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We provide a comprehensive study of strong coupling constants of decuplet baryons with light

nonet vector mesons in the framework of light cone QCD sum rules. Using the symmetry arguments,

we argue that all coupling constants entering the calculations can be expressed in terms of only

one invariant function even if the SUð3Þf symmetry breaking effects are taken into account. We estimate

the order of SUð3Þf symmetry violations, which are automatically considered by the employed

approach.
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I. INTRODUCTION

Theoretically, the baryon-baryon-meson coupling con-
stants are fundamental objects as they can provide useful
information on the low energy QCD, baryon-baryon inter-
actions, and scattering of mesons from baryons. In other
words, their values calculated in QCD can render impor-
tant constraints in constructing baryon-baryon as well as
baryon-meson potentials. They can help us to better ana-
lyze the results of existing experiments on the meson-
nucleon, nucleon-hyperon, and hyperon-hyperon interac-
tions held in different centers, such as MAMI, MIT, Bates,
BNL, and Jefferson Laboratories.

Calculation of the baryon-meson coupling constants
using the fundamental theory of QCD is highly desirable.
However, such interactions occur in a region very far from
the perturbative regime and the fundamental QCD
Lagrangian is not suitable for calculation of these coupling
constants. Therefore, we need some nonperturbative ap-
proaches. QCD sum rules [1] is one of the most powerful
and applicable tools in this respect. It is based on the QCD
Lagrangian, hence the problem of deriving the baryon-
meson coupling from QCD sum rules is clearly of impor-
tance, both as a fundamental test of QCD and of the applied
nonperturbative approach.

In the present work, we calculate the strong coupling
constants of decuplet baryons with light nonet vector me-
sons in the framework of the light cone QCD sum rules [2].
Applying the symmetry arguments, we derive all related
coupling constants in terms of only one universal function
even if SUð3Þf symmetry breaking effects are encountered.

One of the main advantages of the approach used during
this work is that it automatically includes the SUð3Þf
symmetry breaking effects. Calculation of these coupling
constants is also very important for understanding the

dynamics of light vector mesons and their electroproduc-
tion off the decuplet baryons. Note that the strong coupling
constants of the octet and decuplet baryons with pseudo-
scalar mesons as well as octet baryons with vector mesons
have been studied within the same framework in [3–7].
The layout of the paper is as follows. In Sec. II, using the

symmetry relations, sum rules for the strong coupling
constants of the light nonet vector mesons with decuplet
baryons are obtained in the framework of light cone QCD
sum rules (LCSR). In Sec. III, we numerically analyze the
coupling constants of the light nonet vector mesons with
decuplet baryons, estimate the order of SUð3Þf symmetry

violations, and discuss the obtained results.

II. SUM RULES FOR THE STRONG COUPLING
CONSTANTS OF THE LIGHT NONET VECTOR

MESONS WITH DECUPLET BARYONS

In this part, we derive LCSR for the coupling constants
of the light nonet vector mesons with decuplet baryons and
show how it is possible to express all couplings entering the
calculations in terms of only one universal function.
In SUð3Þf symmetry, the interaction Lagrangian can be

written as

L int ¼ g"ijkð �Dj
‘mÞ�ðDm‘kÞ�@nVi

n þ H:c:; (1)

where the "ijk is the antisymmetric Levi-Civita tensor,

Dm‘k denote components of the decuplet baryons, the
�Dj
‘m is its Hermitian conjugation, Vi

n correspond to the

components of octet vector mesons, and � is the Rarita-
Schwinger index for spin 3=2 particles. To obtain the sum
rules for coupling constants, we start considering the fol-
lowing correlation function, which is the main building
block in QCD sum rules:

��� ¼ i
Z

d4xeipxhVðqÞjT f��ðxÞ ���ð0Þgj0i; (2)

where VðqÞ corresponds to the light mesons with momen-
tum q, �� is the interpolating currents for decuplet bary-

ons, and T is the time ordering operator. To obtain sum
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rules for the coupling constants, we will calculate the
correlation function in the following two different ways:

(i) in the phenomenological side, the correlation func-
tion is obtained in terms of hadronic parameters
saturating it by a tower of hadrons with the same
quantum numbers as the interpolating currents.

(ii) in the theoretical or the QCD side, the correlation
function is calculated by means of operator product
expansion (OPE) in the deep Euclidean region,
where �p2 ! 1 and �ðpþ qÞ2 ! 1, in terms of
quark and gluon degrees of freedom. With the help
of the OPE, the short and large distance effects are
separated. The short range effects are calculated
using the perturbation theory, whereas the long
distance contributions are parametrized in terms of
distribution amplitudes (DA’s) of the light nonet
vector mesons.

