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HIV, hepatitis B and hepatitis C coinfection
in Kenya

Reena Shah Haraniaa, Jane Karurua, Mark Nelsonb and
Justin Stebbingb

There are few data regarding hepatitis and HIV

coinfection in Africa. In 378 HIV seropositive indi-

viduals in Nairobi, 23 (6%) were hepatitis B virus

(HBV) and HIV coinfected, four (1%) were

hepatitis C virus (HCV) and HIV coinfected and

one patient was infected with all three viruses.

Coinfected individuals were more likely to be

men and older; a lack of HBV vaccination was a

risk factor for HIV/HBV coinfection (P U 0.001)

and tenofovir containing regimens appeared most

effective at reducing HBV viral load.

Although rates of coinfection with at least two of hepatitis
B virus (HBV), hepatitis C virus (HCV) and HIVare well
reported in numerous studies from Europe and America,
there are few data on the prevalence of coinfection in
African populations [1–7]. The 2003 Kenyan Demo-
graphic and Health Survey reported that 6.7% of Kenyan
adults are infected with HIV [8] and other small studies
have suggested that the seroprevalence of HBVor HCV is
approximately 5% [9,10]. As both HBV and HCV are
transmitted through routes similar to HIV, coinfection
would be expected to be common.

To investigate this further, we performed a prospective
study of patients attending the Aga Khan University
Hospital (AKUH), Nairobi, Kenya. All HIV-positive
patients over the age of 13 years (both from the in-patient
and out-patient settings) were included, after written
informed consent was obtained. Statistical analysis was
undertaken using SPSS, version 8.0. Ethical approval was
granted by ethical bodies at both the AKUH and
collaborators in London.

Two millilitres of blood was obtained from each subject
by venepuncture for serological HCVand HBV tests. The
samples were collected and processed using standard
methods, stored at �208C and analysed in batches.
Routine blood tests such as CD4 (Beckman Coulter Flow
cytometry), viral load (Nucleisense technique), and liver
function tests (aspartate and alanine aminotransferase)
were also performed simultaneously. HepBsAg was
assayed using enzyme-linked immunosorbent assay
(ELISA) kits (Enzygnost) and individuals found to be
HBsAg positive also had an HBeAg test. HCVantibodies
were detected using fourth-generation ELISA kits (DRG

International, Inc. Mountainside, New Jersey, USA/
Biokit Labsystems, Helsinki, Finland).

As prospective data were not routinely collected, a study
questionnaire was completed with the assistance of one of
the investigators, with simple questions regarding age,
history of intravenous drug use, HBV vaccination and
sexual orientation.

A total of 378 consecutive HIV-positive individuals were
recruited and, of these, there were 209 men (55%) and
169 women (45%) with a median age of 39.5 years (range
13–65). A total of 351 (92.8%) had HIV infection alone,
23 (6.1%) were infected with both HIV and HBV and a
further four (1.1%) had HIVand HCV coinfection. One
individual (0.3%) was infected with all three viruses. Of
the HIV and HBV coinfected patients, four (17%) were
HBeAg positive.

We compared the characteristics of the HIV positive
individuals with those who were HIV and HBV
coinfected (Table 1). There were no differences with
regards to CD4 count, viral load and liver function tests
(AST and ALT levels) but coinfected patients were older
(P¼ 0.05) and more likely to be male (P¼ 0.02). Of
interest, however 57% of individuals had CD4 counts
below 200 cells/ml, a fact that may limit the validity of
antibody responses measured and increase false negatives.

In the questionnaire study, all individuals were hetero-
sexual apart from a single homosexual male (who had
HIV infection alone). No individual admitted to
intravenous drug use. As may be expected, previous
hepatitis B vaccination appeared in this cohort to protect
against HBV infection. No patient with previous hepatitis
B vaccination developed subsequent hepatitis B infection
whereas 23 of 309 (7.4%) who had not been vaccinated
were coinfected with HIV and HBV (P¼ 0.001).

