fev. Then A ({£]) 2 aT(A) = aT(V(A)). 1f ge ¥ (A), then
(a(x), aly)) e [V(aA)](x, y) for each x and y in X, and hence
r__9(x) =r. aly). It follows that (x, y r, r)ena (V) € at({£)).
Thus r_ _+f(x) = r' «f(y), and hence (f{x), f{y))e [V(A)](x, y) C

Xy Y XY
C v(a) ) (x, y).
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Hence if f e V, then (f(x), f(y))e [V(A)](x, y) for each

x and y in X. Since L(V(A)) = V(A) = L(V(A)), Corollary {2.9.2)

<1

implies that f ¢ V(A). Thus V §§ V(A), and the theorem is proved.

(2.10,1) Corollary: If A has separation property (I) or (II), and

contains a non-zero constant function, then V(A) = Cr(X).

Proof: Let f ¢ Cr(X), and let (x, y;j r, ') ¢ A+(A). Then

rh(x) = r'h(y) for all he A. If either r =0 or r' = 0, then both
r=0 and r' =0, since A contains a non-zero constant function. Thus
if either r =0 or r' =0 then T =1' =0 and trivially

(x,y3 T, T') ¢ A+({f}), Now suppose that r # O and r' # 0. Then

r =1r', because A contains a non-zero constant function. Thus

h{x) = h(y) for all h e A. This is impossible because A has separation
property (I) or (II). It follows that A'(A) = (x, y; 0, 0) Ca*({£})

for all f ¢ Cr(X), and by the theorem just proved Cr(X) = V(A)al

(2.11) (The Stone-Weierstrass Approximation Theorem) Let A be a non-
empty subset of Cr(X). A necessary and sufficient condition that a func-
tion f 1in Cr(x) be in @{A) 1is: If g(xo) = 0 for all ge A and
some X e X, then f(xo) = 0; and if g(yo) = g(zo) for all ge A and

some 'y, z_ & X such that vy, # z,y then f(yo) = f(zo).

Procf: The necessity of the two stated conditions will be demonstrated
first. Suppose that X)s Yo» 2, 3Te peints in X such that Yo # Z,

g(xo) = 0, and g(yo) = g(zo) for all g e A. Let
o}

o f(zoﬂ .

]

o)
1]

{f fe G (X), flx)

and

0
n
—~
s}
+H
m
O
H
—_—
>
—
-
Laat
—
-
U]
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A short computation shows that P and Q are both closed subalgebras of
Cr(X), and hence P({}Q is a closed subalgebra of cr(x) containing
A. Hence P Q contains &(A). This implies f(xo) = 0 and

f(yo) = f(zo) for all f e GQ(A). It follows that the two conditions

are necessary.

The sufficiency of the two conditions will now be established.

Llet f be a function in cr(x) for which:

(2.11.1) g(xo) =0 for all g e A implies f(xo) =0
and
(2.11.2) g(yo) = g(zo) for all ge A implies f(yo) = f(zo)

for every x, y,, z & X such that vy, £ z,»

Let (x, y; r,r')e¢ A+(Ei(A)). Then rh(x) = r'h(y) for all
he @{A). If r =r1' =0, then clearly (x,yjr,r')e A+({f}), If
r#0, r =0, then h(x) = 0 for all h e &(A). Hence h(x) = 0
for all he A, so that f(x) =0 and rf(x) = 0 =r'f(y). This implies
that (x,ysT,r')e A+({f}). In like manner, r =0, r' £ 0 implies that
{x,y; r,v")e A+({f}). The only remaining possibility is that r # 0 and
r' # 0. In this case if h(x) = 0 for all h e Q(A) then h(y) = 0
for all h e @(A)., Hence f{(x) = 0 = f(y), so that rf(x) = r'f(y) and
(x,y3 ryr")e A+({f}). If ho(x) # 0 for some hoefi(A), then ho(y) # 0,
Since ((A) is an algebra hit:a(A) and thus rhi(x) = r'hi(y)° But
r2h2 (x) = r'zh2 {(y) and hence rr'h2 (y) = r2h2 (x) = r'2h:2 (y), which

o o o 0 0

implies that r = r'. It follows that rh(x) = r'h(y) = rh(y) for all
hed(A) and, since r # 0, h(x) = h(y) for all he(A). Thus

f(x) = f(y), rf(x) = r'f(y), and hence (x,y; r,r')e A+({f}),



1€

By the argument just given if f satisfies (2.11.1) and (2.11.2)
then A+(21(A)) - A+({f})u By Lemma (2.6), éL(A) is a vector sub-

lattice of C_(X). Thus V(@ (A)) = @(A) and by Theorem (2.10),
A(A) = WAG) = {£:fec () and 2 (€ D 4T @)}

Thus if f satisfies (2.11.1) and (2.11.2) then f & Q{A). This

implies the sufficiency of the two stated conditions and concludes the

roof.
proot-g

(2.11.3) Corollary: A necessary and sufficient condition that a(A)
contain a non-zero constant function is that for each xeg X there exist

some feA such that f(x) # 0.

Proof: Let gel(A), where g(x) = ¢ # 0 for all x e X. By the theorem
just proved there exists no x e X such that f(x) = 0 for all f ¢ A.

Now suppose that for each x g X there exists some fxe A such that
fx(x) # 0. Let g be any real-valued constant function defined on X.
Since g{x) = g(y) for all x, yeX, the theorem just proved implies
gel(A). It follows that ({A) contains all real-valued constant functions

defined on X.
|

(2.11.4) Corollary: If A has separation property (I}, or if A has
separation property (II) and contains a non-zero constant function,

then Q(A) = c (x).

Proof: If A has separation property (I), then there exists no xeX
such that g(x) = O for all geA, and there exist no two distinct
points vy, ze X such that g(y) = g(z) for all geA. Theorem (2.11)

implies that C_(X) = (a).
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If A has separation property (II) and contains a non-zero con-
stant function then the assertion follows immediately from Theorem (2.11)

and Corollary (2,11.,3).l

(2.11.5) Corollary: If (L{A) has separation property (II) and contains

a non-zero constant function, then ((A) has separation property (I).

Proof: Let (1(A) have separation property (II) and contain a non-zero
constant function. Let Xy Y € X be such that X # Yo Then there
exists a function fe@(A) such that f(xo) # f(yo)u Let a2 and b be

any two real numbers and let

bf(x )} - af(y_ )
a -b 0 0
g(x) = [ f(xo) _ f(YO) ]' f(X) + |: f(Xo) - f(Yo) j’ s

for all xeX. Then ge{(A) since A{A) 1is an algebra. Since g(xo): a

and g(yo) = b, it follows that @(A) has separation property (I),l

(2.12) Definition. Let X be a compact topological space. The symbol
CC(X) will denote the space of all complex-valued functions defined and
continuous en X. With algebraic operations defined pointwise, CC(X) is
a complex algebra. The function || || defined on C_(X) by £l =

sup {[f(x)|: XE X} is a norm on CC(X) and CC(X) equipped with this
norm is a complete normed vector space. In the topology induced by this

norm CC(X) is a closed complex algebra,

(2.13) Definition: If fe CC(X), let f be the function defined on X

by f(x) = f(x) for all xeX. The function f will be called the con-

jugate of the function f.
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For A, a non-empty subset of CC(X), define ab(A) to be the
intersection of all closed subalgebras of CC(X) which contain A and
contain the conjugate of each of their members. Clearly CC(X) has all
these properties so that the intersection is not vacuous. Also aé(A)
has all these properties and is ceontained in any closed subalgebra of
CC(X) which contains A and contains the conjugate of each of its
members.

For fe CC(X) the symbol ({f) will denote the real part of f

and the symbol HL(f) will denote the imaginary part of f.

(2.14) Definition: If A is a non-empty subset of CC(X) let

Ar = {f : £ =@(g) or f = {(g) 7for sOme g E A} ,

and let
B(A) = {f : f =g+ ih where g, hed(a )
: , I

Since fe CC(X) if and only if G (f)e Cr(X) and £(f)e Cr(X), it fol-

tows that & C C (X).
r — I

{(2.15) Lemma: If A 1is a non-empty subset of CC(X) then (iC(A) = B(A).

Proof: It will be shown first that éC(A) D B(A). Let D be any
closed complex subalgebra of CC(X) containing A, and closed under
the formation of conjugates. If feD, then @(f) = % (f + f) and
L(F) =é§(f - f) are both in D. Let D_ be as in Definition (2,14).
A tedious but perfectly straightforward computation shows that Dr is

a real closed subalgebra of Cr(X). Since Dr ;? Ar’ it follows that

D_ 2 a(Ar). By arguments given above every member of D is in D.
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This implies that if f e (A ), then =D, Now let feB(Al Then f=g +in
for some g, h e(i{Ar). By the preceding, g and h are in D so that
f e D. This implies that D 2 B(A). 1In particular this implies that
(-lc(A) 2 B(A).

A short computation shows that B(A)} 1is a closed complex subalgebra
of CC(X) containing A and closed under the formation of conjugates.

This implies that B{A) 2 ab(A) and concludes the proof,.

(2.16) The Stone-Weierstrass Approximation Theorem. (Complex Case)

Let X be a compact topological space and let A be a non-empty
subset of CC(X)° A necessary and sufficient condition that a function
f eICC(X) be in ZiC(A) is: If x_  is any point in X for which
g(xo) =0 for all g e A, then f(xo) = 0; and if Y, and z, are
any two distinct points in X for which g(yo) = g(zo) for all g e A,

then f(yo) = f(zo).

Proof: The necessity of the above conditions will be established first.

let f e (ic(A) = B(A). Then f = h, + ih,,

x, be a point in X for which g(xo) = 0 for all g e A. Then

for h hzecl(Ar)q Now let

g(xo) =0 for all g e Ar and hence, by Theorem (2.11}, h(xo) =0 for
all h s(i(Ar). It follows that f(xo) = 0, Let Y, and z, be any
two distinct points in X for which g(yo) = g(zo) for all ge A. Then

the set
F={h:hec(X) and h(y) = h(zo)}
is a closed complex subalgebra of CC(X) which contains A and is closed

under the formation of conjugates. This implies that F 2 Z%(A) and

hence f(yo) = f(zo).
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Conversely, let f be a function in CC(X) such that

X, € X and g(x0)=0 for all g ¢ A:>f(xo) =0

and
Yo Z,€ %5 Y, # z,, ‘and g(yo) = g(zo) for all
ge A= fly ) = f(z ) .
Then
X, € X and h(xo) =0 for all he A;:b (Q(f)(xo) = &(f)(xo) = 0,
and

Yor 2,6 %s Y, # z , and h(yo) = h(zo) for all he A£=$
gly,) = g(z,) for all geA — £y ) = f(z)) =
Af)(y,) = R(E)(z,) and (£)(y,) = L)(z,) -

By Theorem (2.11), ®(f) and <f(f) are in a(Ar), and thus

feB(A) = ﬁc(A). 3

(2.17) Remark: In what follows, the symbol X will denote a fixed but

otherwise arbitrary locally compact topclogical space. The symbol X

will denote the one-point compactification of X obtained by adjeining
to X the point %n not in X.1 The set C?(X) is defined to be the
set of all continuous, real-valued functions defined on X and satisfy-
ing the following condition: For every e > O there exists a closed

compact subset Fo ¢ of X such that |f(x)| < e for all xeX - Fo g
¥ b

1See Glossary, page 81.
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Functions satisfying this condition will be said to vanish at infinity.

The set cg(x) is defined to be the set of all continuous, complex-
valued functions defined on X and vanishing at infinity.