Finally, to get the sum rules, we equate these two repre-
sentations of the correlation functions through dispersion
relation and apply Borel transformation with respect to the
variables ðpþ qÞ2 and p2 to suppress the contribution of
the higher states and continuum. Before starting calcula-
tions of the correlation function in physical or theoretical
sides, let us introduce the interpolating currents of the
decuplet baryons. The interpolating currents creating the
decuplet baryons can be written in a compact form as

�� ¼ A"abcfðqaT1 C��q
b
2Þqc3 þ ðqaT2 C��q

b
3Þqc1

þ ðqaT3 C�5q
b
1Þqc2g; (3)

where a, b, and c are the color indices and C is the charge
conjugation operator. The values of normalization constant
A and the q1, q2, and q3 quarks are represented in Table I.

As we already noted, the phenomenological side of the
correlation function is obtained inserting a full set of
hadrons with quantum numbers of �� and isolating the

ground state baryons as

���ðp;qÞ

¼h0j��jDðp2ÞihDðp2ÞVðqÞjDðp1ÞihDðp1Þj ���j0i
ðp2

2�m2
D2Þðp2

1�m2
D1Þ

þ���;

(4)

wheremD1 andmD2 are masses of the initial and final state
decuplet baryons with momentum p1 ¼ pþ q and
p2 ¼ p, respectively, and � � � represents the contribution
of the higher states and continuum.
To proceed, we need to know the matrix element of the

interpolating current between the vacuum and the decuplet
state as well as the transition matrix element. The
hDðp1Þj��j0i is defined in terms of the residue �D as

h0j��jDðpÞi ¼ �Du�ðpÞ; (5)

where u� is the Rarita-Schwinger spinor. The transition

matrix element, hDðp2ÞVðqÞjDðp1Þi, is parametrized in
terms of coupling form factors g1, g2, g3, and g4 as

hDðp2ÞVðqÞjDðp1Þi
¼ �u�ðp2Þ

�
g��

�
"g1þ2p:"

g2
ðmD1þmD2Þ

�

þ q�q�

ðmD1þmD2Þ2
�
"g3þ2p:"

g4
ðmD1þmD2Þ

��
u�ðp1Þ:

(6)

Using Eqs. (5) and (6) into (4) and performing a summa-
tion over spins of the decuplet baryons using

X
s

u�ðp; sÞ �u�ðp; sÞ ¼ ðpþmDÞ
�
g�� �

����

3
� 2p�p�

3m2
D

þ p��� � p���

3mD

�
; (7)

in principle, one can obtain the final expression for the
phenomenological side of the correlation function.
However, there are two problems which we should over-
come: all existing structures are not independent and the
interpolating current for decuplet baryons couples also to
unwanted spin-1=2 states, i.e.,

h0j��j1=2ðpÞi ¼ ðA�� þ Bp�ÞuðpÞ (8)

exists and has nonzero value. Multiplying both sides of
Eq. (8) with �� and using ���

� ¼ 0, we get B ¼
�4A=m1=2. From this relation, we see that, to remove the

contribution of the unwanted spin-1=2 states, we should
eliminate the terms proportional to �� at the left �� at the

right and also terms containing p2� and p1�. For this aim

and also to get independent structures, we order the Dirac
matrices as ��pq"�� and set the terms containing the

contribution of spin-1=2 particles to zero. After this
procedure, we obtain the final expression for the phenome-
nological side as

TABLE I. The values of A and the quark flavors q1, q2, and q3
for decuplet baryons.

A q1 q2 q3

��0 ffiffiffiffiffiffiffiffi
2=3

p
u d s

��þ ffiffiffiffiffiffiffiffi
1=3

p
u u s

��� ffiffiffiffiffiffiffiffi
1=3

p
d d s

�þþ 1=3 u u u
�þ ffiffiffiffiffiffiffiffi

1=3
p

u u d
�0

ffiffiffiffiffiffiffiffi
1=3

p
d d u

�� 1=3 d d d
��0 ffiffiffiffiffiffiffiffi

1=3
p

s s u
��� ffiffiffiffiffiffiffiffi

1=3
p

s s d
�� 1=3 s s s
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��� ¼ �D1�D2

½m2
D1 � ðpþ qÞ2�½m2

D2 � p2�
�
2ð":pÞg��q

�
g1 þ g2

mD2

ðmD1 þmD2Þ
�
� 2ð":pÞg��pq

g2
ðmD1 þmD2Þ

þ q�q�pq"
g3

ðmD1 þmD2Þ2
� 2ð":pÞq�q�pq g4

ðmD1 þmD2Þ3
þ other structures

�
; (9)

where, to obtain sum rules for coupling constants, we will
choose the structures, ð":pÞg��q, ð":pÞg��pq, q�q�pq",
and ð":pÞq�q�pq for form factors g1 þ g2, g2, g3, and g4,
respectively.

