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We calculate the mixing angles between the spin-1/2, Ξbc–Ξ ′
bc and Ωbc–Ω ′

bc states of doubly heavy
baryons within the QCD sum rules method. It is found that the mixing angles are large and have the
values ϕΞbc = 16◦ ±5◦ and ϕΩbc = 18◦ ±6◦, respectively. The mixing angles are slightly smaller compared
to the predictions of the non-relativistic quark model, ϕΞbc = 25.5◦ and ϕΩbc = 25.9◦.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Baryons with two heavy quarks have been the subject of in-
tensive theoretical studies. The study of these baryons can provide
useful information for understanding the non-perturbative QCD ef-
fects. On the experimental side, only one Ξ++

cc state is observed
by the SELEX Collaboration. However, the quark model predicts the
existence of other doubly heavy baryons, and their masses are es-
timated in this model (for a review on doubly heavy baryons, see
for instance [1]).

Doubly heavy baryons also represent a very suitable framework
for studying the consequences of heavy quark spin symmetry [2].
According to this symmetry, in the infinite heavy quark mass limit,
the diquarks formed of two heavy quarks can possess total spin
s = 0 or 1. Taking into account the spin of the light quark, the
ground states of doubly heavy baryons can have total spin of 1/2
or 3/2.

Since the heavy quark mass is finite, the hyperfine interaction
between one of the heavy quarks and light quark admix spin-0 and
spin-1 components. Obviously, this mixing for the baryons with
two identical heavy quarks should be very small, since the anti-
symmetry of the wave functions require radial or higher orbital
angular momentum states. But for the heavy baryons with two
different heavy quarks this mixing can be large in principle. It is
shown in [3] that the hyperfine mixing can considerably change
the decay widths of doubly heavy baryons. The mixing problem
of doubly heavy baryons in semileptonic decays are discussed in
many works [4–7].
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As has been noted, the hyperfine mixing among the ground
states of the doubly heavy baryons is studied in [3] within the
framework of the quark model. The effects of this mixing for the
electromagnetic decays of the doubly heavy baryons are investi-
gated in [8]. Calculation of the mixing angle of baryons containing
only one heavy quark within the QCD sum rules method [9] is
given in [10].

In the present work, we generalize our previous study to the
baryons containing double heavy quarks, i.e., we calculate the mix-
ing angle between Ξbc–Ξ ′

bc and Ωbc–Ω ′
bc states within the QCD

sum rules approach.

2. Mixing angles between the Ξbc–Ξ ′
bc and Ωbc–Ω ′

bc states

In order to calculate the mixing angles between Ξbc–Ξ ′
bc and

Ωbc–Ω ′
bc states within the QCD sum rules method, we consider

the following correlation function:

Π = i

∫
d4x eiqx〈0|T {

η1(x)η̄2(0)
}|0〉, (1)

where η1 and η2 are the interpolating currents corresponding to
the physical states. Obviously, these currents should be linear com-
binations of the interpolating currents of unmixed states η0

1 and
η0

2, i.e.,

η1 = cos(ϕ)η0
1 + sin(ϕ)η0

2,

η2 = − sin(ϕ)η0
1 + cos(ϕ)η0

2. (2)

According to the sum rules philosophy, the correlation function
is calculated in two different ways, either in terms of hadronic
parameters or quark–gluon degrees of freedom. Once this is ac-
complished, these two representations of the correlation function
are equated, as a result of which we obtain the QCD sum rules for
the corresponding physical quantities.
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When we saturate the correlation function given in Eq. (1)
with hadronic states we separate the ground state contributions,
which should be equal to zero since the physical ground states
described by the interpolating currents η1 and η2 are orthogo-
nal. Here we would like to make the following two remarks. The
mixing angles for the excited states are generally different from
that of the ground states. For this reason, the physical part of
the correlation function can get non-zero contributions from ex-
cited and continuum states. However, in the sum rules method,
Borel transformation is performed in order to enhance the ground
state contribution (see below). After this transformation, the con-
tributions of the excited and continuum states are exponentially
suppressed. Therefore, non-vanishing contributions to the physical
part of the correlation function from the excited and continuum
states should be very small.

Our second remark is related to the negative-parity baryon con-
tributions to the correlation function. In principle, the negative-
parity baryons can give contributions to the correlation function.
These contributions disappear only if their mixing angles are the
same as the one in the interpolating current. We assume that this
is the case here, so we neglect the negative-parity baryon contri-
butions in the present study.