Let CI(X) denote the space of all bounded, continuous, real-
valued functions defined on X. Let CC(X) denote the space of all
bounded, continuous, complex-valued functions defined on X. With alge-
braic operations defined pointwise cr(x) is a real algebra and CC(X)
is a complex algebra. The function || || defined on Cr(x) and on
CC(X) by |(ifli = sup {|f(x)]: XE X} is a norm on cr(x) and on CC(X)O

A long but nonetheless straightforward computation shows that
CO(X) is a closed subalgebra of Cr(X) and that cz(x) is a closed

r
subalgebra of CC(X).

(2.18) Definition

c2(%,) = {f + f is a continuous, real-valued function
T, .
defined on X_ and f(x ) = d}
Cg(ﬁm) = {f : £ is a continuous, complex-valued

function defined on Xo and f(%m) = d}

(2.19) Lemma: Every functien in C;(X) may be uniquely extended to
a function in Ci(&b), and every function in cg(x) may be uniquely
extended to a function in Cz(xm), Conversely, the restriction to X
of any function in C;(&n) is in cg(x), and the restriction to X

. () . . e}
of any function in Cc(ﬂn) is in CC(X).

Proof: Let fe CS(X) and define f_ on X_ by: f (x) = f(x) if

oo o0

xe X, and ﬁn(*m) = 0, The function f, 1is an extension of f to

a function defined on X, . Since f ¢ Cz(X) it follows that if € > 0O

is given, then there exists a closed, compact subset FE Q; X such that
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|f(x)] <e for xe X - F_. This implies that X - F_ is an open
set containing x, such that ﬁn(xm - Fe) Q; N(0O; €). It follows that
f_, 1is continuous at x_. Since f_ is continuous on X, f_ ¢ Cg(xm)e
Any extension of a function f in Cg(X) to a function in Cg(ﬂn)
must agree with f on X and must assume the value O at X, . Thus
uniqueness is a consequence of existence,.

Now let f eCJ (X,) and let f denote the restriction of f,
to X. Let € > 0O be given. Since ﬂn(ﬂn) =0 and since f_ is con-

tinuous on X _, there exists an open set G containing x_  such that

f_(G) € N(Dge). By definition of the topology on X_, this open set

G must have the form G =X - F, where F 1is a closed, compact sub-

set of X. Thus for all xe X - F, ([f{x)]| = |f_(x)| < e, and hence
0

fe CC(X).

The proof of the lemma for C? {(X) and Cg (X_) is an exact

duplication of the proof just given.

(2.20) Definition: For each f & cz (Xx) let f_ denote the unique

. . . 0 o
extension of f +to a function in Cc(%n). For each fe¢ Cr(X) let £
denote the unique extension of f to a function in Cg(xm)u

For each non-empty subset A of CS(X) or of CI(X), let the

set AL be defined as follows:

A= {f,+ feA).
o o
For each non-empty subset B of Cc(xm) or of Cr(xn), let By be

the set of all restrictions to X of functions in B.
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(2.21) Definition: If A is a non-empty subset of CZ(X), define
at(A) to be the intersection of all closed, complex subalgebras of
cg(x) which contain A and are closed under the formation of conju-
gates. The space Cz(x) has all these properties, so that the inter-
section is not vacuous. The set ab(A) has all these properties and is
contained in any closed complex subalgebra of Ci {X) which contains A

and is closed under the formation of conjugates.

(2.22) Theorem: If A is a non-empty subset of cg(x), then a neces-
sary and sufficient condition that a function f in Cz (X) be in 5b(A)
iss If X, is any point of X for which g(xo) = 0 for all g g A,
then f(xo) =0, and if y and 2z = are any two distinct points of

X for which g(y ) = g{z_ ) for all geA, then f(y ) = f(z ).
0 o 0 0

Proof: Denote the class of all functions which satisfy the above condi-
tion by Q. It must be shown that Q = 5b(A)'

It will be established first that C_lc(A) = [dc(Am)]Xﬂ A short
computation shows that [Eic(ﬁn)]x is a closed subalgebra of CZ(X)
which contains A and is closed under the formation of conjugates. This
implies that [ac(Aw)]X 2 aC(A). By the same argument [a.C(A)]m is
a closed subalgebra of CZ(%M) which contains A and is closed under
the formation of conjugates. This implies that [E)',C(A)]m i acum),
and hence that every function in ab(ﬁm) is the extension of some func-
tion in 5£(A) to a function defined on X_. It follows that
[0.(A)], € G.(8). Thus [Q _(a)], = _(A).

By Theorem (2.16) and Lemma (2.19) Q_ = éb(gm), and hence

Q=[O (4)]y =G (r). g
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. 0 .
(2.22,1) Corollary: If A is any non-empty subset of CC(X) which has
separation property (I) or has separation property (II) and for each

x £ X contains a function g such that g_ (x )} # 0, then
o X Xo O

0
a_(a) = cg(x).
{2.23) Theorem: If A 1is a non-empty subset of C? {X), then a neces-
sary and sufficient condition that a function f in C?(X) be in A(A)
is: If x 1is any point in X for which g(xo) = 0, for all g e A,
then f(xo) = 03 and if y_ and z_ = are any two distinct points in X
for which g(yo) = g(zo) for all g ¢ A, then f(yo) = f(zo)a

The proof is an exact duplicate of the proof of Theorem (2.22)

and is omitted.

(2.23.1) Corollary: If A 1is any non-empty subset of cg(x) which
has separation property (I) or has separation property (II} and for each

x ¢ X contains a function g such that gy {(x.) £ 0, then J(A) = c2(x).
o *o o © r
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CHAPTER II1
THE STONE REPRESENTATION THEOREM FOR BOOLEAN ALGEBRAS

This chapter contains a proof of the Stone representation theorem
for Boolean algebras. The proof presented here is a modification of that
given in WALLMAN [1]u The Stone representation theorem states that
given any Boclean algebra E there exists a totally disconnected
compact Hausdorff space S such that E 1is a lattice-isomorphic image
of the Boclean algebra of all open-closed subsets of S.

The Stone representation theorem of this chapter plays a major

role in the proof of the representation theorem of Chapter IV.
(3.1) Definition: A lattice L 1is said to be distributive whenever

alNBVe =(GAB)V(@GALC

i

and

aVbAc)=(aVb)A@Vec)

are valid for ail a, b, ce L. An element Cel 1is said to be a zero
element of L if aA 0 =0 and aV 0=a for easch ael. An ele-

ment le Ll is said to be a unit element of L if a N1l =a and

aV 1 =1 for each ael. It is easily seen that there can be at most

one zero element and at most one unit element in any given lattice.
Unless otherwise noted the symbol L will dencte a fixed but

otherwise arbitrary distributive lattice with distinct zero and unit

elements.
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(3.2) Definition: A non-empty subset H of L 1is said to have property
F if and only if
n

W C o=
{ai‘i=1 H=> A a, #0.

B i=1

A non-empty subset M of L will be called an ideal in L whenever

a, beM=—=> a ﬂ\b EM
and

ceM—>if del and d > c, then deM.

An ideal M will be called maximal if there exists no ideal N properly
containing M and properly contained in L. Note that if M 1is any

maximal ideal in L then 04 M and 1 e M.

(3.3) Lemma: Let ¢ be the family of subsets of L with property F,
partially ordered by inclusion. If H e then H 1is contained in some

maximal element of

Proof: By assumption the zero and unit elements of L are distinct.
This implies {l} el and hence # 1is not empty. If C is any chain
in & it is easily seen that UC is an upper bound for C in Z.

The conclusion follows from Zorn's lemma.

(3.3.1) Remark: The lemma just proved is equivalent tgo the Axiom of

Choice. This point is discussed in SIKORSKI [1].

(3.4) Lemma: A non-empty subset G of L is a maximal element of &

if and only if G satisfies the following two conditions:

(3.4.1) a, be G=>aA beG
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(3.4,2) ceG&>alNc 0, forall ace G,

Proof: Let G be a maximal element of #. Then G # f@. If a,beG,

then aA b # 0. This implies that
G Ll{c Ad ¢, de G}

has property F and hence does not properly contain G. Thus G satis-
fies (3.4.1).

If celL and aNc £0 for every ae G, then GU {c} has
property F, and hence c¢ e G. Conversely, if ¢ e G then a Nc # 0
for every a & G. Thus G satisfies (3.4.2).

Now let G be any non-empty subset of L satisfying (3.4.1)
and (3.4.2). By finite induction, G has property F. If H 1is any
subset of L containing G and possessing property F then, by (3.4.2),

HC G. Thus G  is a maximal element of .

(335) Lemma: Every maximal element of 7 is a maximal ideal in L

and conversely.

Proof: Let G be a maximal element of ¢, By Lemma (3.4), if a, be G,
then a Abe G. If del and d> ¢ for some ce G, then
dNa2cAa>0 forall ae G. This implies dA a # O for each
ae G. Lemma (3.4) implies d e G. It follows from Definition (3.2}
that G is an ideal in L.

Now suppose that there exists an ideal N in L suth that N
properly conta;ns G. Then there exists an element n e L such that
n¢ G. Lemma (3.4) implies that nAa =0 for some ae G C N. Hence

0 =nAae N. Definition (3.2) together with the fact that x > ¢ for
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all xe L implies N =L, It follows that G 1is a maximal ideal
in L.

Conversely let M be a maximal ideal in L. It follows from
the maximality of M that O ¢M. Hence by Definition (3.2) and
finite induction M has property F. Thus M ed and by Lemma
(3.3) M is contained in some maximal element H of & . The pre-
ceding paragraph implies that H 1s a maximal ideal in L., Since M
and H are maximal ideals and H ;2 M, it follows that M = H and

consequently that M is a maximal element of 9’..

(3.6) Definition: Let S denote the collection of all maximal

elements of 7. By Lemma (3.3) S is non-empty. Each element
pe S will be called a point in S. For each a e L the set Ba

defined by
\
B = {p :pe S, ae pj

will be called the basic a-set. By Lemmas (3.3) and (3.5), B, = g if

and only if a =0, If pe S and ae p then 1A a=a # 0. It

follows from Lemma (3.4) that 1 ¢ p. This implies that 1 e p for all

p e S. and hence B1 = 5,

(3.7) Lemma: If pe S then {p} = B,
acp
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Proof: let pe 5. If ae p, then pe B, and hence {p} M s,
acp
Conversely, if qe Ba for all ae p, then ae gq for each ae p,

and hence q ? p. Since both q and p are maximal elements of a

it follows that g = p. Thus {p} = () B,.
acp W

(3.8) Lemma: If a, be L, then

(3.8.1) By Ap = B, B,

(3.8.2) B,y © BaU B,

Proof: The first assertion follows from the implications
p et Baan<:>a, b e p{Z}eAbs P pe Ba/\b"

The second assertion is proved in two steps. That By U Bb g Ba V b

follows from the implications
p e BaUBb=>a£ p or be p=aVbe p@peBaVbo

Now suppose that a 4 p and b ¢ p. There exist ¢, d ¢ p such that

cANa=0 and cAb=0. This implies

"

(e ANd)A (aV b) = [(c Ad)Aa]V [(cAd)Ab] =[{dAc) AdIV[cA(d A b)]

(A V (cAN0) =0,

By Definition (3.2) c¢/Ade p and thus, by Lemma (3.4), aV b4 p. If
Pe By p- then a V be p. The argument just given implies either

aep or be p, and hence pze BaU Bb. In view of the preceding,

B,y b= BaU Byeg




30

(3.9) Lemma: Let

u: mB 3QCL}0
a =
acQ

Then U contains g and S, and is closed under the formation of finite

unions and arbitrary intersections.

