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1 Introduction

The main problem of QCD is to understand the structure of hadrons and their properties in
terms of quarks and gluons. Nucleon charges defined as matrix elements of vector, axial and
tensor currents between nucleon states contain complete information about quark structure
of the nucleon. These charges are connected with the leading twist unpolarized q(x), the
helicity ∆q(x) and transversity δq(x) parton distribution functions (PDFs). The first two
PDFs have been extensively investigated theoretically and experimentally in many works
(for instance see [1, 2] and references therein as well as [3–5]). There is a big experimental
problem to measure the transversity of the nucleon because of its chiral odd nature. Only,
recently the tensor charge δq(x) was extracted [6] using the data from BELLE [7], HER-
MES [8] and COMPASS [9] Collaborations. This extraction is based on analysis of the
measured azimuthal asymmetries in semi-inclusive scattering and those in e+e− → h1h2X
processes. Since δq(x) is a spin dependent PDF, it is interesting to investigate whether
there is a ”transversity crisis” similar to the case of ”spin crisis” in ∆q(x). Therefore,
reliable determination of nucleon tensor charge receives special attention.

Theoretically, tensor charges of hadrons are studied in different frameworks such as,
non–relativistic MIT bag model [10], SU(6) quark model [11], quark model with axial
vector dominance [12], lattice QCD [13], external field [14] and three point versions of QCD
sum rules [10].

In the present work, using the most general form of the nucleon interpolating field, we
study the tensor form factors of nucleons within light cone QCD sum rules (LCQSR). The
LCQSR is based on the operator product expansion (OPE) over twist of the operators
near the light cone, while in the traditional QCD sum rules, the OPE is performed over
dimensions of the operators. This approach has been widely applied to hadron physics
(see for example [15]). Note that, the tensor form factors of nucleons up to Q2 ≤ 1 GeV 2

(where Q2 = −q2 is the Euclidean momentum transfer square) within the SU(3) chiral
soliton model are studied in [16] (see also [17]). The anomalous tensor form factors are
studied within the same framework in [18]. These form factors are further studied in lattice
QCD (see for instance [19]).

The plan of this paper is as follows. In section 2, we derive sum rules for the tensor
form factors of the nucleon within LQCSR method. In section 3, we numerically analyze
the sum rules for the tensor form factors. A comparison of our results on form factors with
those existing in the literature is also presented in this section.

2 Light cone sum rules for the nucleon tensor form

factors

This section is devoted to derivation of LCQSR for the nucleon tensor form factors. The
matrix element of the tensor current between initial and final nucleon states is parametrized
in terms of four form factors as follows [1, 19, 20]:

〈N(p′) |q̄σµνq|N(p)〉 = ū(p′)

{
HT (Q

2)iσµν −ET (Q
2)
γµqν − γνqµ

2mN
+ E1T (Q

2)
γµPν − γνPµ

2mN

1
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− H̃T (Q
2)
Pµqν − Pνqµ

2m2
N

}
u(p) , (1)

where qµ = (p − p′)µ, Pµ = (p + p′)µ, and q2 = −Q2. From T–invariance it follows that
E1T (Q

2) = 0.
In order to calculate the remaining three tensor form factors within LCQSR, we consider

the correlation function,

Πµν(p, q) = i

∫
d4xeiqx

〈
0
∣∣T{JN(0)Jµν(x)}

∣∣N(p)
〉
. (2)

This correlation function describes transition of the initial nucleon to the final nucleon with
the help of the tensor current. The most general form of the nucleon interpolating field is
given as,

JN(x) = 2εabc
2∑

i=1

[
qTa(x)CAi

1q
′b(x)

]
Ai

2q
c(x) , (3)

where C is the charge conjugation operator, A1
1 = I, A2

1 = A1
2 = γ5, A

2
2 = t with t being

an arbitrary parameter and t = −1 corresponds to the Ioffe current and a, b, c are the color
indices. The quark flavors are q = u, q

′

= d for the proton and q = d, q
′

= u for the
neutron. The tensor current is chosen as,

Jµν = ūσµνu± d̄σµνd , (4)

where the upper and lower signs correspond to the isosinglet and isovector cases, respec-
tively.