This studyalsohighlighted thatHCVinfectionwasuncom-
mon in this high-risk population, which was generally
representative of the general population (with a slightly
increasednumberofmenwhichisobservedinurbansettings
such as this). HIV viral load had no effect on the presence of
both HBV/HIVand HIV/HCV co infections.

Of those who were infected with both HIV and HBV,
nine received zidovudine, lamivudine and efavirenz, six
received tenofovir and emtricitabine and one received
zidovudine, lamivudine and nevirapine. The group that
received tenofovir had a greater reduction in HBV DNA
viral load than the group that received lamivudine
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(P¼ 0.0031). The effects of treatment on a more
widespread scale, and the effects of hepatitis on HIV and
HIV on hepatitis in this setting remain to be established.
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HIV Gag-specific immune responses predict the
rate of CD4 decline

Yoav Peretz, Christos M. Tsoukas and Nicole F.
Bernard

In the present study, we assessed whether Gag-
specific interferon (IFN)-g secreting responses
correlate with the rate of disease progression as
defined by the annual rate of CD4 decline.
Although neither the breadth nor the magnitude
of the proteome-wide HIV-specific IFN-g response
correlated with viral load or rate of CD4 decline,
the preferential targeting of Gag is associated with
slower annual CD4R T cell decline.

There is compelling evidence that CD8þ T cells play
an important part in the control over viral replication.
Observations linking the expression of major histocom-
patibility complex class I alleles with disease progression
rates and the appearance in early infection of viral variants
bearing recognition escape mutations within sequences
targeted by virus specific CD8þ T cells is consistent with
these cells playing an active role in controlling viral
replication and exerting selective pressure on the virus
[1–3]. The most direct evidence supporting a role for
CD8þ CTL in viral control comes from an animal
model for HIV infection. Depletion of CD8þ T cells
from macaques infected with the simian immunodefi-
ciency virus (SIV) results in either increased viremia that

1222 AIDS 2008, Vol 22 No 10

Table 1. Characteristics of HIV positive and HIV/HBV coinfected
individuals.

HIV only HBV coinfection P

No. of patients 351 23 (6) <0.0001
Agea (years), mean � SD 39.2 � 8.15 42.7 � 9.13) 0.05

Age (years)
<25 15 (4.29) 1 (4.35) 0.405
25–30 30 (8.57) 1 (4.35)
30–35 74 (21.14) 2 (8.70)
35–40 85 (24.29) 5 (21.74)
>40 146 (41.71) 14 (60.87)

CD4 counts (cells/ml)
<50 93 (26.57) 6 (26.09) 0.405
50–100 39 (11.14) 4 (17.39)
100–200 67 (19.14) 4 (17.39)
200–300 48 (13.71) 6 (26.09)
300–400 37 (10.57) 1 (4.35)
>400 66 (18.86) 2 (8.70)

HIV viral load
<50 63 (17.95) 2 (9.09) 0.245
50–1000 26 (7.41) 0 (0.00)
1000–100 000 158 (45.01) 14 (63.64)
>100 000 104 (29.63) 6 (27.27)

Sex
Women 161 (45.87) 5 (21.74) 0.024
Men 190 (54.13) 18 (78.26)

Liver function
Normal 137 (39.03) 12 (52.17) 0.212
Abnormal 214 (60.97) 11 (47.83)

HBV, hepatitis B virus. Percentage values are given in parenthesis.
aAge was treated as a continuous variable.
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remains high until the CD8þ T cells are reconstituted or
uncontrolled viremia and rapid disease progression [4].