Proof: If pe () Ba then pe Ba for all ae L and hence p =1L,
ael

This implies that O & p thereby contradicting Lemma (3.5). It follows

that B = (M B,» By convention f}% B, = S. Thus gell and sel,
aesL ag

Let A= () B and C= [ B, be sets in ‘U.
a'te a"sQ2

Then by Lemma (3.8)
aVc= N (M B.,,UB,= M M B, .
a‘th a"eQ, a an a'v an

If

QB= {a'Va“ :a'te and a"eQQ},

then
aAlc= M B, »
aeQ3
and hence AU Ce U, By induction it follows that UL is closed under
the formation of finite unions.
Let T be an arbitrary index set and let {At I T} C u.

If A, = () B, foreach te T, then
t

(\ At = r\ (W Ba = (ﬂ\ B

teT teT acQ, ae U Q°
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and hence A, £ 1.
teT t u

(3.10) Lemma: Let J = {A : S - A elL}a Then < is a topology on

the space S.

Proof: The assertion 1s an immediate consequence of the definition of

a topology on the space S. This definition may be found in the glossary.

(3,10,1) Remark: The sets in J  will henceforth be called open sets
in S. Sets in U will henceforth be called closed sets in S. 1If

A g S the symbol A® will denote the set S - A.

(3.11) Theorem: The space S is a compact Tl-space in the topology
d

o

Proof: Lemmas (3.7) and (3.9) imply that each singleton in S 1is a

closed set., It follows that S is a Tl-space.

Let W = {At t te T} be a subcollection of L with the finite

intersection property. By definition of U each set At is of the form

At = agg Ba’ where Qt Q; L. Suppose that the collection
t

@ = {Ba : ae t;;ot}

does not have the finite intersection property. Then there exists a fin-

a

ite subcollection B, ,...,B
1 n

n
of (? such that M\ B_ =f§. Each B,
i=] 93 i

n n
contains some A,, so that f\Ai C (B, = @. This contradicts the
i=1 i=1 1

original hypothesis and implies that the collection & has the finite
intersection property.

Now let L = L}Qt. If ajy...,a 1is any finite subcollection
teT
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of (L, then by Lemma (3.8)

n
B = _ﬂ By, £ 9 .
A

i=1

It follows from the discussion accompanying Definition (3.6) that

n
A a, # 0, This implies that the set agl. has property F. By

Lemma (3.3) and Definition (3.6) there exists a point p e S such that
p 9 O, Thus ae p for each aed, and hence pe Ba for each

ace kJQtu This implies that
teT

pE
ae L}Q
teT

=ﬂA,
teT T

B
a
t
and hence that the collection ' has non-empty intersection,
The preceding argument has established that any collection of

closed sets in S5 with the finite intersection property has non-empty

intersection., It follows that S 1is compact.

(3.12) Definition: A distributive lattice L 1is said to have the
Wallman disjunction property if, whenever a and b are any two distinct
elements of L, there exists an element ¢ of L such that one of

a e, bA ¢ is zero and the other is not zero.

(3.13) Lemma: A necessary and sufficient condition that the correspond-
ence a<— Ba from L onto B = {Ba 1 3¢ L} be one-to-one is that

L have the Wallman disjunction property.

Proof: Suppose that L has the Wallman disjunction property. Let

a, be L and a # b, For convenience let aAc=0 and bAc #o0,
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Since the set {b, c} Q; L has property F, Lemma (3.3) implies the
existence of a point pe S such that p ;? {b, c}. Thus pe Bbfw Bco

0, it follows from Lemma (3.8) and Definition (3.6) that

1

Since a A ¢

g = B,Ac = B, r\BC. This implies that pe B but p ¢ B,o Thus if

b
a,be L and a £ b, then B, # By .

Conversely, suppose that the correspondence aéﬂ—aBa is one-to-
one. Let a,be L and a # b. By assumption Ba # Bba For convenience

suppose that pe B but p ¢ B, Then be p but a 4 p. By Lemma

b
(3.4) the relations agd p and be p imply that there exists some
ce p suchthat aAc=0 but bAc #0. It follows that L has the

Wallman disjunction property.

(3.14) Definition: Let L be a lattice with zero and unit elements,
If a and b are elements of L such that aAb=0 and aV b =1,
then b 1is called a complement of a, and a 1is called a complement
of b. A lattice L with distinct zero and unit elements is called a

complemented lattice provided each of its members has at least one comple-

ment in L.

A Boolean algebra is a distributive, complemented lattice.

(3.15) Lemma: If E is a Boolean algebra, then the following state-

ments about E are true.

(3.15.1) For each a e E there exists a unique element a' in E such
that aAa' =0 and aVa' =1, [If E is a Boolean algebra and

ae E, the unique complement of a in E will henceforth be denoted

by a'.]
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(3.15.2) If a, be E and aNb=0, then a' =bV a',
(3.15.3) If ae E, then (a')' = a,
(3.15.4) 1f a,be E, then {(aVDb) =a'Ab and (aVb) =a Ab,

Proof: Let a,b,ce E be suchthat aAb=0, alAc=0, aVb=1,

and aVc=1. Then

(1) c=OVc=(a/\b)Vc=(aVc)/\(ch)=l/\(ch)=ch
and
(2) b=OVb=(a/\c)Vb=(aVb)/\(ch)=lA(ch)=cho

Thus- b = bV ¢ = ¢, This proves {3.15.1). Since identity (1) makes

use only of the relation alAb = 0, the assertion (3.15.2) follows.,

The assertion (3.15.3) is a direct consequence of (3.15.1), and (3.1%.4)
follows from (3.,15.1), (3.15.3), and the identities (a Ab) A (b'\V a') =0

and (a A b) V(b'Va') = l.l

(3.16) Lemma: If E 1is a Boolean algebra, then E has the Wallman dis-

junction property.

Proof: Let a and b be distinct elements of E, and suppose that

both a A Db’ 0 and b Aa' =0. It follows from (3.15.2) that

a' =b'V a'

b'. By (3.15.3) a = b, thus contradicting the assump-
tion that a and b are distinct. This implies that either a A b # 0
or bAa' #0. Since bAb' =0 and a Aa' =0, the proof is com-

lete.
P ]

(3.17) Remark: Since a Boolean algebra is, in particular, a distribu-

tive lattice with the Wallman disjunction property, all of the results
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established thus far are applicable. More precisely, let E be a
Boolean algebra and let S be the collection of all maximal

ideals in E, By Lemmas (3.3) and (3.5) S 1is non-empty. If the space
S 1is endowed with the topology [j, defined in Lemma (3.10), it follows

from Lemma (3.11) that S 1is a compact T,-space. The topological

1
space (S,J) will be called the Stone space of the Boolean algebra E.

(3.18) Definition: Let L and L' be lattices. A one-to-one mapping
f from L onte L' 1is called an isomorphism from L onto L' pro-

vided

f(aAb) = £(a) A £(b)

and

f(aV b)

f(a) V £(b)

for every a,be L. Two lattices are said to be isomorphic if there

exists an isomorphism from one onto the other.

(3.19) Lemma: Let L and L' be lattices and let f be an isomor-

phism from L onto L'. Then for a,be L
a< be fla)<< f(b).

Proof: Let a,be L and a <b. Then aA b = a, and hence
£(a) A f(b) = f(aA b) = f(a). It follows that f(a) < f(b). Since
f is one~to-one f(a) # f(b), and hence f(a) < f(b). Conversely,

if a,be L and f(a) < f(b), then f{aA b) = f(a) A £(b) = f(a).

H

Since f is one-to-one it follows that a /A b = a. This implies
a < b, Since f(a) # f(b) and since f 1is one-to-one, a # b.

It follows that a < b.l
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(3.20) Lemma: Let E be a Boolean algebra and let (S,J) be the
Stone space of E. For each ae E let Ba be as defined in Definition

(3.6). The collection

@={Ba:asE}

partially ordered by set inclusion is a Boolean algebra; The mapping
f defined on E by f(a) = Ba for each ae E 1is an isomorphism from

E onto @,

Proof: Two immediate consequences of Lemma (3.8) are that @ is a
lattice under set inclusion and that f(a) A f(b) = f(aA b) and

f(aV¥ b) = f(a) V f(b) for each a,b ¢ E. By definition of @, f

is an onto mapping. Lemmas (3.13) and (3.16) imply that f 1is one-to-
one, By Definition (3.18) f 1is an isomorphism from E onto 3.

Since B and E are isomorphic and E 1is a Boolean algebra, it follows

that (3 is a Boolean algebra.'

(3.2.1) Definition: Let (X,7) be a topological space. A collec-
tion @B of open sets in X 1s called an open base for the topology 4,
if every set in J  is the union of some subcollection of sets in cgo

A collection ¥ of closed sets in X is called a closed base for the
topology & if every closed set in X is the intersection of some sub-
collection of sets in ¥, A collection @ which is both an open base
and a closed base for ¢ is said to be an open-closed base for & . A
set A C X which is both open and closed is said to be an open-closed

set in X.

(3,22) Definition: A topological space X is said to be totally
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disconnected if for any two distinct points x,y e X there exists an

open-closed set F & X such that xe F and y 4 F.

(3.22.1) Remark: An immediate consequence of the above definition is

that a totally disconnected T,-space is necessarily a Hausdorff space.

1

(3.23) Lemma: If X is a T,-space such that any closed subset of X
is the intersection of open-closed subsets of X, then X 1is totally

disconnected.

Proof: If X contains only one point the theorem is trivially true,
Otherwise, let x and y be two distinct points in X. Then the set

{x} is closed since X is a T,-space. By hypothesis there exists a

1
collection {Fi tie I} of open-closed sets in X such that

(“\Fi = {x}. Since vy # x there exists some open-closed set Fi in
iel

the above collection such that vy ¢ Fi and x ¢ Fia This implies that

X 1is totally disconnected.

(3.24) Theorem: Let E, S5,¢d, and & be as defined in Lemma (3.20).

Then @ 1is exactly the collection of all open-closed subsets of 5.

Proof: let Be@. Then B = Ba for some a e E. By Definition (3.6)

and Lemmas (3.8), (3.15), and (3.20), @ = B, = B, Aar = Ba[ﬁ B,y and S =B =
B,y 4+ = B, UB,,. This implies that B, = B Since (a')' =a, the
relation B_ = Bac, follows. Hence B e@ if and only if B e@. By

the definition of ¢ given by Lemmas (3.9) and (3.10) each set Bae@

is closed. The preceding arguments imply that each set in @ is the

complement of some other set in @B. It follows that each set in @ is

an open-closed subset of &S.
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By the definition of the topology ¢ on S each set Ged is
of the form G = UBac where A C E. Let F be any open-closed sub-
ae A

set of S. Since F 1is open, F = U E!ac for some A g E. By Theorem
ac A
(3.11) S is compact. Since F 1is a closed subset of a compact space,

F 1is compact. The collection {B;:: aeE A} is an open cover of F.

By compactness of F there exists a finite subcollection Bac,“.,Bac
1
such that
no. n
F=UB" =1JB, =B = B ed .
i=1 %1 im1 % g Ra) .
V A2
i=1 i=1

(3.2.4.1) Corollary: The collection @ is an open-closed base for the

topology & on S.

Proof: As noted in the proof of the preceding theorem,Lemmas (3.9)

and (3.10) together imply that each closed set in S is the intersec-
tion of sets in @B. Thus @ 1is a closed base for the topology < on
S. Ssince @ is closed under complementation, it follows that @ is
also an open base for & . The results of this chapter are summarized in

the following theorem.