Substituting Eq. (2) in Eq. (1) we get,

tan(2ϕ) = 2Π
(0)
12

Π
(0)
11 − Π

(0)
22

, (3)

where Π
(0)
i j correspond to the correlation function,

Π
(0)
i j = i

∫
d4x eiqx〈0|T {

η
(0)
i (x)η̄(0)

j (0)
}|0〉.

For interpolating currents η0
1 and η0

2 which correspond to the
unmixed states, we choose,

η0
1 = 1√

2
εabc{(baT Cqb)γ5cc + (

caT Cqb)γ5bc

+ t
(
bcT Cγ5qb)cc + t

(
caT Cγ5qb)bc}, (4)

η0
2 = 1√

6
εabc{2

(
baT Ccb)γ5qc + (

baT Cqb)γ5cc

− (
caT Cqb)γ5bc + 2t

(
baT Cγ5cb)qc

+ t
(
baT Cγ5qb)cc − t

(
caT Cγ5qb)bc}. (5)

Considering the Lorentz invariance, the two-point correlation func-
tion can be written as:

Π
(0)
i j = Π

(1)
i j

(
q2)/q + Π

(2)
i j

(
q2)I. (6)

In further analysis of the mixing angle between the doubly heavy
baryon states, we shall take into consideration both /q and I struc-
tures.

The invariant functions Π
(1)
i j and Π

(2)
i j can be related to their

imaginary part with the help of the dispersion relation,

Π
(α)
i j =

∞∫

(m1+m2)2

ρ
(α)
i j (s)ds

s − q2
, (7)

where m1 and m2 are heavy quarks masses and ρ
(α)
i j are the spec-

tral densities which are given as:

ρ
(α)
i j (s) = 1

Im Π
(α)OPE
i j (s), (8)
π

with the superscripts α = 1 and 2 correspond to the structures /q
and I, respectively. The expressions for the spectral densities are
obtained as (see also [11]):

ρ
(1)
11 = 3

256π4

αmax∫
αmin

dα

α

1−α∫
βmin

dβ

β

(
m2

1β + m2
2α − sαβ

)

× {(
m2

1β + m2
2α − sαβ

)(
5 + 2t + 5t2)

− 2(1 − α − β)(1 − t)2m1m2

+ 6
(
1 − t2)mq(m1β + m2α)

}

+ 〈q̄q〉
32π2

αmax∫
αmin

dα
{

3
(
1 − t2)[(1 − α)m1 + αm2

]

+ mq(1 − α)α
(
5 + 2t + 5t2)}, (9)

ρ
(1)
12 =

√
3

64π4

αmax∫
αmin

dα

α

1−α∫
βmin

dβ

β

(
m2

1β + m2
2α − sαβ

)

× (−2 + t + t2)mq(βm1 − αm2)

+ 〈q̄q〉
16

√
3π2

αmax∫
αmin

dα
(−2 + t + t2)[(1 − α)m1 − αm2

]
,

(10)

ρ
(1)
22 = 1

256π4

αmax∫
αmin

dα

α

1−α∫
βmin

dβ

β

(
m2

1β + m2
2α − sαβ

)

× {
3
(
m2

1β + m2
2α − sαβ

)(
5 + 2t + 5t2)

+ 2(1 − t)
[
(1 − α − β)(13 + 11t)m1m2

+ (1 + 5t)mq(βm1 + αm2)
]}

+ 〈q̄q〉
96π2

αmax∫
αmin

dα
{

3mq(1 − α)α
(
5 + 2t + 5t2)

+ (1 − t)(1 + 5t)
[
(1 − α)m1 + αm2

]}
, (11)

ρ
(2)
11 = 3

256π4

αmax∫
αmin

dα

α

1−α∫
βmin

dβ

β

(
m2

1β + m2
2α − sαβ

)

×
{
−3α

(
1 − t2)m2

β

(
m2

1β + m2
2α − sαβ

)

+ m1

[
−3β

(
1 − t2) 1

αβ

(
m2

2β + m2
2α − sαβ

)

− 2m1m2
(
5 + 2t + 5t2)]}

+ 〈q̄q〉
64π2

αmax∫
αmin

dα

{
(1 − α)α(1 − t)2

[
3m2

0

+ 4[m2
1(1 − α) + m2

2α − sα(1 − α)]
α(1 − α)