Previous studies analyzed HIV-specific interferon (IFN)-g
secreting CD4þ and CD8þ T cell responses directed
against the entire HIV proteome and found that neither
the breadth nor the magnitude of IFN-g secreting
lymphocytes correlated with viral load, CD4 counts or
rate of CD4 decline [5–7]. These studies supported the
view that IFN-g secretion is a poor correlate of in-vivo
protection against HIV disease progression and other
functional markers such as IL-2 secretion and prolifer-
ation should be assessed when monitoring immune
competence. More recently, it has been reported that the
preferential targeting of Gag p24 was associated with viral
control [8,9]. A large cohort study confirmed and
extended these findings by showing that an increasing
breadth of responsiveness to Gag epitopes was associated
with lower viral load in chronic HIV infection [10].
Mechanisms underlying the association between Gag
recognition and viral load may be related to the observation
that targeting certain Gag epitopes exerts immune pressure
that favors the outgrowth of viral variants that, although
able to escape immune recognition, have a diminished
fitness and replicative capacity [11] and that Gag-specific
CD8þT cells recognize and eliminate infected cells within
2 h postinfection before proviral integration [12] and de-
novo protein synthesis [13].

In light of these findings, we analyzed data from 31
treatment-naı̈ve HIV-1 clade B infected subjects in the
chronic phase of infection to determine whether
targeting Gag was associated with slower rates of CD4
decline [7]. At the time point used for screening HIV-
specific IFN-g secretion, the study population with a
median of 34 years (18–51) had CD4þ T cell counts of
572 (374–999) cells/ml, CD8þ T cells count of 1144
(720–2412) cells/ml and viral loads of 1452 (72–22 065)
HIV-1 RNA copies/ml. Monthly absolute CD4þ T cell
count values taken over a 24 (12–24)-month period was
used to determine the annual rate of CD4þ T cell loss for
this population, which was 57 (0–177) cells/ml/year.

Our initial findings showed that neither the breadth nor
magnitude of absolute HIV-specific responses to the
entire proteome or to individual gene products correlated
with viral load or predicted the rate of CD4 decline [7]. In
light of the studies mentioned above, subsequent analysis
of the data revealed that the proportion of Gag recogni-
tion relative to the total HIV-specific response within an
individual was associated with the rate of CD4 decline
(r¼�0.44, P¼ 0.013 and r¼�0.47, P¼ 0.008 for corre-
lations between rate of CD4 decline and the breadth and
magnitude of Gag specific responses, Spearman’s and
Pearson’s correlation, respectively) suggesting that the
preferential targeting of Gag determinants within an indi-
vidual is associated with a slower decline in CD4þ T cell
count (Fig. 1a, b). Additionally, time to loss of 60 CD4þ
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Fig. 1. Association between the percent contribution of the
Gag-specific response and rate of CD4 decline. Correlation
between the relative breadth (a) and relative magnitude (b) of
Gag-specific interferon-g secreting responses with the annual
rate of CD4þ T cell decline in 31 untreated HIV-infected
individuals in the chronic phase of infection. Relative breadth
or magnitude of Gag recognition is defined as the percentage
of the HIV-specific response to the entire proteome attributed
to HIV Gag-specific responses. (c) Results of a Kaplan–Meier
analysis of time to loss of 60 CD4 cells/mm3 in the study
population whose relative recognition of Gag was less than
50% versus at least 50% of the entire HIV-specific response.
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T cells/ml was a median of 276 versus 624 days for
individuals whose HIV Gag-specific response represented
less than 50% and at least 50% of the entire HIV-specific
response (hazard ratio¼ 2.48; 95% confidence inter-
vals¼ 1.11–6.05). No significant correlation was found
between the relative recognition of Gag and plasma viral
load (r¼�0.28, P¼ 0.13) or between the relative recog-
nition of other gene products such as Pol, Nef or Env and
either viral load (r¼�0.35, r¼ 0.32 and r¼ 0.06; P> 0.05
for all analyses) or rate of CD4 decline (r¼ 0.03, r¼ 0.29
and r¼ 0.35; P> 0.05 for all analyses). The absence of a
significant association between the relative recognition of
Gag and viral load may be related to the population size not
being large enough to detect such a difference or to viral
load contributing approximately 5% of the variability in
HIV disease progression [14] or both.