(3.2.5) The Stone Representation Theorem. Let E be a Boolean algebra

and let S be the space whose points are the maximal ideals

in E. For each a g E define the set Ba in S to be the set of
all maximal ideals containing a. Let@={aa: acE). Then @ is an
open-closed base for the uniquely determined topology ¢ on S defined by

a={Usa=AC_E}.

ac A
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In the topology J  the space S is a compact; totally disconnected
Hausdorff space. The collection (3 partially ordered by set inclusion
is a Boolean algebra. The mapping f defined on E by f(a) = B,

for each ae¢ E 1is an isomorphism from E onto @,

Proof: By Corollary (3.24.1) the above definition of the topology

on S agrees with the definition of ¢ given by Lemmas (3.9) and

(3.10). Since a non-empty collection of sets in a non-empty space can

be an open base for at most one topology on the space, it follows that

the topology J is uniquely determined by the base G. By Lemma (3.11),

S 1is a compact Tl-space° By Lemmas (3.9), (3.10), (3.23) and (3.24),

S is totally disconnected. It follows from (3.22.1) that S is Hausdorff,

The concluding assertion of the theorem is a re-statement of Lemma (302O)Vl
For future reference the following properties of the isomorphism

are listed below,

(3.25.1) Corollary: If a, be E then

(3.25.1.1) BV p = BaU B,
(3.25.1.2) B,Ab ™ B, N By
(3.25.1.3) B.,, = B°

a a
(3.25.1.4) B, - B<=> agh

Proof: The first two identities follow from Lemma {3.8). The third
identity follows from the proof of Theorem (3.24). The fourth identity

follows from Lemmas (3.19) and (3.20).
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CHAPTER 1V
A REPRESENTATION THEOREM BASED ON A THEOREM BY KAKUTANI

If (X,éa, R) is a complete measure space, the L space of the
measure space is the space of all equivalence classes of functions whose
integrals, with respect to the measure u, exist and are finite. Two
functions are said to be equivalent if they agree almost everywhere on
X with respect to H. In Chapter IV it is proved that the L space of
any complete measure space is isometric and isomorphic, as a normed lin-
ear space, to the L space of a complete measure space whose g-ring of
measurable sets is a completion of the Baire g¢-ring in some locally
compact Hausdorff space. This measure space has the property that all
continuous functions which vanish at infinity are measurable.

The statement and proof of this theorem are based upoen a much more
general theorem of Kakutani. In his original paper, Kakutani proves that
certain types of partially ordered Banach spaces are isomorphic¢ and iso-
metric, as normed linear ¢paces, to L :spaces of complete measure spaces
in locally compact, totally disconnected Hausdorff spaces.

The representation theorem of this Chapter is less general than the
original theorem of Kakutani., For this reason a more elementary proof is
possible. The theorem is formulated in measure-theoretic terms and is
proved largely by appeals to measure-theoretic properties of the spaces
concerned. The proof of the original theorem employs an eldborate super-

structure manufactured from algebraic and order-theoretic properties of
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the space to be represented. The present proof does not seem to appear

anywhere else in the literature.

(4.1) Conventions to be Used in this Chapter

The symbol X will denote a fixed, non-empty space, &, a ¢-ring
of subsets of X, and p, a measure defined on all sets in ®. The

ordered triplet (X, &, p) will be assumed to be a complete measure

space. Sets in (* will be called measurable sets, and X will be

called the ground set of the measure space (X, G, p).

The symbol L(X) will denote the L_space of X as defined in the
introduction. Elements of L(X) will be denoted by symbols such as
[f], and will be called functions in L(X). It should be noted that
a function [f] in L(X) is actually an equivalence class of p-summable
functions g defined on X such that f = g almost everywhere (a.e.)
on X with respect to the measure p.

A function [f] will be called a non-negative measurable simple

~

function in L(X) whenever a8 member f of the equivalence class [f]

is a non-negative measurable simple function on X such that .r fd B

is finite. By this convention if Be R and p(B) < +«, then the sym-

bol [KB] will be called the characteristic function of B in L{X)
and will denote the equivalence class of all measurable functions equal
almost everywhere to the characteristic function KB of B,

The symbols [f] < [g] and [f] < [g] will mean respectively
that f(x) < g(x) a.e. on X and f(x) < g{x) a.e. on X for all
functions f e[f] and ge [g]. It is easily verified that the rela-
tions "<" and "{" are transitive and that if [f] < [g] and

[¢) < [£], then [q] = [f].
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To avoid trivialities it will be assumed throughout this chap-
ter that there exists some set A e® such that 0 < p(A) < +o, The
L spaces of measure spaces for which such a statement is not valid
consist of the zero function alone and are trivially isomorphic and
isometric to each other.

If (Y,2, v) is any measure space and A, B ¢ &, then the
symbol A ¥ B will mean v(A A B) =0, where AAB=(A-B)U(B-A)

is the symmetric difference of A and B. Whenever A ¥ B it will be

said that A and B are equal mod v. It is easily verified that

equality mod v is symmetric, reflexive, and transitive on & so that

equality mod v is an equivalence relation on @,

(4.2) Lemma: Let & denote the family of all collections 7 of sets

in & such that

(4.2,1) N is non-empty,

(4.2.2) if Ae’l, then 0 < pu(A) < + o,
(4.2.3) if A, Be7l, then p(ANB) =0.

Then & has a maximal element relative to the partial order induced on

¢ by the set inclusion relation.

Proof: The collection & 1is non-empty by the assumption adopted in
(4.1) to exclude the trivial case in which L consists only of the zero
function. Let C = {711 :ie I} be a chain in #. If A and B are
sets in L)'n&, then A 5711 and B e'nj for some i, j e I. Since

iel
C is a chain this implies that either ni - ﬁj or 7% - o and
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consequently that A and B satisfy (4.2.2) and (4.2.3). Since [ Ny
iel
is clearly non-empty, it is a member of F and an upper bound in F for

C. Zorn's lemma implies that & has a maximal element.

(4.3) Throughout this chapter T = {At s te T} will denote a fixed

maximal element of F.

(4.4) Lemma: Let {Bn} be a collection of sets in the ©¢-ring &

oo
n=1

such that p.(Bn) < +o for each n =1,2,..., and p.(Bnﬂ Bm) =0 if

m ;4 n, Then

Proof: A short calculation shows that if A, B e and (A M B) < + oo,

then
(4.4.1) p(AUB) = p(A) +pu(B) ~ p(ANB).
-1
Set A, =B and A =B - tﬁl B, for n>1. Then A NA =f

if m# n, {An}m X is a collection of sets in @,
n=

® o0
B,, for every n > 1, and ZA ={JB, .
k = k k
1 !

n
n
Z:Ak = k!
k=1 -
Note that p(Al) = p(Bl). Suppose now that

n

n
Y B = ) ka) .
k=1 k=1
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Then

n+l n n
LowB) = e ) + ) ea) = e@) + o) Ak) i
k=1 k=1 k=1

But, using subadditivity of u,
n
Ocw <Bn+1m (E)BkD < ) u(BNB,) =0,

so that, by (4.4.1),

n n+l n+l n+l
BB y) * (kL—JlB]J - *‘(kL_Jl Bk) = “(E Ak> = Z b (A,
- - k=1 k=1
n+l n+l
and hence z: u(Bk) = Z: p(Ak),
k=1 k=1

By induction it follows that for every n = 1,2,...,

n n
V() = )y,
kel -

and hence, taking limits on both sides,

Ve = ) ey - “( ) Ak) = “<DBI<) ‘o
k=1 k=1 k=1 k=1

(4.5) Lemma: If Ae®, O< p(A) <+, and if ™ 1is as defined in

(4.3), then there exists a uniquely determined countable collection
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of indices {t}

[+ &)
C T, depending on A, such that Ak U AN Ay
n=] n=1

and such that

ni AﬂA).

Proof: Let Ae®, 0 < p(A) < +o and p(A ﬂAt) =0 forall teT .

If A ¢771, then U {A} is a member of the family & which properly

contains 7V, This is impossible since 70 is a maximal member of &.
Hence A e and thus p(A N At) > 0 for at least one index t ¢ T.
This implies that if A €@ and O < u(A) < 4+ then p(A ﬂAt) >0

for at least one index t e T.

For each n > 1, let C {t: AﬂA >l}. If for some

11

n, Cn is infinite, there would exist a sequence {t } of distinct
m=]

oo
indices in Cn such that () (A ﬂAt, ) © A, Since p(A) < +e,
m=1 m

Lemma (4.4) implies that

p(a) > ) (A mAtrh) ,

7018

which is impossible, since p(A [} A % for m=1,2,... » Hence

) 2
oo
Cn is finite for each n and thus U is countable.

oo H
since (Jc = {t :u(ANA) >0}, it follows that
n= @
(A ﬂAt) =0 for all t 4 | C.e
n=1
o oo
Let the non-empty, countable collection {t} = U Cn be
n=1 =

assigned to A, and consider the set A - U (A N At Y. If te {tn}m
n=1 n=1

n

y

)




a6

then A, (1 (A - BI(A (4 )) CoaN-anNa)) =g 1f

t

fee]

o

teT-{tn} , then A N(a- U ( AﬂAt )) C A, DA, so that
n=1 n=1 -t

p(a, OV (A - Irgl(‘t\ﬁ;\tn))) <p(afa) =o.

a0
Thus for each t ¢ T, p.(At (a-(1J(a (MA; ))) = 0. Consider
n=1 n

the set B =

]
7(_s

(A f]At })» Now p{(B) < + since BT A, If
1 n

p(B) > 0, then B {7, since u(A, (1B) = 0 for each te T, and

if B were in 7N then p(At[W B) would be strictly positive for at
least one index t ¢ T. Since u(B) < + ©, the preceding implies that
if w(B) > 0 then B {7 and hence MU {B} would be a member of
which properly contains 772. This is impossible because M is a maximal

o0
member of . Thus p(B) =p(Aa - (J (AN At )) = 0. This implies that
Z n

oo
L) (AN AL ). Since p(A) < +®, it follows that p(A) = (U (AMVAL
n=1 n =1 th

o0
and hence by Lemma (4.4) that p( Z (AN A, g

(4.6) Lemma: Under the order relation "<" defined in (4.1) the linear
space L(X) becomes a lattice. For each t e T the collection L of

t

all characteristic functions [Kc 1 in L{X) of measurable subsets of
t

At is a sub-lattice of L{X). With the definitions 1_t = [KAt] and

0, = [ng, L, becomes a Boolean o-algebra for which the following
relations are valid (where all sets concerned are measurable subsets of

At):

5,
\Y

/
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(4.6.1) K = [k o
gzl[ Cn] [ Jc }
n=1
(4.6.2) Alke ] = { o |
n=l D L) J
(4.6.3) [KC]' = [KAt

Proof: If f and g are p-summable functions defined on X, let
(fA g)(x) = g.l.b. (£f(x), g(x)) and (fV a)(x) = l.u.b. (£f(x), g{x))
for all x & X. The functions f Ag and £V g are also summable
and are, respectively, the greatest lower bound and least upper bound
for the functions f and g. This implies that [f]A [g] =
9.1.b. ([f], [9])} = [fA g] and [f]V [g] = l.u.b. ([f], [9]) = [fV q].
Thus any pair of functions in L(X) has a greatest lower bound and a
least upper becund in L(X) so that L(X) 1is a lattice.

That for each t e T, Lt is a sublattice of L(X)}) 1is an imme-

diate consequence of the following properties of characteristic functions

of measurable sets

(4.6.4) Ko = Loub.{kg },
(B n> 1 n
n=l "

(4.6.5) K, = g.l.b. {KB } .
m B n _>_ 1 n

n
n=1

These two identities also imply the validity of (4.6.1) and (4.6.2).
If B C A, then [KB]/\ [KAt_B] = [Kg A (At_B)]: [Kﬁ] =0,
and [K;]V [KAt—B] = [KB Lf(At‘B)] = [KAt] =1, so that (4.6.3) is

valid.
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The preceding relations together with the fact that the set
intersection and set union relations are distributive with respect to

each other imply that Lt is a Boolean algebra for each t ¢ Tol

(4.7) Remark: For each te T the set At has finite strictly positive

measure, so that [KAt] > [0] and [KAt] e L{X). This implies that the

Boaolean algebra Lt contains more than one point. By the Stone repre-

sentation theorem, the Stone space of Lt exists for each t e T. The

symbol S, will denote the Stone space of L

t 3 will denote the

t} Pt
collection of all open-closed subsets of St; and g7t will denote the
topology on St generated by the open-closed base (Bt° For each

[Kct] £ Lt’ B[KCt] will denote the unique set in (Bt corresponding

to the function [Kct] in Ly under the Stone representation theorem.