In this part, before calculation of the QCD side of the
aforementioned correlation function, we would like to
present the relations between invariant functions for the
coefficients of the selected structures and show how we can
express all coupling constants in terms of only one univer-
sal function. The main advantage of this approach used
below is that it takes into account SUð3Þf symmetry vio-

lating effects, automatically. Following the works [3–7],
we start considering the transition, ��0 ! ��0�0, whose
invariant function corresponding to each coupling g1, g2,
g3, and g4 can formally be written as

���0!��0�0 ¼ g�0 �uu�1ðu; d; sÞ þ g�0 �dd�
0
1ðu; d; sÞ

þ g�0 �ss�2ðu; d; sÞ; (10)

where, from the interpolating current of the �0 meson, we

have g�0 �uu ¼ �g�0 �dd ¼ 1=
ffiffiffi
2

p
, and g�0 �ss ¼ 0. In the above

relation, the invariant functions �1, �
0
1, and �2 refer to

the radiation of the �0 meson from u, d, and s quarks,
respectively, and we formally define them as

�1ðu; d; sÞ ¼ h �uuj��0��0j0i;
�0

1ðu; d; sÞ ¼ h �ddj��0��0j0i;
�2ðu; d; sÞ ¼ h�ssj��0��0j0i:

(11)

The interpolating currents of the ��0 is symmetric under
u $ d, hence �0

1ðu; d; sÞ ¼ �1ðd; u; sÞ and Eq. (10) im-
mediately yields

���0!��0�0 ¼ 1ffiffiffi
2

p ½�1ðu; d; sÞ ��1ðd; u; sÞ�; (12)

where, in the SUð2Þf symmetry limit, it vanishes. Now, we

proceed considering the invariant function describing the
transition, ��þ ! ��þ�0. It can be obtained from Eq. (10)

by replacing d ! u and using the fact that ��0ðd ! uÞ ¼ffiffiffi
2

p
��þ. As a result, we get

4�1ðu; u; sÞ ¼ 2h �uuj��þ��þj0i; (13)

where the coefficient 4 in the left side comes from the fact
that the ��þ contains two u quarks and there are four
possibilities for the �0 meson to be radiated from the u
quark. Using Eq. (10) and considering the fact that ��þ
does not contain the d quark, we obtain

���þ!��þ�0 ¼ ffiffiffi
2

p
�1ðu; u; sÞ: (14)

In a similar way, the invariant function describing ��� !
����0 is obtained from ��0 ! ����0 replacing u ! d in

Eq. (10) and taking into account ��0ðu ! dÞ ¼ ffiffiffi
2

p
���,

i.e.,

����!����0 ¼ � ffiffiffi
2

p
�1ðd; d; sÞ: (15)

Our next task is to expand the approach to include the �
baryons. The invariant function for the �þ ! �þ�0 tran-
sition can be obtained from the ��þ ! ��þ�0 transition.

From the interpolating currents it is clear that ��þ
� ¼

���þ
� ðs ! dÞ. Using this fact, we obtain

��þ!�þ�0 ¼ ½g�0 �uuh �uuj��þ��þj0iðs ! dÞ
þ g�0 �ssh �ssj��þ��þj0iðs ! dÞ�

¼ ffiffiffi
2

p
�1ðu; u; dÞ � 1ffiffiffi

2
p �2ðu; u; dÞ; (16)

but our calculations show that

�2ðu; u; dÞ ¼ �1ðd; u; uÞ; (17)

hence,

��þ!�þ�0 ¼ ffiffiffi
2

p
�1ðu; u; dÞ � 1ffiffiffi

2
p �1ðd; u; uÞ: (18)

Similar to the above relations, our calculations lead also to
the following relations for the couplings of the remaining
decuplet baryons with a �0 meson:

��þþ!�þþ�0 ¼ 3ffiffiffi
2

p �1ðu; u; uÞ; (19)

���!���0 ¼ � 3ffiffiffi
2

p �1ðd; d; dÞ; (20)

��0!�0�0 ¼ � ffiffiffi
2

p
�1ðd; d; uÞ þ 1ffiffiffi

2
p �1ðu; d; dÞ; (21)

���0!��0�0 ¼ 1ffiffiffi
2

p �1ðu; s; sÞ; (22)

����!����0 ¼ �1ffiffiffi
2

p �1ðd; s; sÞ: (23)