In order to obtain sum rules for the form factors, it is necessary to calculate the cor-
relation function in terms of quarks and gluons on one side (QCD side), and in terms of
hadrons on the other side (phenomenological side). These two representations of the cor-
relation function are then equated. The final step in this method is to apply the Borel
transformation, which is needed to suppress the higher states and the continuum contribu-
tions.

Following this strategy, we start to calculate the phenomenological part. Saturating
the correlation function with a full set of hadrons carrying the same quantum numbers as
nucleon and isolating the contributions of the ground state, we get

Πµν(p, q) =

〈
0
∣∣JN(0)

∣∣N(p′)
〉
〈N(p′) |Jµν |N(p)〉

m2
N − p′2

+ · · · , (5)

where dots stands for contributions of higher states and continuum. The matrix element〈
0
∣∣JN(0)

∣∣N(p′)
〉
entering Eq. (5) is defined as

〈
0
∣∣JN(0)

∣∣N(p′)
〉
= λNu(p) , (6)

where λN is the residue of the nucleon. Using Eqs. (1), (5) and (6), and performing
summation over spins of the nucleon, we get,

Πµν =
λN

m2
N − p′2

(/p′ +mN )

{
HT (Q

2)iσµν − ET (Q
2)
γµqν − γνqµ

2mN

− H̃T (Q
2)
Pµqν − Pνqµ

2m2
N

}
u(p) . (7)

2
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From Eq. (7) we see that there are many structures, and all of them play equal role for
determination of the tensor form factors of the nucleon. In practical applications, it is more
useful to work with ẼT (Q

2) = ET (Q
2) + 2H̃T (Q

2) rather than ET (Q
2). For this reason, we

choose the structures σµν , pµqν and pµqν/q for obtaining the sum rules for the form factors

HT , ẼT and H̃T , respectively.
The correlation function Πµν(p, q) is also calculated in terms of quarks and gluons in

deep Eucledian domain p
′2 = (p− q)2 << 0. After simple calculations, we get the following

expression for the correlation function for proton case:

(Πµν)ρ =
i

2

∫
d4xeiqx

2∑

i=1

{(
CAi

1

)
ατ

[
Ai

2Su(−x)σµν

]
ρσ
4ǫabc

〈
0
∣∣ua

α(0)u
b
σ(x)d

c
τ (0)

∣∣N(p)
〉

+
(
Ai

2

)
ρα

[ (
CAi

1

)T
Su(−x)σµν

]
τσ
4ǫabc

〈
0
∣∣ua

α(x)u
b
σ(x)d

c
τ (0)

∣∣N(p)
〉

±
(
Ai

2

)
ρσ

[
CAi

1Sd(−x)σµν

]
ατ
4ǫabc

〈
0
∣∣ua

α(0)u
b
σ(0)d

c
τ (x)

∣∣N(p)
〉}

. (8)

Obviously, the correlation function for the neutron case can easily be obtained by making
the replacement u ↔ d.

From Eq. (8) it is clear that in order to calculate the correlation function from QCD
side, we need to know the matrix element,

4εabc
〈
0
∣∣ua

α(a1x)u
b
σ(a2x)d

a
τ (a3x)

∣∣N(p)
〉
,

where a1, a2 and a3 determine the fraction of the nucleon momentum carried by the corre-
sponding quarks. This matrix element is the main nonperturbative ingredient of the sum
rules and it is defined in terms of the nucleon distribution amplitudes (DAs). The nucleon
DAs are studied in detail in [21–23].

The light cone expanded expression for the light quark propagator Sq(x) is given as,

Sq(x) =
i/x

2π2x4
−

〈qq̄〉

12

(
1 +

m2
0x

2

16

)
− igs

∫ 1

0

dv

[
/x

16π2x4
Gµνσ

µν − vxµGµνγ
ν i

4π2x2

]
, (9)

where the mass of the light quarks are neglected, m2
0 = (0.8 ± 0.2) GeV 2 [24] and Gµν

is the gluon field strength tensor. The terms containing Gµν give contributions to four–
and five–particle distribution functions. These contributions are negligibly small (for more
detail see [21–23]), and therefore in further analysis, we will neglect these terms. Moreover,
Borel transformation kills the terms proportional to the quark condensate, and as a result
only the first term is relevant for our discussion.