When no confusion can arise symbols such as B will also be used.

K
Cy

The following properties of the correspondence [Kct]é—e BKC are
t

listed below for future reference. The index t 1is a fixed but other-

wise arbitrary element of T.

(4.7.1) By, =By, ~if and only if [Kc’t] = [KDt] ;
t

D¢
(4.7.2) BKctm BKDt = BKct/\ Kpt ) BKctﬂ D,
(4.7.3) BKCtU BKDt - BKCtV Kpt i BKctU J
(4.7.4) By =Sy and B, = P
(4.7.5) Sy = B = Bl =By




49

(4.7.6) 1If [Kct] < [¥p,], then BKC - BKD .
t t

All of these properties are direct consequences of the Stone

representation theorem and of Lemma (4.6).

(4.8) Lemma: If t, t'e¢ T and t # t', then stﬂ Syv = £

Proof: Suppose that [K e L, (VL ,. Then [K < K and

—_— PP [ Ct] t t [ Ct] - [ A‘t]

(ko 1< [K, 1, sothat [K.]<[K, JA[K,] = [K AK, ]=[K 1.
C, Ag C, Ay A"y A A ANA,,

But p.(At N At') = 0, so that [KAt N At'] = [0], and hence

[KC ] = [0]. By the Stone representation theorem, the points in each Stone
t

space S; are maximal ideals in I‘t and hence do not contain Ot = [0].

Since Ltﬂ Lo = {[0]} for t #t', it follows that no point in S¢

is in S., and no point in S, 1is in S.. This implies S, N Sy = ﬂf..

" (4.9) Llemma: Let S = Ust, @ = U@t and
teT teT

d ={UocG:%xC Uat}.
GeX teT

Then ¢ 1is a topology on S, and the topological space (S, &) is
a locally compact, totally disconnected Hausdorff space. Each set in
@ is both open and closed and @ is an open base for the topology ¢/

on S,

Proof: J is a Topology on S.

Clearly fed and Sed. By definition, unions of subcollec-

tions of J are in d. If A, Bed , then A= | G and B = U H,
GEJ(I Hej{2

where X, X, C (J g,. This implies that ANB = \_J(GNH). For
teT GeX, , HeX,)
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any te T either G, He Ut; in which case G[)H ¢ Jt; or G EEJt

and He d where t' Zt; in which case G(HC s, NSy, = g,

t',
Thus the collection {G MH:G e Ky H eJ(é} is a subcollection of

(Jg, and hence AMBeJ. Since & contains @ and S and is
teT t

closed under arbitrary unions and finite non-empty intersections, d is

a topoleogy on S.

Each Set in 3 Is Both Open and Closed and S Is Totally

D jsconnected.

For each t_ all members of (Bt are in o and hence in .
) 0 to

But if By € @y » then S5 - By = (St - By ) U (k) St) . Since
G, o Ctq o Gty T \tAt,

S¢ - By = By et@t s S - Bct is the union of a collection
o} a 0

of open sets and is hence open. This implies that each set in (3t is
both open and closed, for any te T.

Let py, p,e $ and p; # p,» Then either p, e S, and p,e S
where t # t', or Pys Py € St’ for some t e T. In the former case
St elﬁt is an open-closed set containing Py and not containing Pye
In the latter case, by Theorem {3.25) there exists an open-closed set

B
K

e(%t such that p; e BKCt and p, ¢ BKCt, Thus if p, and p,
t

are any two distinct points in S, there exists an open-closed set con-
taining one and not containing the other. By Definition (3.22) S is

totally disconnected.

S 1is a Hausdorff Space,

In view of (3.22,1) and the preceding paragraph it suffices to

t!!
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show that S 1is a Tl space. That is, it suffices to show that sets
in S consisting of only one point are closed. Since all sets in each

@t are, in particular, closed, the conclusion follows from Lemma (3.7).

@ Is_an Open Base for J_.

Let Hed. Then H=/G, where XC U g,. If H =g, then
- t
GeX teT

H e @; otherwise, let xe Hy then xe G, where G sé?t, for some

te T. Since (Bt is an open base for Ut, this implies that there

exists a set BKC e @, C@ such that xe By C G C H. It follows
t

C
t
that 3 is an open base for .

S Is Locally Compact.

It suffices to show that for each t e T, St is compact. Since

@ is an open base for J it suffices to show that for every open cover

of St by sets in (3 there exists a finite subcpver which also contains

St.
t by sets in @B. Discard all

sets in the above open cover which contain no points of St' What remains

Let {BKC:}» be an open cover of §

is an open cover of S, by sets in @t. Since S is compact its

t t

original topology, for which @t is an open base, there exists a finite

subc f B hich al S,

over o { KC} which also covers S, B
t

(4.10) Lemma: Let o((3) denote the minimal ¢-ring containing 3.

Let the set function m be defined on (2 by m (B[KC ]) = F(Ct)
t

N and every index t e T. The set func-

tion M 1is a2 measure on 3. There exists a well-defined measure m,

for every function [Kct] e L

defined on ¢{(@), such that m(B) = W(B) for every B e @.
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Proof: If B &3 then there exists exactly one index te T and exactly

one function [Kct] e L, such that B = B For all functions

t (k.. 1°
Cy
KDt € [Kct] there follows KDt = Kct ga.e. on X with respect to p,
and hence p(Dt) = p(Ct). This implies that the set function m is
well-defined on (3.

Let B be sets in @ such that By (T By = #

Ke Kp C D
t t Y ts

and BKC L BKD = By, e @. By definition of @, the latter condi-
tl to t3
tion implies that BKC , BKD , BKE € @t for some te T, and

4 to t3
hence t, = t, =t; =1t and [Kct]’ [KDt], [KEt] e L,. Theorems
(3.25) and (4.7) imply that By A k., = B, [ By = P and hence
C D K D

[KCtF]Dt] = [Kct]’A [KDt] = [0]. 1t follows that p(thW Dt) = 0.

Thus B = B B =B and hence [K 1 =
KCtV Kp, KCtLJ KDt e’ c,M D,

[Ke 1V [Kp ] = [Ke ]. It follows from (4.4.1) that p(E,) =
Cy Dy Ey B¢

p(C, U D) =u(C) +pu(Dy).

The above results imply that

" (BKctU Brp, ) = m(BKCQV KDt) ) m(BKctLJ b,

t

= #(C UDY) = w(C) +u(Dy) = m(By_ ) +

Thus m 1is finitely additive on @.

Now suppose that {Bn}u3 C @, anﬂ B = g if m#n, and
n=1

[o.s]

E: B =Be@ ,
n

n=l
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By definition of (3 this implies that | any - @t for some fixed
n=1

t £ T, and consequently that Bn - St for all n > l. By (4.9) St

is compact and all sets B and B, for all n 2> 1 are both open and

closed. It follows that B 1is compact and {B} is an open cover

[+ 4]
N n=1

e o]
for B. This implies that there exists a finite subcover {Bn:}
J n.=1
J

N
of {Bn}w such that B = Z Bn" This is impossible unless only
n=1 .
n'=1

finitely many of the sets Bn are non-empty, since the collection
{Bn}:_l is pairwise disjoint. Hence there exists no countably infinite,
pairwise disjoint collection of non-empty sets in (3 whose union is
also in 3. The set function m 1is thus (vacuously) countably additive
on B. This implies that ™ is a measure on 3,

A simple computation shows that @ is a semi-ring. Hence by
the Carathefodory extension 1:heor:=_-m1 for semi-rings there exists a well-

defined m, defined on «{(@3), and agreeing with @ on (3.

|
(4.10.1) Definition: The symbol o((3) will be used throughout this

chapter to denote the minimal g-ring containing the semi-ring 3.

(4.11) Let @m be the g-ring whose elements are subsets of S of the

form CUN, where Ce o(@) and N is a subset of some set Deo{(3@)

such that m(D) = 0. The o©-ring @m is called the completion of ¢(3)

for the measure m. The set function m defined on @m by m(B) = m(C),

where B = CUN, 1is, by elementary measure theory, a well defined

lSee Glossary.
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measure on (Bm, To avoid excessive notation the measure @, defined
above, will be identified with the measure m, so that m(CJN) = m(C)

whenever C ¢ o(@3) and there exists some De ¢g{(3) such that N Q} D

and p(D) = 0. By elementary measure theory the measure space (S, G%, m)

is a complete measure space.

(4,12) Definition: Let P denote the collection of all characteristic
functions in L(X), and let the mapping ¢ fromP into ¢((3) be
defined as follows:

1f [K,J >0, let

?

@ ([K,]) = B
A gl [KA r\Atn]

where the collection {t } of indices corresponding to A is defined,
n=1

as in (4.5), to be the collection {t : te T and u(A r1At) > O}.

Let

ofo] = @.

(4.13) Lemma: The mapping & is well-defined on P into o{(3).

Proof: Let [KA] = [KC] # [0]. Then K | = 0 a.e.

anc = 1Ky - K
on X and hence p(AAC) = 0, This implies that A B C. Since

l(A F\At ) and CB tJi(C (\At. ), the transitivity and sym-

metry of equality mod p imply that L) (AN At k) cnN Apy ).
n=1 k=1 k

t
Now suppose that some t,koé {tn}n=l. Then

O(p“ﬁ\%k)=p[mmAv)(W(kyAmA%DJ+

o} - ko
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o]

+ B [(C mAtn

‘|

(AMa, )) !
n/ -

o0

A

n=1

I n ((c (‘\At.k Y\ (A ﬁAtn)> + [(c mAt.k )ﬁ(
n=1

o) o]

oo

[[FaN

) )ﬂ(Ql(A ﬂAtn))CJ

un{Ay .kﬂ A.tn) + [(C M Ay
o} . 0

n=1

0+ 4 [(CﬁAt.k )ﬂ(}l(AﬂAtn)> CJ
n=

0

[Goeomd- G

00((:rm,) 4 oc’(/:\(‘\A ))J
uK}gl tk/ (:gl tn

o0 [ea)

This contradicts the fact that |/ (CﬂlAt.k) i l(A M Atn)a It
n=

1740

[[FaN

k=1

follows that {t"” C {17 Th ts imply that
o] OWS d k} = 1 n}n=1 ¢ e same argumen S llTIp y d

n=1
oy Sl e menee (8, = Dy

Suppose now that p((C f\Atn ) - (AN A )) >0 for some n,e
0 Ny

Then

0 <Gy ) - (ANAy ) =k (€ Ny ) -
0

o C

- (AN A ))ﬂ(U (AﬂAtn))] t l:((cmAtn )
o)

No n#n,

- (ANA ) ﬂ(k}lj (A ﬂAtnDcJ c
o nxn

o]
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nA

D aneg DNGNA] -
n

Y w [((cmtn
#n

o]

-+

M) (a Atn)°>} <) bl NAL )+

nfn, n#n o

ILP(Cf\Atn )(\(Ar\Atno)cfﬁ<
o

-+

DcmAt M i&gm% CJ [&ﬂAt)ﬂ(CJAﬂ%)i

n=1

0

<uwl(Ccna 9 (m(AwA OC}
=* <£:ﬁ tn A #;1 tn

(' © ’ o
<o [(Oenn) (G ana)]
- L\n=l n n=1
ax
This contradicts the fact that LJ (c f\At k) (AN Atn)ﬂ It
n=1 n=1

follows that pu((C f\At ) - (AfYA;{ )) = O for each n. By the same
n n

argument p{((A f}Atn) - (c F1Atn)) =0 for each n. Thus C/) At B AN A,
n

for each n.