These data support previous observations and suggest that
monitoring relative Gag responses in infected individuals
might prove beneficial for predicting subsequent disease
course. Additionally, these findings support using Gag
immunogens in the development of T cell based vaccines.
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Outcomes of multidrug-resistant patients switched
from enfuvirtide to raltegravir within a
virologically suppressive regimen

Marianne Harrisa, Gerene Larsena and Julio S.G.
Montanera,b

Enfuvirtide has been a cornerstone of salvage
therapy for multidrug-resistant HIV. Raltegravir
provides another novel class option, with the
advantages of easier administration and improved
tolerability. Thirty-five adults electively replaced
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enfuvirtide with raltegravir while the rest of their

regimen was unchanged. All maintained virologic

suppression after a median of 7 months except one

who experienced a transiently detectable viral load

after 5 months. The new regimen was well tolerated

with no apparent new drug-related adverse clinical

or laboratory events.

The fusion inhibitor enfuvirtide and the integrase inhibitor
raltegravir each have demonstrated antiviral activity in
treatment-experienced patients with HIV resistant to
nucleosides (NRTI), nonnucleosides (NNRTI), and pro-
tease inhibitors [1–4]. While enfuvirtide has been a
cornerstone of salvage therapy in this setting, its long-term
tolerability has often been hampered by the need of twice-
daily subcutaneous injections and persistent injection
site reactions [5]. Recently, raltegravir has become an
alternative to enfuvirtide in this setting. Raltegravir is awell
tolerated oral agent in a new class without crossresistance to
the NRTI, NNRTI, and protease inhibitor classes [6].

We offered an elective switch from enfuvirtide to
raltegravir to all HIV-positive adults who had plasma
HIV RNA less than 50 copies/ml (Roche HIV-1 RNA
Ultrasensitive PCR assay) and who had ongoing injection
site reactions and/or injection fatigue while receiving an
enfuvirtide-containing regimen within a single tertiary
care HIV clinic (John Ruedy Immunodeficiency Clinic,
St Paul’s Hospital, Vancouver, British Columbia). The
switch was accomplished in a single day without over-
lapping dosing. The remainder of the salvage regimen was
left unchanged. Raltegravir was obtained through the
Special Access Programme of Health Canada, and was
administered in doses of 400 mg orally twice daily.
Patients received clinical and laboratory follow-up
according to standard clinical practice after the change
in regimen.

Thirty-five patients (34 male) switched from enfuvirtide
to raltegravir between 20 November 2006 and 19
October 2007. At the time of the switch, patients had
received enfuvirtide for a median of 25 months (range 5–
75 months) and had sustained HIV RNA less than
50 copies/ml for a median of 24 months (range 1–72
months) (Table 1). Concomitant antiretrovirals included
one to four nucleoside or nucleotide RTI in all patients,
one NNRTI in six patients, and one or two protease
inhibitors in all patients. Twenty-six patients received a
single protease inhibitor: lopinavir/ritonavir (n¼ 9),
darunavir/ritonavir (n¼ 8), or atazanavir (n¼ 7 ritona-
vir-boosted, n¼ 1 unboosted). Of note, one patient was
receiving tipranavir/ritonavir, which is known to reduce
raltegravir trough levels by 55% [7]. Eight patients
received dual boosted protease inhibitors: lopinavir/
saquinavir (n¼ 5), lopinavir/atazanavir (n¼ 2), or ataza-
navir/saquinavir (n¼ 1). One patient received atazanavir/
saquinavir without ritonavir boosting.