Using the explicit expressions of DAs for the proton and light quark propagators, per-
forming Fourier transformation and then applying Borel transformation with respect to the
variable p

′2 = (p− q)2, which suppresses the contributions of continuum and higher states,
and choosing the coefficients of the structures σµν , pµqν and pµqν/q, we get the following
sum rules for the tensor form factors of nucleon:

3
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HT (Q
2) =

1

2mNλN
em

2

N
/M2

{∫ 1

x0

dt2
t2

e−s(t2)/M2

[
(1− t)F 1

HT
(t2) + (1 + t)F 2

HT
(t2)

]

±

∫ 1

x0

dt3
t3

e−s(t3)/M2

[
(1− t)F 3

HT
(t3) + (1 + t)F 4

HT
(t3)

]

+

∫ 1

x0

dt2
t2

e−s(t2)/M2

[
(1− t)F 5

HT
(t2) + (1 + t)F 6

HT
(t2)

]

±

∫ 1

x0

dt3
t3

e−s(t3)/M2

[
(1− t)F 7

HT
(t3) + (1 + t)F 8

HT
(t3)

]

+

∫ 1

x0

dt2
t2

e−s(t2)/M2

(1− t)F 9
HT

(t2)

±

∫ 1

x0

dt3
t3

e−s(t3)/M2

(1 + t)F 10
HT

(t3)

+
1

M2

∫ 1

x0

dt2
t22

e−s(t2)/M2

[
(1− t)F 11

HT
(t2) + (1 + t)F 12

HT
(t2)

]

+
1

Q2 + x2
0m

2
N

e−s0/M2

[
(1− t)F 11

HT
(x0) + (1 + t)F 12

HT
(x0)

]

±
1

M2

∫ 1

x0

dt3
t23

e−s(t3)/M2

[
(1− t)F 13

HT
(t3) + (1 + t)F 14

HT
(t3)

]

±
1

Q2 + x2
0m

2
N

e−s0/M2

[
(1− t)F 13

HT
(x0) + (1 + t)F 14

HT
(x0)

]

+
1

M2

∫ 1

x0

dt2
t22

e−s(t2)/M2

[
(1− t)F 15

HT
(t2) + (1 + t)F 16

HT
(t2)

]

+
1

Q2 + x2
0m

2
N

e−s0/M2

[
(1− t)F 15

HT
(x0) + (1 + t)F 16

HT
(x0)

]

±
1

M2

∫ 1

x0

dt3
t23

e−s(t3)/M2

(1 + t)F 17
HT

(t3)

±
1

Q2 + x2
0m

2
N

e−s0/M2

(1 + t)F 17
HT

(x0)

}
, (10)

where

F 1
HT

(t2) =

∫ 1−t2

0

dt1

{
2m2

N

t2

[
T̃ M
1 + t22(P̃1 − 3T̃3 − T̃4)

]
(t1, t2, 1− t1 − t2)

+
2(Q2 +m2

N t
2
2)

t2
T̃1(t1, t2, 1− t1 − t2)

}
,

F 2
HT

(t2) =

∫ 1−t2

0

dt1

{
m2

N

t2

[
ṼM
1 − ÃM

1 − t22(Ã2 + 3Ã3 + Ṽ2 + 3Ṽ3)
]
(t1, t2, 1− t1 − t2)

−
Q2 +m2

N t
2
2

t2

[
Ã1 − Ṽ1

]
(t1, t2, 1− t1 − t2)

}
,

4
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F 3
HT

(t3) =

∫ 1−t3

0

dt1
1

t3

[
m2

N (Ã
M
1 + ṼM

1 ) +m2
N t

2
3(Ã3 − Ṽ3) +Q2(Ã1 + Ṽ1)