Up to here, we considered the neutral � meson case.
Now, we go on considering the relations among the invari-
ant functions corresponding to the charged � meson, for
instance ��0 ! ��þ��. For this aim, we start considering
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the matrix element h �ddj��0��0j0i, where the d quark from
each ��0 constitutes the final �dd state, and the remaining u
and s are spectator quarks. In a similar way, in the matrix
element h �udj��þ��0j0i, the d quark from ��0 and the u
quark from ��þ form the �ud state and the remaining u and
s quarks remain also as spectators. As a result, one expects
that these two matrix elements should be proportional.
Our calculations support this expectation and lead to the
following relation:

���0!��þ�� ¼ h �udj��þ��0j0i ¼ ffiffiffi
2

p h �ddj��0��0j0i
¼ ffiffiffi

2
p

�1ðd; u; sÞ: (24)

The��0 ! ����þ invariant function is obtained exchang-
ing the u $ d in the above relation, i.e.,

���0!����þ ¼ h �duj�����0j0i ¼ ffiffiffi
2

p h �uuj��0��0j0i
¼ ffiffiffi

2
p

�1ðu; d; sÞ: (25)

We obtain the following relations among other invariant
functions involving the charged � meson using the similar
arguments and calculations:

����!�0�� ¼ ffiffiffi
2

p
�1ðu; d; sÞ; (26)

����!�0�� ¼ �1ðd; s; sÞ ¼ �1ðu; s; sÞ; (27)

��þ!�þþ�� ¼ ffiffiffi
3

p
�1ðu; u; uÞ; (28)

��0!�þ�� ¼ 2�1ðu; u; dÞ; (29)

���!�0�� ¼ ffiffiffi
3

p
�1ðd; d; dÞ; (30)

���þ!��0�þ ¼ ffiffiffi
2

p
�1ðd; u; sÞ; (31)

���0!����þ ¼ �1ðd; s; sÞ; (32)

��þ!�0�þ ¼ 2�1ðd; d; uÞ; (33)

��þþ!�þ�þ ¼ ffiffiffi
3

p
�1ðd; u; uÞ; (34)

��0!���þ ¼ ffiffiffi
3

p
�1ðu; d; dÞ: (35)

The remaining relations among the invariant functions
involving other light nonet vector mesons, K�0;�, �K�0, !,
and	, are represented in Appendix A. The above relations
as well as those presented in the Appendix A show how we
can express all strong coupling constants of the decuplet
baryons to light vector mesons in terms of one universal
function, �1.

Now, we focus our attention to calculate this invariant
function in terms of the QCD degrees of freedom. As it is
seen from the interpolating currents of the decuplet baryons
previously shown, one can describe all transitions in terms

of��0 ! ��0�0, so we will calculate the invariant function
�1 only for this transition. From QCD or the theoretical
side, the correlation function can be calculated in the deep
Euclidean region, where �p2 ! 1, �ðpþ qÞ2 ! 1, via
operator product expansion (OPE) in terms of the DA’s of
the light vector mesons and light quark propagators.
Therefore, to proceed, we need to know the expression of
the light quark propagator as well as the matrix elements of
the nonlocal operators �qðx1Þ�q0ðx2Þ and �qðx1ÞG��q

0ðx2Þ
between the vacuum and the vector meson states. Here,
� refers to the Dirac matrices corresponding to the case
under consideration and G�� is the gluon field strength

tensor. Up to twist-4 accuracy, the matrix elements
hVðqÞj �qðxÞ�qð0Þj0i and hVðqÞj �qðxÞG��qð0Þj0i are deter-

mined in terms of the DA’s of the vector mesons [8–10].
For simplicity, we present these nonlocal matrix elements
in Appendix B. The expressions for DA’s of the light vector
mesons are also given in [8–10].
The light quark propagator used in our calculations is

SqðxÞ ¼ ix

2
2x4
� mq

4
2x2
� h �qqi

12

�
1� imq

4
x

�

� x2

192
m2

0h �qqi
�
1� imq

6
x

�

� igs
Z 1

0
du

�
x

16
2x2
G��ðuxÞ���

� ux�G��ðuxÞ�� i

4
2x2

� imq

32
2
G��ðuxÞ���

�
ln

��x2	2

4

�
þ 2�E

��
; (36)

where �E is the Euler gamma and 	 is a scale parameter.
Here, we should stress that, to achieve a factorization of the
large and small scales in the OPE, all infrared logarithms
should be removed from coefficient functions and absorbed
in the matrix elements of operators. In our problem, this
means that the ln	 must be included in the condensates of
different operators or distribution amplitudes. A more
detailed discussion on this point can be found in [11].
For this reason, one can choose the scale parameter 	 as
a factorization scale, i.e., 	 ¼ ð0:5–1:0Þ GeV. We choose
	 ¼ 0:5 GeV and our calculations show that the results of
the coupling constants remain approximately unchanged in
the interval, 	 ¼ ð0:5–1:0Þ GeV.
Using the expression of the light quark propagator and

