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We employ chaotic (φ2 and φ4) inflation to illustrate the important role radiative corrections can play
during the inflationary phase. Yukawa interactions of φ, in particular, lead to corrections of the form
−κφ4 ln(φ/μ), where κ > 0 and μ is a renormalization scale. For instance, φ4 chaotic inflation with
radiative corrections looks compatible with the most recent WMAP (5 year) analysis, in sharp contrast
to the tree level case. We obtain the 95% confidence limits 2.4 × 10−14 � κ � 5.7 × 10−14, 0.931 � ns �
0.958 and 0.038 � r � 0.205, where ns and r respectively denote the scalar spectral index and scalar to
tensor ratio. The limits for φ2 inflation are κ � 7.7 × 10−15, 0.929 � ns � 0.966 and 0.023 � r � 0.135.
The next round of precision experiments should provide a more stringent test of realistic chaotic φ2 and
φ4 inflation.

© 2008 Elsevier B.V. All rights reserved.
Chaotic inflation driven by scalar potentials of the type V =
(1/2)m2φ2 or V = (1/4!)λφ4 provide just about the simplest re-
alization of an inflationary scenario [1]. For the φ2 potential, the
predicted scalar spectral index ns ≈ 0.966 and scalar to tensor ratio
r ≈ 0.135 are in good agreement with the most recent Wilkinson
Microwave Anisotropy Probe (WMAP) 5 year analysis [2,3]. For the
φ4 potential, the predictions for ns and r lie outside the WMAP
95% confidence limits.

In this Letter we wish to emphasize the fact that radiative cor-
rections can significantly modify the ‘tree’ level predictions listed
above. The inflaton field φ must have couplings to ‘matter’ fields
which allow it to make the transition to hot big bang cosmology
at the end of inflation. These couplings will induce quantum cor-
rections to V , which we take into account following the analysis
of Coleman and Weinberg [4]. (For a comparison of Coleman–
Weinberg potential with WMAP, see Ref. [5].) Even if such terms
are sub-dominant during inflation, they can make sizable correc-
tions to the tree level predictions for ns and r.

Here, we investigate the impact of quantum corrections on the
simplest chaotic (φ2 and φ4) inflation models. We do not con-
sider a specific framework such as supergravity, where the poten-
tial generally gets modified and becomes exponentially steep for
super-Planckian values of the field. (For a realization of chaotic
inflation in supergravity, see Ref. [6].) We instead assume that
quantum gravity corrections to the potential become large only at
super-Planckian energy densities [7], which can allow higher order
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terms to be negligible during the observable part of inflation [8].
We are mainly interested in the coupling of φ to fermion fields,
for these give rise to radiative corrections to V which carry an
overall negative sign. A simple example is provided by the Yukawa
coupling (1/2)hφN̄ N , where N denotes the right handed neutrino.
(Note that N may also have bare mass terms.) Such couplings pro-
vide correction terms to V which, to leading order, take the form

V loop ≈ −κφ4 ln

(
hφ

μ

)
, (1)

where κ = h4/(16π2) in the one loop approximation, and μ is a
renormalization scale. The negative sign is a characteristic feature
for the contributions from fermions.

By taking into account the contribution provided by Eq. (1),
we find that depending on κ , the scalar to tensor ratio r can
be considerably lower than its tree level value. An interesting
consequence is that φ4 inflation, which has been ruled out at
tree level, becomes viable for a narrow range of κ . The predic-
tions for ns and r extend from the tree level values to a new
inflation regime of small r and ns � 1. (A similar range of pre-
dictions can be obtained at tree level for the binomial potential
V = V 0 − (1/2)m2φ2 + (1/4!)λφ4 [9].) We can expect that the next
round of precision measurements of ns , r and related quantities
such as α ≡ dns/d ln k will provide a stringent test of these more
realistic φ2 and φ4 inflation models.