]
(t1, 1− t1 − t3, t3) ,

F 4
HT

(t3) =

∫ 1−t3

0

dt1

[ 2
t3
(m2

N T̃
M
1 +Q2T̃1)−

m2
N t3
2

(2P̃1 − 2S̃1 + 2T̃1 − T̃2 − T̃4)
]
(t1, 1− t1 − t3, t3) ,

F 5
HT

(t2) =
m2

N

2

∫ t2

1

dρ

∫ 1−ρ

0

dt1

[
4T̃4 + 4T̃5 − 3T̃6 + 12T̃7 − 4S̃2

]
(t1, ρ, 1− t1 − ρ) ,

F 6
HT

(t2) = m2
N

∫ t2

1

dρ

∫ 1−ρ

0

dt1

[
2Ã2 − Ã4 + 2Ã5 + 2Ṽ2 + Ṽ4 − 2Ñ5

]
(t1, ρ, 1− t1 − ρ) ,

F 7
HT

(t3) =
m2

N

2

∫ t3

1

dρ

∫ 1−ρ

0

dt1

[
2Ã2 − Ã4 + Ã5 − 2Ṽ2 − Ṽ4 + Ṽ5

]
(t1, 1− t1 − ρ, ρ) ,

F 8
HT

(t3) =
m2

N

2

∫ t3

1

dρ

∫ 1−ρ

0

dt1

[
2T̃2 + 2T̃5 − T̃6 − 2P̃2 − 2S̃4

]
(t1, 1− t1 − ρ, ρ) ,

F 9
HT

(t2) =
m2

N

2

∫ t2

1

dλ

∫ λ

1

dρ

∫ 1−ρ

0

dt1
1

ρ
T̃6(t1, ρ, 1− t1 − ρ) ,

F 10
HT

(t3) = m2
N

∫ t3

1

dλ

∫ λ

1

dρ

∫ 1−ρ

0

dt1
1

ρ
T̃6(t1, 1− t1 − ρ, ρ) ,

F 11
HT

(t2) = 2m2
N

∫ 1−t2

0

dt1
Q2 +m2

N t
2
2

t2
T̃ M
1 (t1, t2, 1− t1 − t2) ,

F 12
HT

(t2) = m2
N

∫ 1−t2

0

dt1
Q2 +m2

N t
2
2

t2

[
ṼM
1 − ÃM

1

]
(t1, t2, 1− t1 − t2) ,

F 13
HT

(t3) = m2
N

∫ 1−t3

0

dt1
Q2

t3

[
ÃM

1 + ṼM
1

]
(t1, 1− t1 − t3, t3) ,

F 14
HT

(t3) = m2
N

∫ 1−t3

0

dt1
2Q2 −m2

N t
2
3

t3
T̃ M
1 (t1, 1− t1 − t3, t3) ,

F 15
HT

(t2) =
m2

N

2

∫ t2

1

dλ

∫ λ

1

dρ

∫ 1−ρ

0

dt1
1

ρ

[
(Q2 +m2

Nρ
2)T̃6 + 8m2

Nρ
2T̃8

]
(t1, ρ, 1− t1 − ρ) ,

F 16
HT

(t2) = 2m4
N (1 + t)

∫ t2

1

dλ

∫ λ

1

dρ

∫ 1−ρ

0

dt1ρ
[
Ã6 + Ṽ6

]
(t1, ρ, 1− t1 − ρ) ,

F 17
HT

(t3) = m2
N

∫ t3

1

dλ

∫ λ

1

dρ

∫ 1−ρ

0

dt1
1

ρ

[
m2

Nρ
2T̃8 −Q2T̃6

]
(t1, 1− t1 − ρ, ρ) . (11)

For the form factor ẼT (Q
2) we obtain the following sum rule:

ẼT (Q
2) =

1

mNλN
em

2

N
/M2

{
1

M2

∫ 1

x0

dt2
t22

e−s(t2)/M2

(1− t)F 1
ẼT

(t2)

+
1

Q2 + x2
0m

2
N

e−s0/M2

(1− t)F 1
ẼT

(x0)

+
1

M2

∫ 1

x0

dt2
t22

e−s(t2)/M2

(1− t)F 3
ẼT

(t2)

5
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+
1

Q2 + x2
0m

2
N

e−s0/M2

(1− t)F 3
ẼT

(x0)

±
1

M2

∫ 1

x0

dt3
t23

e−s(t3)/M2

(1− t)F 4
ẼT

(t3)

±
1

Q2 + x2
0m

2
N

e−s0/M2

(1− t)F 4
ẼT

(x0)

+
1

M2

∫ 1

x0

dt2
t22

e−s(t2)/M2

(1− t)F 5
ẼT

(t2)

+
1

Q2 + x2
0m

2
N

e−s0/M2

(1− t)F 5
ẼT

(x0)