the DA’s of the light vector mesons, the theoretical or QCD
side of the correlation function is obtained. Equating the
coefficients of the structures, ð":pÞg��q, ð":pÞg��pq,

q�q�pq", and ð":pÞq�q�pq from both representations of

the correlation function in phenomenological and theoreti-
cal sides and applying Borel transformation with respect to
the variables p2 and ðpþ qÞ2 to suppress the contributions
of the higher states and continuum, we get the sum rules for
strong coupling constants of the vector mesons to decuplet
baryons,
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g1 þ g2mD2

ðmD1 þmD2Þ ¼
1

2�D1�D2

eðm
2
D1

=M2
1
Þþðm2

D2
=M2

2
Þþðm2

V=M
2
1
þM2

2
Þ�ð1Þ

1 ;

g2 ¼ �ðmD1 þmD2Þ
2�D1�D2

eðm
2
D1

=M2
1
Þþðm2

D2
=M2

2
Þþðm2

V=M
2
1
þM2

2
Þ�ð2Þ

1 ;

g3 ¼ ðmD1 þmD2Þ2
�D1�D2

eðm
2
D1

=M2
1
Þþðm2

D2
=M2

2
Þþðm2

V=M
2
1
þM2

2
Þ�ð3Þ

1 ;

g4 ¼ �ðmD1 þmD2Þ3
2�D1�D2

eðm
2
D1

=M2
1Þþðm2

D2
=M2

2Þþðm2
V=M

2
1þM2

2Þ�ð4Þ
1 ;

(37)

where M2
1 and M2

2 are Borel parameters corresponding to
the initial and final baryon channels, respectively, and the
functions, �ðiÞ

1 which are functions of the QCD degrees of
freedom, continuum threshold as well as mass, decay
constant, and DA’s of the light vector mesons have very
lengthy expressions and, for this reason, we do not present
their explicit expressions here. It should be noted here that,
the masses of the initial and final baryons are close to each
other, so we will setM2

1 ¼ M2
2 ¼ 2M2. From the sum rules

for the strong couplings of the vector mesons to decuplet
baryons in Eq. (37), it is clear that we also need the
residues of decuplet baryons. These residues are obtained
using the two-point correlation functions in [12–14] (see
also [7]).

III. NUMERICAL ANALYSIS

In this section, we numerically analyze the sum rules of
the strong coupling constants of the light nonet vector
mesons with decuplet baryons and discuss our results.
The sum rules for the couplings, g1, g2, g3, and g4, depict
that the main input parameters are the vector meson
DA’s. The DA’s of the vector mesons which are calculated
in [8–10] include the leptonic constants, fV and fTV , the

twist-2 and twist-3 parameters, aki , a?i ,�
k
3V ,

~�k
3V , ~!k

3V ,

k
3V , !k

3V , �k
3V , ?

3V , !?
3V , �?

3V , and twist-4 parameters

�k4 , ~!k
4, �?4 , ~�?4 , k

4V , ?
4V . The values of all these

parameters are given in Tables I and II in [10]. The
values of the remaining parameters entering the sum
rules are h0j 1
�sG

2j0i ¼ ð0:012� 0:004Þ GeV4 [15],

h �uui ¼ h �ddi ¼ �ð0:24� 0:01Þ3 GeV3, h�ssi ¼ 0:8h �uui
[15], m2

0 ¼ ð0:8� 0:2Þ GeV2 [12], and msð2 GeVÞ ¼
ð111� 6Þ MeV at 	QCD ¼ 330 MeV [16]. In numerical

calculations, we set mu ¼ md ¼ 0.
The sum rules for the coupling constants contain also

two auxiliary parameters, Borel mass parameter M2

and continuum threshold s0. Therefore, we should find
working regions of these parameters, where the results of
coupling constants are reliable. In the reliable regions, the
coupling constants are weakly depend on the auxiliary
parameters. The upper limit of the Borel parameter, M2,
is found demanding that the contribution of the higher
states and continuum should be less than say 40% of the
total value of the same correlation function. The lower
limit of M2 is found requiring that the contribution of the
highest term with the power of 1=M2 be 20%–25%
less than that of the highest power of M2. As a result, we
obtain the working region, 1 GeV2 � M2 � 1:5 GeV2,
for the Borel mass parameter. The continuum threshold
is also not completely arbitrary but depends on the
energy of the first excited state with the same quantum
numbers. Our calculations lead to the working region,
ðmD þ 0:5Þ2 � s0 � ðmD þ 0:7Þ2, for the continuum
threshold. In this region, the results of the coupling con-
stants weakly depend on this parameter.
As an example, the dependence of the couplings g1, g2,

