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Abstract. We show that the introduction of a hyperbolic phase for Brans-Dicke

(BD) field results in a flat vacuum cosmological solution of Hubble parameter H and

fractional rate of change of BD scalar field, F which asymptotically approach constant

values. At late stages, hyperbolic phase of BD field behaves like dark matter.
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1. Introduction

It has always been one of the most challenging and interesting problems of cosmology

what the composition of the universe exactly is: what was it in the primordial time

and what is it in today’s universe? Where did the structure of the universe originally

come from? After the development of the inflationary theory [1], both observational

and theoretical studies have been continuing on this subject. According to inflationary

Universe models [2], inflation is capable of explaining not only the acceleration of

the expansion rate but also flatness, homogeneity and isotropy of the universe. In

addition, the discovery of the cosmic microwave background [3] indicates that our

universe is nearly flat and expands with a slow accelerating rate [4]-[10]. This slow

rate acceleration of universe results from an adequate negative pressure of dark energy

and recent observations indicate that dark energy behaves like Einstein’s cosmological

constant [11] which arises from the vacuum energy. The remaining energy density is

composed of dark matter which can not be observed directly although its gravitational

effects on visible matter validate its presence. In respect of recent WMAP data [12], our

universe is composed of 72 % dark energy, 23 % dark matter, and 5 % ordinary (visible)

matter.

Up to now, the most popular candidate of the dark energy is the cosmological

constant (vacuum energy) with the equation of state parameter ω = −1. However,

the observed vacuum energy density is at least 120 orders of magnitude smaller than

predicted by particle physics. This is the so-called cosmological constant problem. In

order to solve this problem, alternative models based on a dynamical cosmological

constant Λ, with a negative equation of state have been constructed. These models

include a scalar field with a slowly varying energy density. In quintessence models, the

scalar field which is minimally coupled to gravity with an equation of state ω > −1

acts as dark energy and a potential energy dominating over kinetic energy leads to

the accelerating expansion [13]. If the scalar field has a non-canonical kinetic energy

then we have k-essence models [14]. On the other hand, phantom energy models with

a negative kinetic energy assert an equation of state parameter ω < −1 [13]. Besides,

string-theory inspired quintom models have also been analyzed. A model which includes

the combination of two-scalar fields have been considered [15], one corresponding for the

early time quintessence dominance, ω > −1 and the other one corresponding for the

late time dominance, ω < −1. In addition, another string inspired quintom model

where tachyon is non-minimally coupled to gravity obtained the conditions required

for ω crosses over −1 [16]. Modified gravity models in the framework of scalar-tensor

theories have also been analyzed to explain the acceleration of the universe [17]. A

special case of these type of models is the Brans-Dicke-Jordan-Thirry [18]-[20] theory

where the curvature scalar occurs only linearly in the lagrangian density. Whether

the quintessence field can be identified with the Brans-Dicke-Jordan-Thirry field is an

interesting question [21]-[25]. In addition to explaining dark matter, BD theory may

have other advantages. In particular it has been remarked that BD theory can be
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imbedded in electroweak theory [26] and it can explain the cosmic coincidence problem

[30]. There exist a number of studies on accelerated models in BD theory [31]- [37]. For

example, Sen et al [38] have found the potential relevant to power law expansion in BD

cosmology. In addition, in a work of Setare [39], the lower bound of ωΛ was found −0.9

using a holographic dark energy model in the framework of non-flat BD cosmology.

In standard cosmology the rate of expansion of the universe strongly depends on

the equation of state of the matter-energy that fills it. One immediate question which

arises is that whether there is any consistent modification of Einstein’s equations such

that the expansion of the universe is independent of its content. In the previous works

of Arik, Calik and Sheftel [23]-[25], it is shown that BD scalar tensor theory of gravity

with the standard mass term potential (1/2)m2φ2 is capable of explaining the rapid

primordial and slow late-time inflation and a linearized non-vacuum late time solution

well accounts for the contribution of dark energy to the Friedmann Equation, however,

it does not account for the contribution of dark matter. In this regard, we particularly

focus on the model consists of a modified Brans-Dicke-Jordan-Thirry [18]-[20] model

where both the signs of the kinetic term (φφ∗ = φ2
1 − φ2

2) in its φ2
2 part and potential

term bring a minus sign. The models with this sign convention in Lagrangian have been

termed as quintom models [15], [16], a word induced from quintessence and phantom.