As of 10 January 2008, all 35 patients remain on
raltegravir after a median follow-up time of 7 months
(range 1–13 months), and none have resumed enfuvir-
tide. Thirty-four patients have HIV RNA less than
50 copies/ml. The remaining patient had HIV RNA less
than 50 copies/ml at 1 and 2 months and 60 copies/ml
after 5 months on raltegravir. His concurrent regimen
consists of ritonavir-boosted atazanavir and lamivudine,
and he had previously experienced intermittent viral load
blips less than 100 copies/ml while taking enfuvirtide.
The only patient who received concomitant tipranavir/
ritonavir (in addition to tenofovir, zidovudine, lami-
vudine, and abacavir) has sustained a plasma HIV RNA
less than 50 copies/ml for 6 months after the switch
to raltegravir. Plasma raltegravir levels have not been
measured.

Injection site reactions resolved in all patients after
enfuvirtide was discontinued. Five patients have experi-
enced new clinical events, but no new laboratory events
were observed. Early events occurring within 1 month
after the switch to raltegravir were mild peripheral
neuropathy and diarrhea; exacerbation of depression; and
prostate cancer (in a 56-year-old man). One patient
experienced two episodes of pneumonia after 1 and
6 months on raltegravir. In addition, a B-cell lymphoma
was diagnosed in a 52-year-old man after 9 months on
raltegravir. It is unlikely that any of these events can be
directly attributed to raltegravir. Whereas excessive rates
of depression with raltegravir as compared with placebo
have not been reported in phase II and III clinical trials
[3,4,6], anecdotal reports are emerging of psychiatric
disorders, including depression, temporally related to the
onset of raltegravir therapy [J Gatell, P Ruane, personal
communication]. These observations require further study
as the clinical use of raltegravir expands into broader
patient populations.

On the basis of these results, changing from enfuvirtide to
raltegravir within a virologically suppressive regimen
appears to be well tolerated and effective, at least over the
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Table 1. Baseline characteristics of 35 patients at time of enfuvirtide
discontinuation and raltegravir initiation.

Median Range

Age, years 49 34–69
Time on enfuvirtide before switch, months 25 5–75
Time HIV RNA <50 copies/ml before

switch, months
24 1–72

CD4 count, cells/mm3 350 90–770
CD4 fraction, (%) 16 4–43
Concomitant ARVs, (N)

Nucleoside/nucleotide RTIs 3 1–4
Nonnucleoside RTIsa 0 0–1
Protease inhibitorsb 1 1–2

ARVs, antiretrovirals; RTIs, reverse transcriptase inhibitors.
aetravirine n¼3; efavirenz n¼2; nevirapine n¼1.
bRitonavir-boosted in 33/35.
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short term, in patients with multidrug-resistant HIV. The
switch from an injectable to an oral medication is highly
acceptable to patients and may facilitate long-term
adherence. In addition, this strategy is economically
attractive based on the higher price of enfuvirtide.
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Liver ultrastructural morphology and
mitochondrial DNA levels in HIV/hepatitis C virus
coinfection: no evidence of mitochondrial damage
with highly active antiretroviral therapy

Motoi Matsukuraa, Fanny F.S. Chub, May Aua, Helen
Lua, Jennifer Chena, Sonja Rietkerkc, Rolando Barriosd,
John D. Farleye, Julio S. Montanerd, Valentina C.
Montessorid, David C. Walkera,b and Hélène C.F.
Côtéa

Liver mitochondrial toxicity is a concern, particu-
larly in HIV/hepatitis C virus (HCV) coinfection.
Liver biopsies from HIV/HCV co-infected
patients, 14 ON-highly active antiretroviral therapy
(HAART) and nine OFF-HAART, were assessed by
electron microscopy quantitative morphometric
analyses. Hepatocytes tended to be larger
ON-HAART than OFF-HAART (P U 0.05), but
mitochondrial volume, cristae density, lipid
volume, mitochondrial DNA and RNA levels were
similar. We found no evidence of increased mito-
chondrial toxicity in individuals currently on
HAART, suggesting that concomitant HAART
should not delay HCV therapy.