− 2s

]

− 2m1m2
(
5 + 2t + 5t2)

+ 6
(
1 − t2)mq

[−(1 − α)m1 − αm2
]}

, (12)
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ρ
(2)
12 =

√
3

128π4

αmax∫
αmin

dα

α2

1−α∫
βmin

dβ

β2

(
m2

1β + m2
2α − sαβ

)2

× (−2 + t + t2)(βm1 − αm2)

+ mq〈q̄q〉
16

√
3π2

αmax∫
αmin

dα
(−2 + t + t2)[(1 − α)m1 − αm2

]
,

(13)

ρ
(2)
22 = 1

256π4

αmax∫
αmin

dα

α

1−α∫
βmin

dβ

β

(
m2

1β + m2
2α − sαβ

)

×
[
(m2α + m1β)(−1 + t)(1 + 5t)

m2
1β + m2

2α − sαβ

αβ

− 6
(
5 + 2t + 5t2)m1m2mq

]

+ 〈q̄q〉
192π2

αmax∫
αmin

dα

{
(1 − α)α(−1 + t)(13 + 11t)

×
[

3m2
0 + 4[m2

1(1 − α) + m2
2α − sα(1 − α)]

α(1 − α)
− 2s

]

− 6
(
5 + 2t + 5t2)m1m2

+ 2(1 − t)(1 + 5t)mq
[−(1 − α)m1 − αm2

]}
, (14)

where,

βmin = αm2
2

sα − m2
1

,

αmin = 1

2s

[
s + m2

1 − m2
2 −

√(
s + m2

1 − m2
2

)2 − 4m2
1s

]
,

αmax = 1

2s

[
s + m2

1 − m2
2 +

√(
s + m2

1 − m2
2

)2 − 4m2
1s

]
. (15)

Performing Borel transformation with respect to the variable −q2

and assuming quark–hadron duality we get,

Π
(α)
i j =

s0∫

(m1+m2)2

ρ
(α)
i j e−s/M2

ds. (16)

Substituting these expressions into Eq. (3), we obtain the expres-
sion for the mixing angle in the framework of the QCD sum rules
method.
Now we are ready to perform numerical calculations. For the
numerical values of the input parameters we use 〈q̄q〉(1 GeV) =
−(246+28

−19 MeV)3 [12], s̄s = 0.8〈q̄q〉, m2
0 = (0.8 ± 0.2) GeV2. For the

masses of the heavy quarks we use their MS masses, which are
given as m̄b(m̄b) = 4.16±0.03 GeV, m̄c(m̄c) = 1.28±0.03 GeV [13],
and ms(2 GeV) = 102 ± 8 MeV [14]. The expressions of the invari-
ant functions contain three auxiliary parameters, namely the Borel
parameter M2, continuum threshold s0 and an arbitrary param-
eter t . For the working regions of the continuum threshold and
Borel parameter we use the recent results obtained from analy-
sis of the mass and residues of the doubly heavy baryons, i.e.,
s0 = (45–56) GeV2, and 6 GeV2 � M2 � 16 GeV2 [11]. In the
present study, the working regions of the parameter t are also
taken to be −0.72 � cos θ � −0.44 and 0.44 � cos θ � 0.72, where
t = tan θ (for details see [11]).

Considering these working regions for auxiliary parameters, we
obtain ϕΞbc = 16◦ ± 5◦ for the Ξbc–Ξ ′

bc case and ϕΩbc = 18◦ ± 6◦
corresponds to the Ωbc–Ω ′

bc mixing. These results have been ob-
tained for the /q structure. Very close results are also obtained
using the I structure. The same mixing angles are also evaluated
in [4] within the non-relativistic quark model to have the val-
ues, ϕΞbc = 25.5◦ and ϕΩbc = 25.9◦ . Comparing our results with
these values, we see that the predictions of the QCD sum rules
are slightly smaller compared to that of the non-relativistic quark
model.

It should be noted here that, the consequence of mixing can
considerably change the results of semileptonic and electromag-
netic decays of heavy baryons firstly pointed out in [2].

In summary, we calculated the mixing angles between the dou-
bly heavy Ξbc–Ξ ′

bc and Ωbc–Ω ′
bc baryons using the QCD sum

rules method, and obtained that the mixing angles are quite large.
A comparison of our results on the mixing angles with the predic-
tions of the non-relativistic quark model is also presented.
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