We add an imaginary part to the BD field such as φ = φ1 + iφ2, and search for a

contribution to dark matter in the presence of the imaginary part of φ field, φ2.

2. Field Equations

In this work, we will show that both the dark matter contribution ΩDM and dark

energy contribution ΩΛ to Friedmann Equation can be explained solely by BD theory

of gravity provided that BD scalar field is modified suitably. The most straightforward

modification is choosing the BD field as a complex field defined by

φ = φ1 + iφ2 = φReiβ (1)

where φR is real scalar field amplitude. Such complex BD field can also be represented

as in matrix form

φ =

(

φ1 φ2

−φ2 φ1

)

= φ1 + iσ2φ2 (2)

where σ2 is a Pauli spin matrix.

However, we will take the phase of φ to be hyperbolic by replacing the term iβ = Ψ

in (1) such that φ becomes

φ =

(

φ1 φ2

φ2 φ1

)

(3)

and its conjugate matrix becomes

φ∗ =

(

φ1 −φ2

−φ2 φ1

)

(4)
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where

φ1 = φR cosh Ψ (5)

φ2 = φR sinh Ψ (6)

where Ψ is real. With this modification, we note here that Ψ gains a ”Quintom”

character since its kinetic contribution (φφ∗ = φ2
1 − φ2

2) brings a minus sign. But

nevertheless, in this paper, we will show that a cosmological vacuum solution with flat

space-like section is capable of explaining how the Hubble parameter H evolves with the

scale size of the universe a(t) and how the solution of fractional rate of change of BD

scalar field, F contributes to the evolution of H in the late era in which the universe is

expanding at a slow rate. In the context of BD theory [20] with self interacting potential

and matter field, the action in the canonical form for real BD scalar field in our notation

is given by

S =

∫

d4x
√

g

[

−
1

8ω
φ2

1 R +
1

2
gµυ ∂µφ1 ∂νφ1 −

1

2
m2φ2

1 + LM

]

, (7)

however, since we have modified the scalar BD field φ as in (4), we also modify the

action above as

S =
1

2
tr

∫

d4x
√

g

[

−1

8ω
φφ∗R +

1

2
gµν∂µφ∂νφ

∗ −
1

2
m2φφ∗ + ILM

]

. (8)

where I is the unit matrix. In particular we may expect that φ is spatially uniform,

but varies slowly with time. The signs of the non-minimal coupling term and the

kinetic energy term are properly adopted to (+−−−) metric signature. In units where

c = ~ = 1, we define Planck-length, Lp, in such a way that L2
Pφ2

R = ω/2π where φR is

the present value in (5,6). Hence the dimension of the scalar field is chosen to be L−1
p , so

that Geff has a dimension L2
P since nonminimal coupling term φ2

R R where R is the Ricci

scalar, replaces with the Einstein-Hilbert term 1
GN

R in such a way that G−1
eff = 2π

ω
φ2

R

where Geff is the effective gravitational constant as long as the dynamical scalar field

φ varies slowly with time. To be in accordance with the weak equivalence principle, the

matter part of the Lagrangian, LM , is decoupled from φ such that we have considered

the energy-momentum tensor T µ
ν = diag (ρ,−p,−p,−p) just with classical perfect fluid

where ρ is the energy density, p is the pressure. The gravitational field equations derived

from the variation of the action (8) with respect to Robertson- Walker metric is

3

4ω

(

ȧ2

a2
+

k

a2

)

−
1

2

φ̇φ̇∗

φφ∗
+

3

4ω

(

ȧ

a

)

(

φ̇φ∗ + φφ̇∗

φφ∗

)

−
1

2
m2 =

ρM

φφ∗
(9)

−
1

4ω

(

2ä

a
+

ȧ2

a2
+

k

a2

)

−

(

1

2
+

1

2ω

)

φ̇φ̇∗

φφ∗
−

1

2ω

(

ȧ

a

)

(

φ̇φ∗ + φφ̇∗

φφ∗

)

(10)

−
1

4ω

(

φ̈φ∗ + φ̈∗φ

φφ∗

)

+
1

2
m2 =

pM

φφ∗
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φ̈

φ
+ 3

(

ȧ

a

)

φ̇

φ
+ m2 −

3

2ω

(

ä

a
+

ȧ2

a2
+

k

a2

)

= 0 (11)

where k is the curvature parameter with k = −1, 0, 1 corresponding to open, flat,

closed universes respectively and a (t) is the scale factor of the universe (dot denotes
d
dt