1s 1mplies = or eac n an ence
tn n

o[k,] = ®[K.].
Since the mapping ¢ 1is obviously well-defined for [KA] = [0],

this concludes the proof,

(4.14) Comment: The preceding lemma actually proves more than its
statement might seem to imply. More precisely, if [KA] e P, than any
set C in (@ such that Cl A may be used to compute ¢[KA]u Exactly
the same set will result in all cases. This result will henceforth be

used without comment.
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(4.15) Lemma: The mapping @ has the following properties:
(4.15.1) 1f [Ky ] < [Ky T, then w[KA1]§;¢[KA2]a

(4.15.2) p(a) = m(e[K,])

(4.15.3) If [KAl] A [KA2] = [0], then @[KAl](W ®[KA2] = g,
(4.15.4) w[KAl]{W ¢[KA2] m ¢([KAl],A [KAQJ)

(4.15.5) 9Ky JU o[Kp ] 2 0([Ky TV [KAQJ)

(4.15.6) @[KAl] - ¢[KA2] o cb[KAlm A2C]
Proof: It suffices to consider only the case where [KA], [KAIJ, [KA2] >[0].

(4.15.1) 1If [KAI] < [KAQ], then for each te T [KA1m At] =

= [KAl] A [KAt] < [KA2] A [KAt] = [KA2fj At], so that by (4.7.6),

B C B .for all t, and hence ©[K, 1 C ok, ].
K - K 4 Al - Ao
A AL NAYH ‘
oo o0
(4.15.2) By (4.5) n(A) =Z (ANA ) = z n(B, )
n=1 . n=1 AN Atn

n
3
TN
~1
[we)
=
>
D)
-
5+
\-_.-/
'
=
©
~
-~
>
| I— )

o

oo
(4.15.3) Let oK, ] = E: B and let 9K, ] = Z:B .
[ Al] Ka, M A ( A2] Ka, M a,,
1Y Ay o1 2l Ay

=] n m
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oc [v0]
Then @K o[K, | = E B B ]
[Ka, ] M 9K ] TRAL
n=1 m=1 n m
If t* =t_ then B B C s, NS = g,
m n KAlr\ At(ﬁj KA N A .- tn t'm ﬁ
2 t
n m
If ', =ty =t then By () Bk "By Na ANKpa T
Ay l1 Ay Ap Ay 1 Ay o 1Ay

n n

= 130t = g. Thus if [KAl]/\ [KA2] = 0, then cb[KAl] ﬂ@[KAQ] = g.

(4.15,4) The proof of this identity is analogous to the proofs of the

following two identities and is omitted.

(4.15.5) It must be shown that m((¢[KAl] U@[KAQ]) A dJ([KAl]\/ [KA;)) = 0.

Since (4.15.1) implies that CD([KAI] \V [KAQ]) ) GD[KAl]U ¢[KA2] and
since, by (4.6.1), [KAl] \/ [KAQ] = [KAlU Az]’ it suffices to show

that

m(@{Ky U a,) M OLKy TULK, D) = .

Let ©[K, ] = Z: By , O[K, 1= Xj By and
1 et Ay N At,n 2 o A2ﬂ At"n
ofKy U= ) Bx = L B )V (K ) =
17z ng (A U 80N Ae g Ay At v Ay N Atn
= (Bk YU (8 Y,
ngl ALV A “ay N R

oo
where the collections {tn}

n_l’ {tﬁyzzl’ {t;T:=l are chosen in the
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manner specified in (4,12). By the procedure for choosing the above

three collections of indices it is clear that {tn}= {tr"} U {t"} and

n ’

. . .
hence that each tn is a member of either {tr'l} or {t‘n} . If

t 4 {t.} then m(BKAlﬂAt )= w(A N ) =00 1f (e}
n

then m(B ) = u(Az(‘\At ) = 0, This implies that
n

K
AQfW At

' [[(BKAl M Ay

for each n > 1, and consequently that

) (B ) ~ B¢ B M=o
KA2 N Atn J M (Ol KAl N At;])ﬁ(@l KA2 N At"rj

m(CD[KAIU Az]ﬂ(tb[KAl]UﬁD[KAQ])C) =0,

o> o0
(4.15.6) Let @[k, ] = Z By , Oo[K, ] = Z B and
A K ’
A
1 2 A A At| 2 o 5 N At"n

n
o

<I>[KA1 N Azc] = ngl BKAI A A;ﬂAtn’ where {tn}, {t'n} , and {t"n} are

chosen as specified in (4.12).

It must be shown that m((®[KA1] - ¢[[<A2]) A ¢)[KAlm AQC]) =0.

But
(¢[KA1] - fD[KAz])A ¢[KA1 N A2°] = [(‘I’[KAl] N (¢[KA2])C (\L(‘D[KAl('\AQCJ)C] V)

ULolKy yae1MO0K I (0[Ky DT =
= [_@[KAI] N ((D[KAQ])C m(qb[KAl N AQCJ)C] U [qD[KAl nAQC]n‘i)[KAQ]] ,

since cD[KAl]D_ (D[KAl nA2c] .



€0

Let (1) = @[y T (@[Ka, )" M9k, 1y A2c1)° and
(11) = 9Ky p ] 00Ks) -
Then
(1) =| ) (5 ALy e -
2 AL NALN Atn e P At“m

- (By ) ) (B )] .
n& mgl [ Ay VAT NA Ap (1 A

n m

1
If £t then

- no=
(BKAI Nagn Atn) m(BK;ﬂ\2 N At..m) S st M5 m #s

where Stn, Sgm are the Stone spaces of Ltn and Ltﬁn’ defined in
m

— M
(4.7). 1If tn t:n’ then

( Y (By ) = B -

B
K c K c
AT AL Ay Ay N At"m ALV AL A A

This implies that (II) is empty.

Upon expansion,

oo

(1) = | ) By {ﬂac ] [ﬂsc }
nz=:1 AN At.n N m=1 FA, N Atnm N k=1 ‘A N A{'ﬂAtk

' . ' C
For each t , if t_ ¢ {tn}kj-{t:} , then p.(A1 f\AQ (]At.n)= 0 = H(AszAt}}
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c X
so that 0 < H(Alfﬁ Atn) <ula N a, r1At.n) + nla, r1At}1) = 0. This
) = Oo
n L
If tr'1 € {tn}U{t;} , then one of the following three cases

implies [KM1 N At' ] = 0 and hence m(BKAl A A

QCCcurs:

() e {t3N{t},
(b) te{ty - {a},
(¢) t' e {t;} - {tn} )

, and t" such that t' =1t =
m n

In case {(a) there are indices t K

and

2

(8 ) () (8 '[N (e C
KAl M At,n m KA2 N Atn m k=1 KAI n Agcm Atk
(Bg Y M (B¢ LN )=
A“\t, QHAm HHAQQ%k
= (Bg ) M (B ) M (Bg ) =
Al m At In KA2 n t'n Al n A2C nAt |n
- (B YN\ (sg, U (s,, -B NN (sE Us,, -
KAlmAt'n m t nU tn K zn tln m t|"\ tn
- B = (B ) (M (B
a N oafna,, KAI(\ A, Ko = (A Ay, )0
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(B )= B .
“a., -(A MASNAL ) [KAlﬂAt,A KAQCﬂAtn/\K(AlﬂAQC)CﬂAtUJ
n n n n n

B B
K(Al NAS N NALISYN A, Oy

In case (b)

= B B CsB
o0~ Ka Na Na, - K
t A AN )

But t’n¢ {tﬂ} and thus p(AQ[W At,n) = 0. This implies that

m{BKA ) = 0, and hence that

2V Ap

In case {c)
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m

(Bg ) () (

BC
K

- c -
) = (BKAlmAt‘ )m(SUnU(St'n

n n

BK )) =(BK )m(BKc ):BK N C
Ay At"n Alﬂ At'n A, mAt,n Al(a A, ﬂAtnn

L C p—
But t' 4 {tn} and hence (A M A, ﬂAt,n) = 0. It follows that

m( J = 0 and hence that

B
K C
AL Ay mAt'n

m=1
n m

" {[BKAI na, JO00% w000, s mtk” _ 0.

Thus in all possible cases (I) is composed of countably many measurable
sets, any one of which is either empty or has measure zero relative to
m. This implies that m(I) = 0. Since (I1) has been shown to be empty,

it follows that m{(I) kJ(II)) = 0. In view of the preceding this implies

that m((ﬂ?[KAl] - @[KAQJ)A q>[|<Al N A2c]) = 0, a

(4.16) Lemma: If Be o (3) and m(B) < + =, then there exists a
characteristic function [KA] € P such that <D[KA] T B.

Proof: In the Carathéodory extension procedure for semi-rings the mea-

sure m 1is defined on o{3) by:1

1See Glossary, page 84.
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(4.16.1) m(B) =inf ! ) m(B) :B €@, B (1B =f ifm¢n,
n=1
E:Bn 2B
n=1

where B e o (3).
If Beo (@) then for each positive integer k there exists

a pairwise disjoint collection {Bk ;}m ! of sets in % such that
’ n=

|

=Z Bk,ng B and m(B) < Z )<m(B)+

By the Stone representation theorem, to each set Bk n there
b

corresponds a function K in L such that B =B o

P [ Ek n] k,n [KE ]

’ kyn
m 4 9 3 o
Since for each k the collection {B é} is pairwise disjoint, it
k, n=1
follows that K K = | K = |0 if m n and
ke, JALke, 1=k, g 17 (0] #

hence “(Ek,n flEk,m) =0 if m# n.

o0
Let E = LJ E n’ The set of all points in E which belong to

more than one set E ,n is just k) ( k,m ( k n))

m=1

p'(Ek,m(w(UEk,n>> < Z LL(Ek,mﬂEk,n) =0
n#m

o o] o0
for each m, and hence u(LJ (Ek " (q\( %ﬁqu gji) = 0. This implies
1 ’ n#m ?

that [Kg ] = K ] .
e = L ke
n=1 J
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) = m(BK ) for each n, and since

E
n=1 k,n
oo oo
- _ - 1
u(Ek) = E: M(Ek’n) = E: m(BKE ) = m(Bk) < m(B) + L < Hoo
n=1 n=1 k,n

Thus p(Ek) < 4 and [KEk] e P, so that ®[KEk] exists.

Since each set B, = BKE is in @, each BKE is
’ k,n k,n
contained in exactly one Stk and each Ek n is contained in exactly
»N 4
one Atk , where the sets Atk are as defined in (4.3). This implies
>0 sN

that the only indices t e T for which u(Ek{\ At) > 0 could occur are

the indices {t }m C T. 1t follows that
kynip=) =

oo
CI)[KEk] g Z BKE
n=1 k,n

and in fact

(o]
LS ) B,
n=1 k,n

because the only sets By which could fail to appear in the expan-
k,n
sion of @[KEk] are those for which m(BK

—
|

e =0 = p.(Ek,n)c Hence

K

Thus for each positive integer k, m(B) < m(B

w[KEk] C. B, and @[KEk] m B

=t

= m(w[KEk]) < m(B) + %, E% B 2 B, and m(B) <m ({“\B%>< m(B) + %‘
=1
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This implies that m(B) = m (ﬁsk) .