±
1

M2

∫ 1

x0

dt3
t23

e−s(t3)/M2

(1− t)F 6
ẼT

(t3)

±
1

Q2 + x2
0m

2
N

e−s0/M2

(1− t)F 6
ẼT

(x0)

+

∫ 1

x0

dt2
t2

e−s(t2)/M2

(1− t)F 7
ẼT

(t2)

±

∫ 1

x0

dt3
t3

e−s(t3)/M2

(1− t)F 8
ẼT

(t3)

}
, (12)

where

F 1
ẼT

(t2) = −4m2
N

∫ t2

1

dλ

∫ λ

1

dρ

∫ 1−ρ

0

dt1T̃6(t1, ρ, 1− t1 − ρ) ,

F 3
ẼT

(t2) = −4m2
N

∫ t2

1

dρ

∫ 1−ρ

0

dt1ρ
[
T̃2 + T̃4

]
(t1, ρ, 1− t1 − ρ) ,

F 4
ẼT

(t3) = 4m2
N

∫ t2

1

dρ

∫ 1−ρ

0

dt1ρ
[
Ã2 − Ṽ2

]
(t1, 1− t1 − ρ, ρ) ,

F 5
ẼT

(t2) = 8m2
N

∫ 1−t2

0

dt1T̃
M
1 (t1, t2, 1− t1 − t2) ,

F 6
ẼT

(t3) = 4m2
N

∫ 1−t3

0

dt1

[
ÃM

1 + ṼM
1

]
(t1, 1− t1 − t3, t3) ,

F 7
ẼT

(t2) = 8

∫ 1−t2

0

dt1T̃1(t1, t2, 1− t1 − t2)) ,

F 8
ẼT

(t3) = 4

∫ 1−t3

0

dt1

[
Ã1 + Ṽ1

]
(t1, 1− t1 − t3, t3) .

Finally for the form factor H̃T (Q
2) we get the following sum rule:

H̃T (Q
2) =

1

m2
NλN

em
2

N
/M2

{
1

M2

∫ 1

x0

dt2
t22

e−s(t2)/M2

(1− t)F 1
H̃T

(t2) +
1

Q2 + x2
0m

2
N

e−s0/M2

(1− t)F 1
H̃T

(x0)

±
1

M2

∫ 1

x0

dt3
t23

e−s(t3)/M2

(1− t)F 2
H̃T

(t3)±
1

Q2 + x2
0m

2
N

e−s0/M2

(1− t)F 2
H̃T

(x0)

}
, (13)

6
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where

F 1
H̃T

(t2) = 4mN

∫ t2

1

dρ

∫ 1−ρ

0

dt1

[
T̃2 + T̃4

]
(t1, ρ, 1− t1 − ρ) ,

F 2
H̃T

(t3) = 4mN

∫ ρ

1

dρ

∫ 1−ρ

0

dt1

[
− Ã2 + Ṽ2

]
(t1, 1− t1 − ρ, ρ) ,

and we use

Ṽ2(ti) = V1(ti)− V2(ti)− V3(ti) ,

Ã2(ti) = −A1(ti) + A2(ti)−A3(ti) ,

Ã4(ti) = −2A1(ti)−A3(ti)− A4(ti) + 2A5(ti) ,

Ã5(ti) = A3(ti)− A4(ti) ,

Ã6(ti) = A1(ti)− A2(ti) + A3(ti) + A4(ti)−A5(ti) + A6(ti) ,

T̃2(ti) = T1(ti) + T2(ti)− 2T3(ti) ,

T̃4(ti) = T1(ti)− T2(ti)− 2T7(ti) ,

T̃5(ti) = −T1(ti) + T5(ti) + 2T8(ti) ,

T̃6(ti) = 2
[
T2(ti)− T3(ti)− T4(ti) + T5(ti) + T7(ti) + T8(ti)

]
,

T̃7(ti) = T7(ti)− T8(ti) ,

S̃2(ti) = S1(ti)− S2(ti) ,

P̃2(ti) = P2(ti)− P1(ti) ,

In these expressions, we also use

F(xi) = F(x1, x2, 1− x1 − x2) ,

F(x
′

i) = F(x1, 1− x1 − x3, x3) ,

s(x,Q2) = (1− x)m2
N +

(1− x)

x
Q2 ,

where x0(s0, Q
2) is the solution to the equation s(x0, Q

2) = s0.
The residue λN is determined from two–point sum rule. For the general form of the

interpolating current, it is calculated in [25], whose expression is given as

λ2
N = em

2

N
/M2

{
M6

256π4
E2(x)(5 + 2t+ t2)−

〈ūu〉

6

[
6(1− t2)〈d̄d〉 − (1− t)2〈ūu〉

]