g3, and g4 only for couplings of �
0 meson to�þ baryon are

shown in Figs. 1–4 at different values of the continuum
threshold. From these figures, we observe that the cou-
plings show good stability in the ‘‘working’’ region of M2.
Obviously, the coupling constants also weakly depend on
the continuum threshold s0. The results of the strong
couplings g1, g2, g3, and g4 extracted from these figures
and the similar analysis for the strong coupling of the other
members of the light nonet vector mesons with decuplet
baryons are presented in Tables I, II, III, and IV, respec-
tively. Beside the general results, these tables also include
the predictions of the SUð3Þf symmetry on the strong

coupling constants. The results of the SUð3Þf symmetry

are obtained setting ms ¼ mu ¼ md ¼ 0, h �ssi ¼ h �uui ¼
h �ddi, mV ¼ m�, and mD ¼ m�. Note that, in these tables,

we show only those couplings which could not be obtained
by the SUð2Þ symmetry rotations. The errors presented in

TABLE II. Coupling constant g1 of light vector mesons with
decuplet baryons.

Channel g1 g1ðSUð3ÞÞ
�þ ! �þ�0 �4:4� 0:9 �4:4� 0:9
�� ! ���K�0 �23:5� 4:6 �13:2� 2:5
��0 ! ��0	 �8:0� 1:7 �7:3� 1:5
��0 ! ��0K�0 �18:5� 3:8 �10:8� 2:2
��� ! ����0 9:1� 2:0 8:8� 1:8
��0 ! ��0�0 �4:8� 1:2 �4:4� 0:9
��� ! ���K�0 �26:0� 5:4 �15:2� 3:2
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FIG. 1. The dependence of the strong coupling constant g1 of the �0 meson to the �þ baryon on Borel mass M2 for several fixed
values of the continuum threshold s0.

FIG. 2. The same as Fig. 1 but for g2.

FIG. 3. The same as Fig. 1 but for g3.
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these tables include the uncertainties coming from the
variation of auxiliary parameters M2 and s0 as well as
uncertainties coming from the input parameters.

A quick running into Tables II, III, IV, and V resulted in
(i) For all strong couplings, g1, g2, g3, and g4, the

channels having a large number of strange quarks
show overall a large SUð3Þf symmetry violation

compared to those with a small number of s quarks.
This is reasonable and is in agreement with our
expectations.

(ii) The maximum SUð3Þf symmetry violation for g1 is

44% and belongs to the �� ! ���K�0 channel.
The maximum violations of this symmetry for g3
and g4 which also belong to the same channel are
33% and 53%, respectively. However, the channel
��0 ! ��0	 shows the maximum SUð3Þf symme-

try violation for g2 with 30%.
(iii) The uncertainties on the values of the g1, g2, and g3

are small compared with that of g4. This is because
of the fact that the g1, g2, and g3 show a good

stability with respect to the auxiliary parameters in
working regions in comparison with g4.

In conclusion, we studied the strong coupling constants
of the decuplet baryons with light nonet vector mesons in
the framework of light cone QCD sum rules. We expressed
all coupling constants entering the calculations in terms of
only one universal function even if the SUð3Þf symmetry

breaking effects are taken into account. We estimated the

FIG. 4. The same as Fig. 1 but for g4.

TABLE III. Coupling constant g2 of light vector mesons with
decuplet baryons.

Channel g2 g2ðSUð3ÞÞ
�þ ! �þ�0 2:45� 0:50 2:45� 0:50
�� ! ���K�0 7:7� 1:6 7:2� 1:4
��0 ! ��0	 2:5� 0:5 3:6� 0:8
��0 ! ��0K�0 5:4� 1:1 5:9� 1:2
��� ! ����0 �5:55� 1:20 �4:85� 0:95
��0 ! ��0�0 3:21� 0:64 2:44� 0:48
��� ! ���K�0 7:7� 1:5 8:4� 1:8

TABLE IV. Coupling constant g3 of light vector mesons with
decuplet baryons.

Channel g3 g3ðSUð3ÞÞ
�þ ! �þ�0 10:4� 2:4 10:4� 2:4
�� ! ���K�0 39:0� 8:0 26:0� 5:4
��0 ! ��0	 17:5� 3:6 14:0� 3:2
��0 ! ��0K�0 27:4� 5:6 21:0� 4:0
��� ! ����0 �24:0� 4:6 �21:0� 4:2
��0 ! ��0�0 14:0� 2:8 10:5� 2:3
��� ! ���K�0 38:5� 7:6 29:6� 6:2

TABLE V. Coupling constant g4 of light vector mesons with
decuplet baryons.