). Since in the standard theory of gravitation, the total energy density ρ is assumed

to be composed of ρ = ρΛ + ρM where ρΛ is the energy density of the universe due to

the cosmological constant which in modern terminology is called as “dark energy”, the

right hand sides of (9, 11) are adopted to the matter energy density term ρM instead of

ρ and pM instead of p where M denotes everything except the φ field. The main reason

behind doing such an organization is that whether if the φ terms on the left-hand side of

(9) can accommodate a contribution to due to what is called dark matter. In addition,

the right hand side of the φ equation (11) is set to be zero according to the assumption

imposed on the matter Lagrangian LM being independent of the scalar field φ. For the

vacuum (ρ = p = 0) and flat space like (k = 0) section solutions, we start with defining

the fractional rate of change of φ as

F (a) =
φ̇φ∗

φφ∗
=

(

F1 F2

F2 F1

)

(12)

where

F1 =
φ̇1φ1 − φ̇2φ2

φ2
1 − φ2

2

=
φ̇R

φR

, F2 =
φ̇2φ1 − φ̇1φ2

φ2
1 − φ2

2

= Ψ̇ (13)

and the Hubble parameter as H (a) = ȧ/a, hence, we rewrite the left hand-side of the

field equations (9-11) in terms of H(a), F1(a), F2(a) and their derivatives with respect

to the scale size of an universe a, as

3H2−2ωF 2
1 +2ωF 2

2 +6F1H−2ωm2 = 0 (14)

3H2 + (2ω + 4)F 2
1 − 2ωF 2

2 + 4F1H + 2aHF ′

1 + 2aHH ′ − 2ωm2 = 0 (15)

− 6H2 + 2ωF 2
1 +2ωF 2

2 + 6ωF1H+2ωaHF ′

1 − 3aHH ′ + 2ωm2 = 0 (16)

(4ωF1+6ωH)F2 + 2ωaHF ′

2 = 0 (17)

where prime denotes d
da

. Since solving these coupled equations analytically is hard

enough, we have put forward following perturbation solution as

H = H∞ + H1

(a0

a

)α

+ H2

(a0

a

)2α

(18)

F1 = F1∞ + F11

(a0

a

)α

+ F12

(a0

a

)2α

(19)

F2 = F2∞ + F21

(a0

a

)α

+ F22

(a0

a

)2α

(20)

where H∞, H1, H2, F1∞, F11, F12, F2∞, F21, F22 are perturbation constants and α is an

exponential factor to be determined. With the transformation

u =
(a0

a

)α

, (21)
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(14-17) becomes

3H2 − 2ωF 2
1 + 2ωF 2

2 + 6HF1 − 2ωm2 = 0 (22)

3H2 + (2ω + 4)F 2
1 − 2ωF 2

2 + 4HF1 − 2αuH

(

dF1

du

)

− 2αuH

(

dH

du

)

− 2ωm2 = 0 (23)

− 6H2 + 2ωF 2
1 + 2ωF 2

2 + 6ωHF1 − 2ωαuH

(

dF1

du

)

+ 3αuH

(

dH

du

)

+ 2ωm2 = 0 (24)

− 2ωαuH

(

dF2

du

)

+ (4ωF1+6ωH)F2 = 0 (25)

and (18-20) becomes

H = H∞ + H1u + H2u
2 (26)

F1 = F1∞ + F11u + F12u
2 (27)

F2 = F2∞ + F21u + F22u
2. (28)

Substituting (26-28) into (22-25) and keeping only the zeroth, first and second order

terms of u and neglecting higher order terms of u, we get the following equations to be

solved. In the zeroth order of u;

3H2
∞
−2ωF 2

1∞+2ωF 2
2∞+6F1∞H∞−2ωm2 = 0 (29)

3H2
∞

+ (2ω + 4) F 2
1∞ − 2ωF 2

2∞ + 4F1∞H∞ − 2ωm2 = 0 (30)

− 6H2
∞

+ 2ωF 2
1∞+2ωF 2

2∞ + 6ωF1∞H∞+2ωm2 = 0 (31)

[4ωF1∞+6ωH∞]F2∞ = 0 (32)

in the first order of u;

(6F1∞ + 6H∞)H1 + (6H∞−4ωF1∞)F11 + 4ωF21F2∞ = 0 (33)

((6−2α)H∞ + 4F1∞)H1 + ((4−2α)H∞ + (4ω + 8)F1∞)F11 − 4ωF21F2∞ = 0 (34)