To see how the correction in Eq. (1) arise, consider the La-
grangian density

L= 1

2
∂μφB∂μφB + i

2
N̄γ μ∂μN − 1

2
m2

Bφ2
B − λB

4! φ4
B

− 1
hφB N̄ N − 1

mN N̄ N, (2)

2 2
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where the subscript B denotes bare quantities, and the field N de-
notes a Standard Model singlet fermion (such as a right-handed
neutrino). The inflationary potential including one loop corrections
is given by

V = 1

2
m2φ2 + λ

4!φ
4 + V loop, (3)

where, following Ref. [4],

V loop = 1

64π2

[(
m2 + λ

2
φ2

)2

ln

(
m2 + (λ/2)φ2

μ2

)

− 2(hφ + mN)4 ln

(
(hφ + mN)2

μ2

)]
. (4)

For the range of h that we consider, hφ � m and h2 � λ during
inflation. Also assuming hφ � mN , the leading one loop quan-
tum correction to the inflationary potential is given by Eq. (1).
Note that with hφ � H (Hubble constant), the ‘flat space’ quan-
tum correction is a good approximation during inflation. (For a
discussion of pure Yukawa interaction involving massless fermions
in a locally de Sitter geometry see Ref. [10]. For a discussion of
one-loop effects in chaotic inflation without the Yukawa interac-
tion see Ref. [11].) For convenience, we will set the renormalization
scale μ = hmP , where mP ≈ 2.4×1018 GeV is the (reduced) Planck
scale. (Changing the renormalization scale corresponds to redefin-
ing λ, and does not affect the physics.)

The instability for φ � mP caused by the negative contribution
of Eq. (1) will not concern us too much here. Presumably it is taken
care of in a more fundamental theory. Our inflationary phase takes
place for φ values below the local maximum. Although this dif-
fers from the original chaotic inflation model, it is still possible to
justify the initial conditions. Inflation most naturally starts at an
energy density close to the Planck scale. However, the observable
part of inflation occurs at a much lower energy density. If, after
the initial phase of inflation, there exist regions of space where
the field is sufficiently close to the local maximum, eternal infla-
tion takes place. It would then seem that the regions satisfying the
condition for eternal inflation would always dominate, since even
if they are initially rare, their volume will increase indefinitely. For
discussions of this point, see e.g. Refs. [7,12,13].

Before we discuss the effect of Eq. (1) on the inflationary pa-
rameters, let us recall the basic equations. The slow-roll parame-
ters may be defined as (see Ref. [14] for a review and references):

ε = 1

2

(
V ′

V

)2

, η = V ′′

V
, ξ2 = V ′V ′′′

V 2
. (5)

Here and below we use units mP = 1, and ′ denotes derivative with
respect to φ. The spectral index ns , the tensor to scalar ratio r and
the running of the spectral index α ≡ dns/d ln k are given by

ns = 1 − 6ε + 2η, (6)

r = 16ε, (7)

α = 16εη − 24ε2 − 2ξ2. (8)

The amplitude of the curvature perturbation ΔR is given by

ΔR = 1

2
√

3π

V 3/2

|V ′| . (9)

The WMAP best fit value for the comoving wavenumber k0 =
0.002 Mpc−1 is ΔR = 4.91 × 10−5 [2].

In the slow-roll approximation, the number of e-folds is given
by

N0 =
φ0∫

φ

V dφ

V ′ , (10)
e

where the subscript 0 implies that the values correspond to k0. The
subscript e implies the end of inflation, where ε(φe) 	 1. N0 cor-
responding to the same scale is [15]

N0 ≈ 65 + 1

2
ln

[
V (φ0)

] − 1

3γ
ln

[
V (φe)

] +
(

1

3γ
− 1

4

)
ln[ρreh], (11)

where ρreh is the energy density at reheating, and γ −1 represents
the average equation of state during oscillations of the inflaton.
For V ∝ φn , γ = 2n/(n + 2) [16]. In particular, for φ2 inflation
γ = 1 and the universe expands as matter-dominated during infla-
ton oscillations, whereas for φ4 inflation γ = 4/3 and the universe
expands as radiation-dominated. In the latter case N0 does not
depend on ρreh. Note that with quantum corrections included in
the potential, γ will in principle deviate from its tree level value.
However, this effect is quite negligible since the tree level term
dominates at low values of φ where inflation has ended.