Since
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B, 2 (o[Kg ], and (B - Nofkg ] T U (8 - ol D,
£ % kol Fk k=1 & k=l Tk T i1 K Fk

it follows that

i <151Bk ) lél(p[KEk])

m(e, - olkg ]) =0,
1

1A
T ~18

o o]

oo
and hence that r‘l B, T M d[Xe ].
k= k=1 k
Lemma (4.15), together with the fact that u(Ek) = m(¢[KE 1)
k
= m(Bk) < + o for each positive integer k, implies that for each

positive integer n

k=1

Thus

L n
u<mEk> = 1imp<mEk> = limm (& K =
k=1 n¥ e \k=l n e [ Ey
A
k=

= riiﬁnm <;=1®[3Eki> = m (ﬁ:EQ[KEki> =m (t:HBé> = m(B).

o 4]
This implies that p <(“1Ek> = m(B). Since, by (4.15.2),
k=1

v )
M ((ﬁ)Ek> =m{Q|K 4 , it follows that m(B) = m[®|K .,
k=1 k=1
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m( () e[k - B .
(Ql [ Ek]> m(kq k)
By (4.15,1) q{l( o

E

)

are of finite measure,

oo
C (ﬁ]Q[KEk]’ and since all sets concerned
k=1
kJ

k=1
Also
oo } /OO
mf{B - @K, gm<mBk-me >=m| ﬁBk>-
aR" k=1 (M Ex k=1
k=1 k=1
-m{D|K =0,
N Ex
k=1
This implies that m{B 4 & [K = 0 and concludes the proof, )
N Ek '
k=1

{4.17) Definition: Let (X, @, p} and (Y, @, m) be two complete

measure spaces. An isometric isomorphism from L{X) ontoc L(Y) is e

one-to-one transformation F from L{X) onto L(Y) such that

(4.17.1) F([£f] + [9]) = F(£] + Flq] ,
(4.17.2) AF[f] = F(A\[f]) , and
(4.17.3) NECEN = LN
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for every [f], [g9] e L(X), and all real scalars AX.

Two L spaces are said to be isomorphic and isometric if there

exists an iscometric isomorphism from one space onto the other.

(4.18) Comment: Since the only characteristic functions [KA] which
belong to L(X) are those for which p(A) < + ®, one might suspect an
isomorphism could be constructed from L(X) onto L{S) in terms of just
these functions. More precisely, it would seem plausible that if char-
acteristic functions in L(X} could be associated with characteristic
functions in L(S) by means of a measure-preserving transformation which
also preserves finite set operations, then, by forming linear combina-
tions on both sides, an isomorphism could be constructed from one space
onto the other. The feollowing theorem shows that this is the case. As
might be expected, the major difficulty lies in showing that the trans-
formation so defined preserves limits of ascending sequences ¢of non-nega-
tive measurable simple functions. This problem is solved by appealing

to the well-known theorem that the L space of any complete measure
space is a complete normed linear space. The only other difficulty is
concerned with showing that the transformation is indeed a transformation
from L(X) onto L(S). This difficulty is overcome by use of (4.16).

It should be noted that no correspondence of any sort is asserted

between all the measurable sets in X and all the measurable sets in S.
Only those sets in X which may be represented as countable unions of
measurable sets of finite measure appear again in S as images of their

characteristic functions.

(4.19) Theorem: The space L(X) 1is isomorphic and isometric to the space

L(S).




69

Proof: Let the mapping F be defined on all measurable simple func-

tions [f] € L(X), where

n
[£] = Z:aj[KAj], and p(A, M A) =0 if 54k,
321

n

F(Z aj[KAJ) = Z aj[KQJ[KA_] ].
3 ’ j=1 ]

=1

It will now be shown that F 1s well defined on all measurable
simple functions in L(X). It suffices to show that if [KAIJ, [KA2],

[KBl], and [KB2] are characteristic functions in L(X) such that
K + K = |K + K then K + = + K o
[ Ay A2] [ B, B2]’ [ ¢[KA1] Kw[KAQJ} [K@[KBl] @[KBQJJ
Let [K, +K = [Ky + K, ]. Then [K ] =[K ]
[ Ay A2] [ B, B2] [ AL Ay [ B, N B,

and [KAl A A2] = [KBl A 32]' It follows from Lemmas (4.6) and (4.15)

that

1=

oKy JOVULK, 1B o[k, () = ¥{Kp y5 ] 2 9LKg 17 0Lk )

1

and

@[KAl] A @[KAz] (@[KAl] - ¢[KA2J){MJ(®[KA2] - @[KAIJ)

GD[KAI m AQCJU (D[KA2 m A1C] m Q[K(Al m A2C)U(A2 n AlC] =

= = m
= ¢[KA1 A AQJ = ¢[KB1 A B2] L ¢[K81] A ®[K82] .
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Thus

|:K®[KAIJ + K¢[KA2]J - [an[](Al] a m[KA2] + 2Kq>[KA1] ¢[KA2]J

= I:K(D[KBI:I A "D[KBZJ + ZK(D[KB

Q)| T[] “lxa,)]

It follows that F 1is well defined on all measurable simple

functions in L(X), and by definition

(4,19.1) FON(£] + B[g]) = WNF[f] + BF[q]) ,

for all measurable simple functions [f], [g] ¢ L(X), and for all

real numbers X and B.

n
If [f] = E: 3 (Ky 1 is a measurable simple function in L(X)
J
j=1
then
n
ILE = [ oo = ) lagluiap -
j=1

1]

L lasl m @lxy 1) = [ F(C£]) an -
j=1

LG

The above integrations are to be taken over the largest sets on
which the respective integrands do not vanish. Thus

[ fap =] fay

fx : xe X, f(x) £ 0}
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Thus

(4.19.2) NECEN = ICEd

for all measurable simple functions [f] € L(X).
If [f], [g] are measurable simple functions in L(X) and
[£] < [g], then by (4.15.1), F[f] < F[4g]-
Now let [f] be a non-negative measurable function in L(X).
Then there exists an ascending seguence of non-negative measurable simple

functions [fn] in L(X) such that lim [|[[f,] - [f]]] = O. Define F[f]
n=> o

by 1lim |[[F[f,] - F[f]]| = O. By the preceding paragraph {F[fni} is an
n—>ow '

. Since L(S) 1is a

ascending sequence bounded above in norm by ||[ f]l
complete normed linear space this implies there exists a limit in L(S)
for the sequence {F[fn]} . Hence the above definition is non-vacuous.
The following argument shows that, besides being non-vacuous, the defini-
tion of F[f] 1is also unambiguous.

Suppose [gn] is an ascending sequence of non-negative measurable

simple functions in L(X) such that 1lim [[[g,] - [f]]] = O. Then the
n= o

sequence {[hn]} of non-negative measurable simple functions defined by
[h2n-1] = F[fn] R [h2n] = F[gn] for n=1,2,..., is a Cauchy sequence

in L(S), since by (4.19.1) and (4.19.2)

0= im [[{g ) - [f )il = 1im [IF([g ] - [£ ]Il =
m,n-> o Mmyn-=> oo
= lm ||F{g ] - FLEI -
m,n “¥oo

The completeness of L(5) implies that there exists a function [h] in

L(S) such that 1lim H[hn] - [n]l = 0. Since all subsequences of a

n—o
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convergent sequence converge to the same limit, {F[fn]} converges to
[h] and so does {F[gn]} . The sequence {F[fn]} was shown to be con-

vergent and its limit was denoted F[f]. Thus F[f] = lim F[fn] = [h] =
n-=>w

= lim F[gn], This implies that the mapping F 1is well defined on all
n-> o

non-negative measurable functions in L(X), and the following lemma has

been established.

(4.19.3) If [f] is a non-negative measurable function in L(X), then
there exists a unique non-negative measurable function F[f] in L{S),

such that F[f] = 1lim F[fn], where [fn] is any ascending sequence of
n—o

non-negative measurable simple functions in L(X) whose limit is [f].
Since addition and scalar multiplication are continuous, (4.19.1)

and (4.19.3) imply:

(4.19.4) If [f] and [g] are non-negative measurable functions in

L{X), and if A and p are any two non-negative real numbers, then
F(Mf] +B[9]) = NF[f] + BF[g] .

A direct consequence of (4,19.2) and (4.19.3) is:

(4.19.5) If [f] 4is any non-negative measurable function in L(X), then

ICEa = (ICE

Each function [f] in L(X) 1is completely determined by some

everywhere finite real-valued summable function f ¢ [f]. Thus if

[£] e L(X), then [f] =[ft - ] =[f"] - [f]. The definition
F[£f] = F[f*¥] - F[f~], together with (4.19.4) and (4.19.5), immediately

implies
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(4.19.6) If [f], Lg] e L(X), and X and p are real numbers, then

F(\[£] +plg]) = AF[f] = BF[4q]

and

[l

IFCENN -

The mapping F so defined from L{X) into L{S) 1is norm-pre-

serving and hence inherently one-to-one; more specifically,
(4.19.7) 1If F[f] = F[g] for [f], [g) & L{X), then [f] = [g].

A proof of (4.19.7) may be constructed as follows:

Suppose that [f], [g] ¢ L(X) and F[f] = F[g]. Then by (4.19.6),
[0] = F[f] - F[g] = F([f] - [9]), so that O = [IF{[£f] - [gDI! = [I[£] - [o]ll,
and hence [f] = [g].

It remains to show that the mapping F maps L(X) onto L(S).
Lemma (4.16) and the definition of F imply that for each characteristic
function [KB] £ L{S) there exists some characteristic function
[KA] e L(X) such that F[KA] = [KB]. It follows immediately that if
[h] 1is any measurable simple function in L(S), then there exists a
measurable simple function [fh] e L(X) such that F[fh] = [h].

If [h] 1is any non-negative measurable function in L{S), then
there exists an ascending sequence {[hn]} of non-negative measurable

simple functions in L{S) such that lim [|[[h_ ] - [h]]] = 0. To each
n=» o n
[hn] there corresponds a non-negative measurable simple function [fn]
in L(X) such that F[fn] = [hn]. Since max [f
1<k< n

measurable simple function in L{X) for each n > 1, it follows that

k] is a non-negative




74

F( max [f]) = max F[£f,] = max [h]=1[n],
(g, 1)

1<k<n 1<k<n 1<k<n

and, by definition of F,

F<lim ma x F[fk]>= lim F max[fk]> =
n=c 1<k<n n—>c 1<k<n

= 1lim max F[fk] = lim [hn] = [n] ,
n—>o 1<k<n n >

Thus for each non-negative measurable function [h] e L(S) there
exists a non-negative measurable function [f ] e L(X), such that
F[fh] = [h].

It is now an immediate consequence of the definition of F that:
(4.19.8) For each [h] e L(S), there exists a function

[f] € L(X) such that F[f] = [h]

The mapping F is thus an isometric isomorphism from L(X) onto
L(S) and the two spaces are, by definition, isometric and isomorphicnl

Although the ¢-ring, o(@), of the preceding theorem may seem

rather pathological, it actually is not so ill-behaved., In fact:

{4.20) Theorem: All bounded continuous real-valued functions on &S

which vanish at infinity are measurable relative to o{&@).

Proof: Let 3 denote the class of all measurable simple functions f

N

on S of the form f = 51 a, Ky , with B, e@ for i =1,... N. If
i=1 !
G 1s any open set in the real line, then the inverse image of G under

a characteristic function Ky is one of the four sets S, S-Bi, By,
i

or . In each case the inverse image of G 1is open in S since each
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set B, e @ is both open and closed in S. This implies that any char-
acteristic function Kg, = with Bi e{@ 1is continuous on S and conse-
i

guently that all functions in ﬁ are continuous,

Since S = (S, and S, e @, C@ for each te T, there
eor ¢ t t =

exists, for each point x in S, a function fx in 2 such that
£ (x) # 0.

The collection ® has separation property (II), (cf. Defini-
tion 2.2) since if x and y are any two distinct points of S,
there exists a set B €@ such that Kg(x) =1 and Kg(y} = O.

If fe £ then f 1is of the form

This implies that f(x) = 0 for «x ¢ s where Si :2 Bi for

N
i=1.,.. N. Since each Si is compact it follows that LJ Si is
i=1

compact, and hence that each function in 3 vanishes outside some
compact subset of S. In particular this implies that each functioen in
£ vanishes at infinity.