((3α − 12)H∞ + 6ωF1∞)H1 + ((6ω−2ωα)H∞ + 4ωF1∞)F11 + 4ωF21F2∞ = 0 (35)

[(−2ωα + 6ω)H∞ + 4ωF1∞]F21 + 4ωF11F2∞ + 6ωH1F2∞ = 0 (36)

in the second order of u;

3H2
1 + 6H∞H2 − 2ωF 2

11 − 4ωF1∞F12 (37)

+4ωF2∞F22 + 2ωF 2
21 + 6F1∞H2 + 6F11H1 + 6F12H∞ = 0

(3 − 2α)H2
1+(2ω+4) F 2

11 + (4 − 2α)F11H1 + (4F1∞ + 6H∞ − 4αH∞)H2 (38)

+[4H∞ + (4ω+8)F1∞ − 4αH∞]F12 − 2ωF 2
21 − 4ωF2∞F22 = 0

(3α − 6)H2
1+2ωF 2

11 + (−2ωα + 6ω)F11H1 + (−12H∞ + 6αH∞ + 6ωF1∞)H2 (39)

+(−4ωαH∞ + 4ωF1∞ + 6ωH∞)F12 + 2ωF 2
21 + 4ωF2∞F22 = 0

(4ωF1∞ − 4ωαH∞ + 6ωH∞)F22 + (−2ωαH1 + 4ωF11 + 6ωH1)F21 (40)

+4ωF2∞F12 + 6ωF2∞H2 = 0.
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3. Solutions

Solving the equation set (29-32) and (33-36) provide respectively,

F2∞ = 0 H∞ =
2 (ω + 1)

√
ωm

√

(6ω2 + 17ω + 12)
F1∞ =

H∞

2ω + 2
(41)

α = 3 +
1

ω + 1
F11 = −

3

2
H1 F21 = free − parameter (42)

and afterwards, substituting (41, 42) into the equation set (37-40) yields the following

equation set to be solved for H2, F12, F21, F22 as

(12ω + 18)H∞H2 + (8ω + 12)H∞F12 + 4ω(ω + 1)F 2
21 = (9ω2 + 21ω + 12)H2

1 (43)

− (12ω16)H∞H2 − (12ω + 16)H∞F12 − 4ω(ω + 1)F 2
21 = −(9ω2 + 27ω + 20)H2

1 (44)

(18ω + 24)H∞H2 − (12ω2 + 16ω)H∞F12 + 4ω(ω + 1)F 2
21 = −(9ω2 + 21ω + 12)H2

1 (45)

F22 = −
H1

H∞

F21. (46)

To proceed one step further, we write the standard Friedmann equation:
(

H

H0

)2

= ΩΛ + ΩM

(a0

a

)3

(47)

and we fit all theory parameters to the observational density parameters;

ΩΛ =
H2

∞

H2
Σ

, (48)

ΩM =
2H∞H1

H2
Σ

, (49)

where

H2
Σ = H2

∞
+ 2H∞(H1 + H2) + H2

1 . (50)

With these relations above and the constraint ΩΛ + ΩM = 1, where ΩM = ΩVM +

ΩDM, we can express theoretical parameters H1 in terms of the observational density

parameters ΩΛ, ΩM and H∞ as

H1 =
ΩM

2ΩΛ

H∞ (51)

Using recent observational results [12] on density parameters ΩDM ≃ 0.28, ΩΛ ≃ 0.72

and ΩVM = 0 (since the universe we study in this theory is vacuum) together with (51)

we determine;

H1 =
0.28

1.44
H∞ ≃ 0.19H∞. (52)

Similarly, when we solve the equations (43-46); the solutions are;

H2H∞ =
1

34ω + 12ω2 + 24

(

18ω2H2
1 − 8ω2F 2

21 − 4ω3F 2
21 − 12H2

1 − ωH2
1 − 4ωF 2

21 + 9ω3H2
1

)

(53)
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F12H∞ =
1

68ω + 24ω2 + 48

(

84H2
1 − 4ω2F 2

21 − 4ωF 2
21 + 123ωH2

1 + 45ω2H2
1

)

. (54)

As ω → ∞;

H2 ≃

(

−
1

3
ω

F 2
21

H∞

+
3

4
ω

H2
1

H∞

)

(55)

F12 ≃

(

−
4

24H∞

F 2
21 +

45

24H∞

H2
1

)