First, assume that λ � m2/φ2 during inflation, so that inflation
is primarily driven by the quadratic φ2 term. For the tree level
potential V = (1/2)m2φ2, Eq. (10) gives N0 	 φ2

0/4. Using Eq. (9),
m 	 1.6 × 1013 GeV. Using the above definitions we also obtain

ns = 1 − 8

φ2
= 1 − 2

N
, (12)

r = 32

φ2
= 8

N
, (13)

α = − 32

φ4
= − 2

N2
. (14)

The number of e-folds is given by Eq. (11). Assuming mN � m,
the inflaton decay rate Γφ = h2m/(8π) (where h2 < m) and ρreh 	
κm2m2

P .
We can simplify the discussion of the potential with the loop

correction by treating lnφ as constant. We then have

V = 1

2
m2φ2 − κφ4 ln φ, (15)

V ′ 	 m2φ − 4κφ3 ln φ, (16)

ΔR 	 1

4
√

3π

√
κφ3 (u + 1)3/2

u
, (17)

where in Eq. (17) we have defined

u ≡ m2

2κφ2 ln φ
− 2. (18)

The inflationary parameters are given by

ns 	 1 − 8

φ2

[
u2 + (3/2)u + 2

(u + 1)2

]
, (19)

r 	 32

φ2

[
u2

(u + 1)2

]
, (20)

α 	 − 32

φ4

[
u(u3 + 3u2 + 2u − 3)

(1 + u)4

]
. (21)

The numerical solutions are obtained (without the constant
ln φ approximation, except for calculating u0) using Eqs. (9), (10)
and (11). (We also include the next to leading order corrections
in the slow roll expansion, see Appendix A.) One way to obtain
the solutions is to fix κ and scan over m (with φ0 calculated
for each m value using Eq. (9)) until N0 matches Eq. (11). There
are two solutions for a given value of κ . From Eq. (17), in the
large u0 limit (u0 � 1 or m2 � 4κφ2

0 ln φ0) a solution is obtained
with κ ∝ 1/u0. In the small u0 limit (u0 � 1 or m2 ≈ 4κφ2

0 ln φ0),
κ ∝ u2

0. The two solutions meet at u0 ∼ 1, giving a maximum value
of κ ∼ (

√
6πΔR)2/φ6

0 . For larger values of κ , it is not possible to
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Table 1
The inflationary parameters for the potential V = (1/2)m2φ2 − κφ4 ln(φ/mP ) (in units mP = 1)

log10(κ) m (10−6) φe φ0 V (φ0)1/4 N0 u0 ns r α (10−4)

V = (1/2)m2φ2 (assuming ρreh = 10−16m2m2
P )

6.437 1.457 15.26 0.008334 58.31 0.9657 0.1349 −5.901

φ2 branch

−16 6.434 1.457 15.25 0.008322 58.31 319.4 0.9657 0.1341 −5.901
−15 6.383 1.457 15.15 0.008204 58.47 30.2 0.9656 0.1267 −5.853
−14.5 6.245 1.457 14.83 0.007891 58.5 8.355 0.9645 0.1085 −5.647
−14.2 5.798 1.457 14.19 0.007212 58.43 3.165 0.9591 0.07567 −4.423
−14.11 4.917 1.456 13.35 0.006241 58.23 2.067 0.9459 0.04239 −1.254