8y Corollary (2.23.1), the smallest closed subalgebra of C;RS) containing
3 is C;%S) itself. (The symbol Ci(S) denotes the space of all bounded,
continuous, real-valued functions defined on S which vanish at infinity.
See (2.17).)

If K, and K, are in ¥, then A, Be@, so that A(1BeQ
and KA' KB = KA N B 3 3. It follows that finite products of character-

istic functions in J are also in J. Since £ is closed under the

formation of linear combinations of members of £ , this implies that
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is also closed under the formation of finite products of its members.
Thus, by definition, # 1is a subalgebra of C:(S Yo

Since the smallest closed subalgebra of C:(S) containing a
subalgebra of C:(S) is the collection of all uniform limits of
sequences whose terms are members of the subalgebra in question, it
follows that each member of C:(S) is the funiform limit of a sequence
of functions in an However each function in sg is measurable and
limits of sequences of measurable functions are measurable, It fol-

lows that each function in C:(S) is measurable,l

(4,21) Definition: Let X be a locally compact Hausdorff space.

The Baire g-ring in X 1is defined to be the minimal g-ring contain-

ing all compact subsets of X which may be written as a countable inter-
section of open sets in X. Sets in the Baire g-ring are called the

Baire sets of X.

(4.22) Theorem: Let X be a locally compact Hausdorff space and let
Q. be an open base for X. 1If (X is any ga-ring in X containing /|

then (X contains the Baire g¢-ring in X.

Proof: If C 1is any compact subset of an open subset G of X then

there exists a collection {Gt 1 t e T} of sets in €L such that

G = kv)Gt ;2 C. By compactness of C there exists a fiﬁite subcollec-
teT

n n
tion {Gk}zzl such that G 2 ]glsk D C. The set E = kL__ch;k is in @

It has been established that if C 1is a compact subset of some open set

G in X then there exists a set E in ® such that ¢ C E C .

o0
(j Hn where
n=1

each set Hn is open. By the preceding, for each n = 1,2,..., there

Now let C be a compact set in X such that C
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el
exists a set En in @ such that C Q; En Q; Hn and hence C = [} En e R,
: n=1

It follows that (& contains all compact sets in X which may be written
as a countable intersection of open sets in X. By Definition (4.21)

% contains the Baire g-ring in Xol

(4.23) Theorem: The «¢-ring ¢((@) is the Baire g-ring in S.

Proof: By Lemma (4.9) (& 1is an open base for S. Since 4((3) con-
tains @, it follows from (4.22) that o(@) contains the Baire ¢-ring
in S. Lemma (4.9) implies that every set in & is both open and closed
and that every set in @ is contained in some compact set in &. Thus
every set in @ is a compact open set in S. It follows that every

set in (J is a Baire set of S. Since the Baire g-~ring containg 3

it also contains (@), the minimal o-ring containing @.

(4.24) Remark: Some authorities assert that the theory of integration
is no more general than the theory of integration with respect to a mea-
sure defined on the Baire sets in a locally compact Hausdorff space.
The source usually quoted to justify this assertion is KAKUTANI [l]u
The theorems of this chapter constitute a detailed measure-theoretic
proof of the applicable result which Kakutani's more general theorem
implies: The L-space of any complete measure space is isomorphic and
isometric, as a normed linear space, to the L-space of a complete mea-
sure space whose ¢-ring ¢f measurable sets is a completion of the Baire
g-ring in some locally compact Hausdorff space.

An especially convincing argument in favor of considering measure
spaces whose ground sets are not assumed to be locally compact Hausdorff

4
spaces is contained in HALMOS [2]. A rebuttal appears in DIEUDONNE [1].
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APPENDIX

Glossary

A partially ordered set is a non-empty set X in which a binary

relation "<" 1is defined, which satisfies the following three condi-

tions:

(1) x £ x for all xe X,

(2) If x<y and y < x, for x, ye X, then x =y,

(3) If x<y and y< z, then x <z, where x, Yy, z€ Xo

The relation x < y will also be written y > x. The two inequalities
are intended to have the same meaning. The relation x < y means
x <y and x % y. The relation ">" 1is defined analogously. If A

is any non-empty subset of X, an element a iIn A 1s said to be a

maximal element of A if b > a 1is true for no be A. Minimal ele-
ments of non-empty subsets of X are defined analogously. By a lower
bound of a non-empty subset A of X 1is meant an element L in X
such that £ < a, for all a e A. An upper bound of a non-empty sub-
set A of X 1is an element xe X such that a < x, for all ace A.

A greatest lower bound or infimum of a non-empty subset A of X 1is a

lower bound of A which is also an upper bound of the set of all lower
bounds of A. The designations "g.l.b." and "inf." will be used to

denote greatest lower bound. A least upper bound or supremum of a non-

empty subset A of X 1is an upper bound of A which is also a lower
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bound of the set of all upper bounds of A. The designations "1.u.b."
and "sup." will be used to denote least upper bound.

A lattice is a partially ordered set X, any two of whose ele-
ments x and vy have a greatest lower bound x Ay in X, and a

least upper bound x V y in X. A lattice [ 1is called a distributive

lattice if and only if

xAlyVz) = (xAy) VxAz) and xV(yAz) = (xVy)AKxVz)

for all x, v, z e L.

A vector lattice V 1is a real vector space which is also a lattice

whose order relation is related to scalar multiplication by the conditions:

(1) 1If x, ye V and X is any positive real scalar then,

X<y A x<hy .

(2) If x, ye V and a 1is any negative real scalar then,

xLy&Em ayfaxo,

An algebra A is a vector space whose vectors can be multiplied
in such a way that the following identities are satisfied for all

X, ¥, z € A and all scalars a.

(1) x(y z) = (xy)z
(2} x(y +z) = xy+ xz
(3) (x +ylz=xz+vyz

(4} al{xy) = f(a x)y = x(a y)
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A commutative algebra A is an algebra whose multiplication

satisfies the condition x y =y x for all x, ye A.

An algebra is called a real (complex) algebra if the scalars are

real (complex) numbers.

A subalgebra of an algebra A 1is vector subspace of A which
contains the product of each pair of its elements.

If S 1is any non-empty set, a collection Jd of subsets of S

is called a topology on S if it satisfies the following conditions:
(1) The union of any subcollection of ¢ belongs to .

(2) The intersection of any non-empty finite subcollection of d belongs

to o,
(3) Sed and Ped, where @ denotes the empty set.

An ordered pair (S, &) 1in which the first component, 5, 1is a
non-empty set, and the second component, Jd , 1is a topology on S is

called a topological space. The set S 1is called its ground set and the

elements of S are called its points. A subset of S 1is called open
if and only if it belongs to J . When no confusion can arise topological
spaces will be denoted by the symbol of their ground sets. Thus the
statement "S 1s a topological space™ means that S is the ground set
of some topological space (S, 7). Sets in I are called open sets and
sets whose complements are in ¢ are called tlosed sets.

If (S, @) 1is a topological space and X 1is a non-empty subset

of S, +the relative topoleogy on X is defined to be the class of all

intersections of X with sets in &. It is easily seen that the relative
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topology on X 1is indeed a topology as defined above. The space X
equipped with its relative topology is called a subspace of (S, ).
A topological space (S,d) 1is called a Tl-space if for every
x € S the set {x} is closed. A topological space (S,T) is called
a Hausdorff space if, given any two distinct points x, y e 5, there
exist disjoint sets Gx and GY in d such that x ¢ Gx and v e Gyc
Let (S,d) be a topological space. A class {GX

sets in ¢ is called an open cover of &S if KJJGK = S. A subclass
hel

of an open cover of S which is itself an open cover of S 1is called an

open_subcover of S. A topological space S 1is called compact if every

open cover of S5 has a finite subcover of S. A non-empty subset X

of a topological space (5,d) is called a compact subset of S if

the subspace X 1s compact in its relative topology. The empty set
g will be called a compact subset of S by convention.

A topological space (S,d ) 1is called locally compact if every

point in X 1is contained in some open set which in turn is contained in

some compact subset of S.

Let (X,c/) be a locally compact topological space. Let X
be any object not in X. (It is assumed that such an object always
exists.) Form the set Xn = X LJ{xm} and define a collection ézn by
saying that a subset Y of X_ shall belong to Ejm if either (i) Y ed

or (ii) X, - Y 1is a closed compact subset of (x,d). The collection

Jm is a topology and (ﬁm’qu is a topological space called the one-

point compactification of (X,d ). The original space (X,d) 1is a
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subspace of (X% 'Um) and the topology ¢ is just the relative topology

(el

of X, considered as a subspace of (Xeos Um)u

The Carathéodory Extension Procedure

Let X be a non-empty space. A collection 98 of subsets of X

is called a semiring if it satisfies the following conditions:
{1) ;35523
(2) A, Bed = AMNBeo

(3) If A, Al sc‘g and Al g A  then there exists a finite collection

C a - A, for

{a, 1" of pairwise disjoint sets in # such that A .

kik=2

n
k=2,...n, and UAk = A,
k=1

k

Let X be a non-empty space, let 3 be a semiring in X, and
let m be a non-negative countably additive set function on ga The
set function M is called a measure on ga Let &(;ﬂ) denote the
minimal ring containing J. The ring @(&) is just the collection of
all unions of finite pairwise disjoint collections of sets in Eg Let
Rd(;z?) denote the minimal g-ring containing Qg, or equivalently the
minimal o-ring containing (Q(Qg). Let H(&g) denote the o-ring of
all subsets of countable unions of sets in 530

The measure W on 28 possesses a unigue extension to a measure

m on @(Qg). The measure m is defined on @(sg) by

n

n
“UA)= mo(A)
m<k=1k Xm k

k=1
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n
whenever UAk is a set in (1)(0?)) and the collection {Ak}i . is a
k=1 =

9 _ .
pairwise disjoint subcollection of &, The definition of m on R(d)

- p ;
is unambiguous and m(A) = m(A) for every Ag ©.

1f Ae H(d), define
m*(A) = inf ZE (An) : L)A A, {A 100 CQSJJL
n=1

Then m™ 1is an outer measure on H(Q?), Define

rrho= {A : Ae H(;zf) and m*(T) = m™(T M 4) + n*(T-4)

for all Te¢ H(u)j

The class 772 is a o-ring of sets and the inclusions

dC ad)yCed) CmC ud)

are valid. The restriction m of m* to sets in 7 is a measure on

M, This measure is called the Caratheodory extension of . If A EQg_,

then m(A) = m(A) = m(A) and if Be@(d), then A(B) = m(R).
If the semiring 8 and the measure M satisfy the condition
(1) If A s@d(ﬁg), then there exists a countable collecticon

{(AY° . of sets in # such that
n=1
0
H(An) < + e for each n =1,2,..., and AQUAn.
n=1

the measure m is said to be g-finite and the Carathéodory extension

m of T 1is unique in the sense that if m is any measure defined on

@d(sz(g) such that ml(A) = m(A) for all Aei?g, then m

for all B e@d(cﬂ).

| (B) = m(B)
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If the measure m 1is not g¢-finite then the Caratheodory exten-

sion m of m to a measure on (ﬁd(é ) may or may not be unique.

In the proof of Lemma (4,16) the Caratheodory extension of m

was defined on o(@) by

oo
m(B) = inf ?1 m(B, ) : By £, B By = if m#£n
| tn tn ’ tnm tm ¢ L 3
n=1
o ,
and 5-‘ By > B} .
1 n - J
n=1

In this particular case this definition is eguivalent to the definition
given on the preceding page. The reason why the two definitions are
eguivalent is that any countable union of sets in the semiring 3 may

be expressed as a countable union of pairwise disjoint sets in &.
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