Channel g4 g4ðSUð3ÞÞ
�þ ! �þ�0 4:2� 1:6 �4:2� 1:6
�� ! ���K�0 �19:5� 6:5 �9:0� 3:0
��0 ! ��0	 �8:5� 2:8 �5:5� 1:8
��0 ! ��0K�0 �12:4� 4:2 �7:5� 2:4
��� ! ����0 10:5� 3:6 8:4� 2:7
��0 ! ��0�0 �7:0� 2:4 �4:0� 1:5
��� ! ���K�0 �17:5� 5:6 �10:2� 3:2
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order of SUð3Þf symmetry violations. The main advantage

of the approach used in the present work is that it takes into
account the SUð3Þf symmetry breaking effects automati-

cally and we do not need to define another invariant
function. The obtained results on the strong coupling con-
stants of decuplet baryons with light nonet vector mesons
can help us understand the dynamics of light vector mesons
and their electroproduction off the decuplet baryons.

APPENDIX A

In this Appendix, we present the relations among the
correlation functions involving K�, !, and 	 mesons. We
use corresponding quark contents for these mesons con-
sidering the ideal mixing:

(i) Vertices involving the K�þ meson:

��þ!��0K�þ ¼ ffiffiffi
2

p
�1ðs; u; dÞ;

��0!���K�þ ¼ �1ðs; d; dÞ;
���þ!��0K�þ ¼ 2�1ðs; s; uÞ;
���0!���K�þ ¼ ffiffiffi

2
p

�1ðu; d; sÞ;
��þþ!��þK�þ ¼ ffiffiffi

3
p

�1ðu; u; uÞ;
���0!���K�þ ¼ ffiffiffi

3
p

�1ðs; s; sÞ;

(A1)

(ii) Vertices involving the K�� meson:

���0!�þK�� ¼ ffiffiffi
2

p
�1ðs; u; dÞ;

���!��0K�� ¼ ffiffiffi
3

p
�1ðs; s; sÞ;����!�0K��

¼ �1ðs; d; dÞ;
���0!��þK�� ¼ 2�1ðu; u; sÞ;
����!��0K�� ¼ ffiffiffi

2
p

�1ðu; d; sÞ;
���þ!�þþK�� ¼ ffiffiffi

3
p

�1ðu; u; uÞ;

(A2)

(iii) Vertices involving the K�0 meson:

���0!��0K�0 ¼ ffiffiffi
2

p
�1ðd; u; sÞ;

����!���K�0 ¼ 2�1ðs; s; dÞ;
���0!�0K�0 ¼ ffiffiffi

2
p

�1ðs; d; uÞ;
���!���K�0 ¼ ffiffiffi

3
p

�1ðs; s; sÞ;
���þ!�þK�0 ¼ �1ðs; u; uÞ;
����!��K�0 ¼ ffiffiffi

3
p

�1ðs; d; dÞ;

(A3)

(iv) Vertices involving the �K�0 meson:

���0!��0 �K�0 ¼ ffiffiffi
2

p
�1ðd; u; sÞ;

���!��� �K�0 ¼ ffiffiffi
3

p
�1ðs; d; dÞ;

����!��� �K�0 ¼ 2�1ðs; s; dÞ;
��0!��0 �K�0 ¼ ffiffiffi

2
p

�1ðs; d; uÞ;
��þ!��þ �K�0 ¼ �1ðs; u; uÞ;
���!��� �K�0 ¼ ffiffiffi

3
p

�1ðs; s; sÞ:

(A4)

(v) Vertices involving the ! meson:

���0!��0! ¼ 1ffiffiffi
2

p ½�1ðu; d; sÞ þ�1ðd; u; sÞ�;

���þ!��þ! ¼ ffiffiffi
2

p
�1ðu; u; sÞ;

����!���! ¼ ffiffiffi
2

p
�1ðd; d; sÞ;

��þ!�þ! ¼ 1ffiffiffi
2

p �1ðd; u; uÞ þ
ffiffiffi
2

p
�1ðu; u; dÞ;

��þþ!�þþ! ¼ 3
ffiffiffi
2

p
2

�1ðu; u; uÞ;

���!��! ¼ 3
ffiffiffi
2

p
2

�1ðd; d; dÞ;

��0!�0! ¼ ffiffiffi
2

p
�1ðd; d; uÞ þ 1

2
�1ðu; d; dÞ�;

���0!��0! ¼ 1ffiffiffi
2

p �1ðu; s; sÞ;