Hilltop branch

−14.11 4.917 1.456 13.35 0.006241 58.23 2.067 0.9459 0.04239 −1.254
−14.2 3.628 1.456 12.35 0.005019 57.93 0.3324 0.9219 0.01769 3.196
−14.5 2.146 1.455 11.18 0.003603 57.48 0.1447 0.8852 0.004665 6.022
−15 1.032 1.455 10.04 0.002344 56.88 0.0531 0.8424 0.000826 5.236
−16 0.268 1.453 8.617 0.001103 55.86 0.0102 0.7762 0.000039 2.254
Fig. 1. The tree level potential (solid), the φ2 and hilltop solution potentials for
log10(κ) = −14.5 (dashed and dot-dashed), and the potential for log10(κ) = −14.11
where the two solutions meet (dotted). The points on the curves denote φ0.

satisfy the ΔR and N0 constraints simultaneously, since the dura-
tion of inflation becomes too short for the lower φ0 values required
to keep ΔR fixed.

We call the large u0 solution the φ2 solution, and the other
the hilltop solution [13]. For the φ2 solution, u0 → ∞ as κ → 0.
The predictions for V = (1/2)m2φ2 are recovered for u0 � 1. On
the other hand, for the hilltop solution u0 → 0 as κ → 0. With
u0 � 1, ns ≈ 1 − 16/φ2

0 and r is suppressed by u2. For the φ2 solu-
tion the local maximum of the potential and φ0 is at higher values,
whereas for the hilltop solution inflation occurs closer to the local
maximum (see Fig. 1 and Table 1). As the value of κ is increased,
the two branches of solutions approach each other and they meet
at κ 	 8 × 10−15 (see Fig. 2).

Note that the one loop contribution to λ is of order (4!)κ ,
which is ∼ m2/φ2 in the parameter range where the κ term has a
significant effect on inflationary observables. In this case our as-
sumption λ � m2/φ2 corresponds to the renormalized coupling
being small compared to the one loop contribution.

Alternatively, assume that λ � m2/φ2 during inflation, so that
inflation is primarily driven by the quartic term. For the tree level
potential V = (1/4!)λφ4, Eq. (10) gives N0 	 φ2

0/8. Using Eq. (9),
λ 	 8 × 10−13. We also obtain

ns = 1 − 24

φ2
= 1 − 3

N
, (22)

r = 128

φ2
= 16

N
, (23)

α = −192
4

= − 3
2
. (24)
φ N
Fig. 2. 1 − ns and r vs. κ for the potential V = (1/2)m2φ2 − κφ4 ln(φ/mP ). Solid
and dashed curves correspond to φ2 and hilltop branches respectively.

Including the loop correction we have

V = φ4

24
(λ − 24κ ln φ), (25)

V ′ = φ3

6
(λ − 6κ − 24κ ln φ), (26)

ΔR 	
√

3

48π

√
κφ3 (v + 1)3/2

v
, (27)

where in Eq. (27) we have defined

v ≡ 1

6κ
(λ − 6κ − 24κ ln φ). (28)

The inflationary parameters are given by

ns = 1 − 24

φ2

[
v2 + v/3 + 4/3

(v + 1)2

]
, (29)

r = 128

φ2

[
v2

(v + 1)2

]
, (30)

α = −192

φ4

[
v(v3 + (4/3)v2 + 5v − 10/3)

(1 + v)4

]
. (31)

The numerical results are displayed in Fig. 3 and Table 2. As
before, there are two solutions for a given value of κ . We call
the large v0 solution the φ4 solution, and the other the hill-
top solution. The predictions for V = (1/4!)λφ4 are recovered
for v0 � 1, or λ � 24κ ln φ0. Since φ2

0 = 8N0 for φ4 potential,
this corresponds to λ � 75κ . As the value of κ is increased, the



V.N. Şenoğuz, Q. Shafi / Physics Letters B 668 (2008) 6–10 9
Table 2
The inflationary parameters for the potential V = (1/4!)λφ4 − κφ4 ln(φ/mP ) (in units mP = 1)

log10(κ) log10(λ) φe φ0 V (φ0)1/4 N0 v0 ns r α (10−4)