+
m2

0

24M2
〈ūu〉

[
12(1− t2)〈d̄d〉 − (1− t)2〈ūu〉

]}
,

where

E2(s0/M
2) = 1− es0/M

2

2∑

i=0

(s0/M
2)i

i!
.
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The Borel transformations are implemented by the following subtraction rules [21–23],

∫
dx

ρ(x)

(q − xp)2
→ −

∫
dx

x
ρ(x)e−s(x)/M2

,

∫
dx

ρ(x)

(q − xp)4
→

1

M2

∫
dx

x2
ρ(x)e−s(x)/M2

+
ρ(x0)

Q2 + x2
0m

2
N

e−s0/M2

,

∫
dx

ρ(x)

(q − xp)6
→ −

1

2M2

∫
dx

x3
ρ(x)e−s(x)/M2

−
1

2

ρ(x0)

x0(Q2 + x2
0m

2
N)M

2
e−s0/M2

+
1

2

x2
0

Q2 + x2
0m

2
N

{
d

dx0

[
1

x0

ρ(x0)

Q2 + x2
0m

2
N

]}
e−s0/M2

. (14)

3 Numerical analysis of the sum rules for the tensor

form factors of nucleon

In this section, numerical results of the tensor form factors of nucleon are presented. It
follows from sum rules for the form factors that the main input parameters are the DAs of
nucleon, whose explicit expressions and the values of the parameters fN , λ1, λ2, f

u
1 , f

d
1 , A

u
1 ,

and V d
1 in the DAs are all given in [21–23].

In the numerical analysis, we use two different sets of parameters:
a) All eight nonperturbative parameters fN , λ1, λ2, f

u
1 , f

d
1 , f

d
2 , A

u
1 and V d

1 are estimated
from QCD sum rules (set 1).

b) Requiring that all higher conformal spin contributions vanish, fixes five Au
1 , V

d
1 , f

u
1 ,

f d
1 , and Ad

2, and the values of the parameters fN , λ1, λ2 are taken from QCD sum rules.
This set is called asymptotic set or set2.

The values of all eight nonperturbative parameters (see for example [26]) are presented
in Table 1,

Set 1 Asymptotic set (set2)

fN (5.0 ± 0.5) × 10−3 GeV 2 (5.0 ± 0.5)× 10−3 GeV 2

λ1 (−2.7± 0.9) × 10−2 GeV 2 (−2.7± 0.9) × 10−2 GeV 2

λ2 (5.4 ± 1.9) × 10−2 GeV 2 (5.4 ± 1.9)× 10−2 GeV 2

Au
1 0.38 ± 0.15 0

V d
1 0.23 ± 0.03 1/3

fd
1 0.40 ± 0.05 1/3

fd
2 0.22 ± 0.05 4/15

fu
1 0.07 ± 0.05 1/10

Table 1: The values of eight input parameters entering the DAs of nucleon.

The next input parameter of the LCQSR for the tensor form factors is the continuum
threshold s0. This parameter is determined from the two–point sum rules whose value is
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in the domain s0 = (2.25 − 2.50) GeV 2. The sum rules contain also two extra auxiliary
parameters, namely Borel parameter M2 and the parameter t entering the expression of the
interpolating current for nucleon. Obviously, any physical quantity should be independent
of these artificial parameters. Therefore, we try to find such regions of M2 and t, where
the tensor form factors are insensitive to the variation of these parameters.