(56)

F22 = −
H1

H∞

F21 (57)

At this point, we emphasize that H2 must be zero in order to make sense with

recent observational data on density parameters of the universe and to find the exact

value for F21. Therefore, we insert H2 = 0 and we get

F21 ≃ 0.28H∞ (58)

F12 ≃ 0.05H∞ (59)

F22 ≃ −0.06H∞. (60)

Hence, with these perturbation constants (41, 42, 52, 58-60) found from theory we

can express (18-20);

H = H∞ + 0.19H∞

(a0

a

)3

(61)

F1 =
H∞

2ω + 2
− 0.28H∞

(a0

a

)3

+ 0.05H∞

(a0

a

)6

(62)

F2 = 0.28H∞

(a0

a

)3

− 0.06H∞

(a0

a

)6

(63)

where

H∞ ≃ 0.84H0 (64)

if (61) is satisfied for H = H0, and H0 is the present value of the Hubble parameter [12].

4. Conclusion

In this paper, we have analyzed the dark matter ΩDM and dark energy contribution

ΩΛ to Friedmann Equation solely by modified BD theory of gravitation with no other

input. As far as we know, the scalar field φ was always examined individually, however,

we brought forward a new idea such that it can have different components and each of

these components can account for different energy densities.

Actually, the starting point of our motivation originates from this point in the sense

that when BD theory of gravitation with solely scalar field φ is substituted into role as

discussed in our previous work [25], we have shown that WMAP+SnIa data [12], [27]-[29]
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favor this model instead of the standard Einstein cosmological model with cosmological

constant (LCDM model [28]-[29]) under the condition that the new density parameter

Ω
∆

induced in Friedmann equation in standard cosmology to be Ω
∆

< 0 and H2 seen in

the equation (26) to be H2 < 0 instead of H2 = 0. (for further information, see [25]). In

other words, at this stage, we have realized that the more we force H2 to be less than zero

in the real phase of the model with individual scalar field φ, it fits WMAP+SnIa data

much more confidentially than LCDM model [28]-[29]. To do this, in the first attempt,

we have used a complex scalar field φ = φ1 + iφ2 so that WMAP+SnIa [12], [27]-[29]

data will favor the model with modified BD field φ in its complex phase. Although this

approach has brought brand new considerations and aspects to Friedmann Equation in

the concept of dark matter and dark energy, a more suitable solution was found with

the modification of scalar field by using a hyperbolic phase iβ = Ψ. Having solved the

field equations including the hyperbolic phase, we achieved the field equations (14-17)

of modified BD scalar tensor theory namely equations of ”Quintom” model.

To solve these above field equations, we put up the argument of perturbative

solutions with the constant terms H∞, H1, H2, F1∞,F11, F12, F2∞, F21 and F22. All of these

constants have made it possible to originate new predictions on dark matter and dark

energy contribution of BD theory.

To begin with, the most significant evidence for the idea that this modification

needs real attention is the solution of α. It can easily be seen that, when ω → ∞ (where

BD approaches Einstein theory), α → 3, as it appears in the Friedman Equation in the

form ΩM

(

a0

a

)3
. Similarly, the term H∞ which has no scale factor term, just like the

energy density term due to the cosmological constant ΩΛ in the Friedman Equation,

was found purely from theory;

H∞ =
2 (ω + 1)

√
ωm

√

(6ω2 + 17ω + 12)
. (65)

From the equation (61) in the equation set (61-63), we see that the second term is found

to be smaller than the first one and the third term is found to be smaller than the

second one. Namely, the dominating term is the first one which can be interpreted as

the contribution to dark energy. On the other hand, the second term can be considered

as the contribution to dark matter. However, the situation is different for F1 and F2 as

it is seen in the equations (62, 63). As it was mentioned before, in the absence of F2

term, where F = F1, the theory was able to explain the contribution to dark energy but

not to dark matter. Our aim was to find a contribution to dark matter in the presence

of F2, with the component F21 since it is coupled with (a0

a
)3. Namely; it is agreeable to

predict that while F1∞ which is not coupled with a scale factor term is contributing to

dark energy, F21 is contributing to dark matter. Hence, the introduction of a hyperbolic

phase for BD field results in a flat vacuum cosmological solution of Hubble parameter

H and fractional rate of change of BD scalar field, F which asymptotically approach

constant values. At late stages, hyperbolic phase of BD field behaves like dark matter.
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