����!���! ¼ 1ffiffiffi
2

p �1ðd; s; sÞ:
(A5)

(vi) Vertices involving the 	 meson:

���0!��0	 ¼ ½�1ðs; d; uÞ;
���þ!��þ	 ¼ �1ðs; u; uÞ;
����!���	 ¼ �1ðs; d; dÞ;
���0!��0	 ¼ 2�1ðs; s; uÞ;
����!���	 ¼ 2�1ðs; s; dÞ:

(A6)

APPENDIX B

In this Appendix we present the DA’s of the vector
mesons appearing in the matrix elements
hVðqÞj �qðxÞ�qð0Þj0i and hVðqÞj �qðxÞG��qð0Þj0i, up to

twist-4 accuracy [8–10]:
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hVðq; �Þj �q1ðxÞ��q2ð0Þj0i ¼ fVmV

�
"� � x
q � x q�

Z 1

0
duei �uq�x

�
	kðuÞ þm2

Vx
2

16
AkðuÞ

�
þ

�
"�� � q�

"� � x
q � x

�

�
Z 1

0
duei �uq�xgv?ðuÞ �

1

2
x�

"� � x
ðq � xÞ2 m

2
V

Z 1

0
duei �uq�x½g3ðuÞ

þ	kðuÞ � 2gv?ðuÞ�
�
;

hVðq; �Þj �q1ðxÞ���5q2ð0Þj0i ¼ � 1

4
����� "�q�x�fVmV

Z 1

0
duei �uq�xga?ðuÞ; hVðq; �Þj �q1ðxÞ���q2ð0Þj0i

¼ �ifTV

�
ð"��q� � "��q�Þ

Z 1

0
duei �uq�x

�
	?ðuÞ þm2

Vx
2

16
A?ðuÞ

�

þ "� � x
ðq � xÞ2 ðq�x� � q�x�Þ

Z 1

0
duei �uq�x

�
htk �

1

2
	? � 1

2
h3ðuÞ

�

þ 1

2
ð"��x� � "��x�Þ m2

V

q � x
Z 1

0
duei �uq�x½h3ðuÞ �	?ðuÞ�

�
;

hVðq; �Þj �q1ðxÞ���gG��ðuxÞq2ð0Þj0i

¼ fTVm
2
V

"� � x
2q � x ½q�q�g

?
�� � q�q�g

?
�� � q�q�g

?
�� þ q�q�g

?
���

�
Z

D�ie
ið� �qþu�gÞq�xT ð�iÞ þ fTVm

2
V½q�"��g?�� � q�"

�
�g

?
�� � q�"

�
�g

?
��

þ q�"
�
�g

?
���

Z
D�ie

ið� �qþu�gÞq�xT ð4Þ
1 ð�iÞ þ fTVm

2
V½q�"��g?�� � q�"

�
�g

?
��

� q�"
�
�g

?
�� þ q�"

�
�g

?
���

Z
D�ie

ið� �qþu�gÞq�xT ð4Þ
2 ð�iÞ

þ fTVm
2
V

q � x ½q�q�"��x� � q�q�"
�
�x� � q�q�"

�
�x� þ q�q�"

�
�x�

�
Z

D�ie
ið� �qþu�gÞq�xT ð4Þ

3 ð�iÞ þ fTVm
2
V

q � x ½q�q�"��x� � q�q�"
�
�x�

� q�q�"
�
�x� þ q�q�"

�
�x�

Z
D�ie

ið� �qþu�gÞq�xT ð4Þ
4 ð�iÞ;

hVðq; �Þj �q1ðxÞgsG��ðuxÞq2ð0Þj0i
¼ �ifTVmVð"��q� � "��q�Þ

Z
D�ie

ið� �qþu�gÞq�xSð�iÞ;

hVðq; �Þj �q1ðxÞgs ~G��ðuxÞ�5q2ð0Þj0i ¼ �ifTVmVð"��q� � "��q�Þ
Z

D�ie
ið� �qþu�gÞq�x~Sð�iÞ;

hVðq; �Þj �q1ðxÞgs ~G��ðuxÞ���5q2ð0Þj0i ¼ fVmVq�ð"��q� � "��q�Þ
Z

D�ie
ið� �qþu�gÞq�xAð�iÞ;

hVðq; �Þj �q1ðxÞgsG��ðuxÞi��q2ð0Þj0i ¼ fVmVq�ð"��q� � "��q�Þ
Z

D�ie
ið� �qþu�gÞq�xV ð�iÞ; (B1)

where ~G�� ¼ ð1=2Þ�����G
�� is the dual gluon field strength tensor, and

R
D�i ¼

R
d�qd� �qd�g�ð1� �q � � �q � �gÞ.
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