V = (1/4!)λφ4

−12.07 2.53 22.39 0.009737 62.55 0.9517 0.251 −7.637

φ4 branch

−15. −12.03 2.516 22.31 0.00972 62.54 143.1 0.9519 0.2493 −7.606
−14. −11.78 2.438 21.69 0.009558 62.43 14.08 0.9539 0.2331 −7.372
−13.5 −11.49 2.369 20.49 0.009058 62.2 3.834 0.9575 0.1881 −7.025
−13.3 −11.36 2.338 19.35 0.008344 61.97 1.762 0.9577 0.1355 −6.261
−13.24 −11.33 2.319 18.23 0.007421 61.74 0.9184 0.9512 0.08476 −3.725

Hilltop branch

−13.24 −11.33 2.319 18.23 0.007421 61.74 0.9184 0.9512 0.08476 −3.725
−13.3 −11.41 2.305 17.11 0.006329 61.49 0.4937 0.9359 0.04481 0.9321
−13.5 −11.63 2.292 15.85 0.004985 61.14 0.2391 0.9088 0.01718 6.326
−14. −12.15 2.276 14.15 0.003225 60.57 0.0799 0.8618 0.002978 8.232
−15. −13.18 2.256 12.15 0.001534 59.69 0.0151 0.7959 0.000149 4.078
Fig. 3. 1 − ns and r vs. κ for the potential V = (1/4!)λφ4 − κφ4 ln(φ/mP ). Solid and
dashed curves correspond to φ4 and hilltop branches respectively.

Fig. 4. Tensor to scalar ratio r vs. the spectral index ns for the potential V =
(1/2)m2φ2 − κφ4 ln(φ/mP ) (solid curve) and for the potential V = (1/4!)λφ4 −
κφ4 ln(φ/mP ) (dashed curve). The WMAP contours (68% and 95% CL) are taken from
Ref. [2]. The points on the curves correspond to the tree level predictions for φ2 and
φ4 potentials.

two branches of solutions approach each other and they meet at
κ 	 (4

√
6πΔR)2/φ6

0 	 6 × 10−14.
To summarize, in this Letter we have considered the impact ra-

diative corrections can have on chaotic inflation predictions with
φ2 and φ4 potentials. A Yukawa coupling of φ, in particular, in-
duces corrections to the inflationary potential with a negative sign,
which can lower r. We display the possible range of values for
the inflationary parameters including such corrections. As shown
in Fig. 4, although φ4 inflation seems excluded at tree level, it can
become compatible with WMAP when this correction is included.
The current WMAP limits imply r � 0.02 (r � 0.04) for the φ2 (φ4)
model, which therefore suggests that signatures of primordial grav-
itational waves should be observed in the near future.

Finally we note that radiative corrections can also significantly
alter the inflationary predictions of other models. For instance, the
Yukawa coupling induced correction considered here can lead to a
red-tilted spectrum (including ns ≈ 0.96 as favored by WMAP) in
the non-supersymmetric hybrid inflation model [17], which other-
wise predicts a blue spectrum.
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Appendix A

We provide here the next to leading order formulae for calcu-
lating ns and r that we have used [18]:

ΔR = 1

2
√

3π

V 3/2

|V ′|
[

1 −
(

3C + 1

6

)
ε +

(
C − 1

3

)
η

]
, (A.1)

ns = 1 + 2

[
−3ε + η −

(
5

3
+ 12C

)
ε2

+ (8C − 1)εη + 1

3
η2 −

(
C − 1

3

)
ξ2

]
, (A.2)

r = 16ε

[
1 + 2

3
(3C − 1)(2ε − η)

]
, (A.3)

where C = ln 2 + γE − 2 ≈ −0.7296. Inflation ends at εH = 1 and

N0 =
φ0∫

φe

dφ√
2εH

, (A.4)

εH = 2

(
H ′(φ)

H(φ)

)2

= ε

(
1 − 4

3
ε + 2

3
η + 32

9
ε2 + 5

9
η2 − 10

3
εη + 2

9
ξ2 + · · ·

)
. (A.5)
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