Firstly, we try to obtain the working region of M2, where the tensor form factors are
independent of it, at fixed values of s0 and t. As an example, in Figs. (1) and (2) we present
the dependence of the tensor form factor HT (Q

2) induced by the isoscalar current on M2 at
different fixed values of Q2 and t, and at s0 = 2.25 GeV 2 and s0 = 2.50 GeV 2 for sets 1 and
2, respectively. From these figures, we see that HT (Q

2) is practically independent of M2 at
fixed values of the parameters Q2, s0 and t for both sets 1 and 2. Our calculations also show
that the results are approximately the same for two sets, therefore in further discussion, we
present the results only for set 1. We perform similar analysis also at s0 = 2.40 GeV 2 and
observe that the results change maximally about 5%. The upper limit of M2 is determined
by requiring that the series of light cone expansion with increasing twist converges, i.e.,
higher twist contributions should be small. Our analysis indeed confirms that the twist–4
contributions to the sum rules constitute maximally about 8% of the total result when
M2 ≤ 2.5 GeV 2. The lower bound of M2 is determined by requiring that the contribution
of the highest power of M2 is less than, say, 30% of the higher powers of M2. Our numerical
analysis shows that this condition is satisfied when M2 ≥ 1.0 GeV 2. Hence, the working
region of M2 is decided to be in the interval 1.0 GeV 2 ≤ M2 ≤ 2.5 GeV 2. The working
region of the parameter t is determined in such a way that the tensor form factors are also
independent of it. Our numerical analysis shows that the form factors are insensitive to
cos θ (with t = tan θ) when it varies in the region −0.5 ≤ cos θ ≤ 0.3.

In Figs. (3)–(5) we present the dependence of the form factors HT (Q
2), ẼT (Q

2) and

H̃T (Q
2) on Q2 at s0 = 2.25 GeV 2, M2 = 1.2 GeV 2 and fixed values of t, respectively,

using the central values of all input parameters in set 1 for the isoscalar current. For a
comparison, we also present the predictions of self consistent chiral soliton model [16] and
lattice QCD calculations [19, 20] in these figures (note that, chiral soliton model result exists
only for HT (Q

2)).
We see from Fig. (3) that, our results on HT (Q

2) are close to the lattice QCD results
for Q2 ≥ 2.0 GeV 2, while the results of two models differ from each other in the region
1.0 GeV 2 ≤ Q2 ≤ 2.0 GeV 2. Our and lattice QCD results differ considerably from the
predictions of the chiral soliton model. It also follows from these figures that the form
factors get positive (negative) at negative (positive) values of the parameter t.

In Figs. (6), (7) and (8), we present the dependence of the form factorsHT (Q
2) , ẼT (Q

2)

and H̃T (Q
2) for the isovector current, i.e., for the ūσµνu− d̄σµνd current. Our observations

for set 1 can be summarized as follows:

• The Q2 dependence of HT (Q
2) is similar to the isoscalar current case, but the values

are slightly larger compared to the previous case.

• Similar to the isoscalar case, the form factors HT (Q
2) and ẼT (Q

2) get positive (neg-
ative) at negative (positive) values of the parameter t.
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• In contrary to the isoscalar current case, the values of H̃T (Q
2) are positive (negative)

for negative (positive) values of t.

• Our final remark is that the LCQSR results on the form factors can be improved by
taking into account the αs corrections.

In conclusion, using the most general form of the nucleon interpolating current, we cal-
culate the tensor form factors of nucleon within the LCQSR. Our results on these form
factors are compared with the lattice QCD and chiral soliton model predictions.

Note added: After completing this work, we become aware of a very recent paper arXiv:1107.4584
[hep-ph] [27] in which part of this work is studied.
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Figure 1: The dependence of the form factor HT of nucleon on M2 at Q2 = 1 GeV 2 and
s0 = 2.25 GeV 2, at six different values of t: t = −5;−3;−1; 1; 3; 5, using the first set of
DAs for the isoscalar current.
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Figure 2: The same as in Fig. (1), but at s0 = 2.5 GeV 2 and using the second set of DAs.
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Figure 3: The dependence of HT on Q2 at M2 = 1.2 GeV 2 and s0 = 2.25 GeV 2 and four
fixed values of t: t = −5;−3; 3; 5, for the isoscalar current.
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Figure 4: The same as in Fig. (3), but for the form factor ẼT (Q
2).
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Figure 5: The same as in Fig. (3), but for the form factor H̃T (Q
2).
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Figure 6: The same as in Fig. (3), but for the isovector current.
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Figure 7: The same as in Fig. (4), but for the isovector current.
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Figure 8: The same as in Fig. (5), but for the isovector current.
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