Today, up to 50% of HIV patients die from end-stage liver
diseases [1]. Possible reasons for this include longer life
expectancy and a decline in opportunistic infections,
accompanied by an increase in underlying comorbid
conditions, such as liver diseases and idiosyncratic hepato-
toxic reactions [1–3]. This is especially relevant to the
HIV/hepatitis C virus (HCV) coinfected population in
whom liver injury is more rapid and prevalent [2,4], poor
liver conditions decrease tolerance for highly active anti-
retroviral therapy (HAART) and end-stage liver diseases
are the primary cause of death [5,6].

Nucleoside reverse transcriptase inhibitors (NRTIs) can
cause mitochondrial DNA (mtDNA) depletion and
possibly deletion and mutation, which may affect mito-
chondrial structural integrity and functions [7,8]. Such
HAART-related mitochondrial toxicity may lead to
hepatic steatosis, hyperlactatemia/lactic acidosis and liver
failure. Although abnormal liver mitochondrial ultra-
structure has been demonstrated in HIV/HCV coinfec-
tion [9,10], it is unclear what damage is caused by HIV
or HCV infection versus NRTI-related mitochondrial
toxicity. We hypothesized that HIV/HCV coinfected
individuals currently receiving HAART would show
greater liver mitochondrial damage than those not on
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HAART. Liver mitochondrial damage was assessed
through mtDNA and gene expression levels, as well as
electron microscopic ultrastructural analyses.

In this prospective cohort study, HIV/HCV coinfected
men were either HAART-naı̈ve or off HAART more
than 6 months (OFF-HAART), or on stable HAART for
longer than 6 months (ON-HAART). At the time of liver
biopsy, all were HCV therapy naı̈ve, free from chronic
liver diseases and had no opportunistic infections within
the last month. Demographic and clinical characteristics
such as age, HCV genotype, CD4 cell count, albumin,
bilirubin, aspartate aminotransferase, alanine aminotrans-
ferase, platelet count and lactate were comparable
between the ON-HAART and OFF-HAART groups.

Two ultrasound-guided liver tissue biopsies were
collected between 2003 and 2006 from each subject.
The first one was used for pathology using modified
Ishak–Knodell scale scoring whereas the second was used
for mtDNA and mtRNA quantifications and electron
microscopic stereological morphometry. The mtDNA/
nuclear DNA (nDNA) ratio was determined as described

previously [11,12]. Mitochondrial mRNA was quantified
similarly for both a mtDNA-encoded (COX1) and a
nDNA-encoded (COX8) gene, and normalized to the
housekeeping gene b-actin mRNA level. Tissue for
electron microscopic analysis was fixed in 2.5% glutar-
aldehyde and postfixed in a mixture of 2% osmium
tetraoxide and 2% potassium ferrocyanate. The following
hepatocyte ultrastructural characteristics were quantitat-
ivelyand stereologicallyanalyzed:hepatocytevolumeusing
the star volume method [13]; hepatocyte mitochondria,
glycogen and lipid volume fractions using the point
counting method [14]; and mitochondria cristae surface
density, using the line intercept method [15]. To eliminate
potential bias, a standardized random sampling protocol
was established by a single examiner, and the number of
images analyzed for each parameter was determined as that
providing a stable and low coefficient of error.

Overall, no statistically significant difference was observed
between ON-HAART and OFF-HAART samples, for
any of the studied parameters (Table 1). No differences
were seen in mtDNA and mtRNA levels, but there was
an overall positive correlation between COX1 and COX8
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Table 1. Characteristics of the study population and study results.

Median [IQR]

P g
On-HAART (n¼14) Off-HAARTa (n¼9)

Patient characteristics
Age (years) 43 (39–47) 48 (46–53) 0.09
HCV genotype (1/2/3/4) 10/0/4/0 7/0/2/0
CD4 cell count (cells/ml) 390 (320–580) 400 (340–410) 0.87
Plasma HIV RNA (copies/ml) <50 (<50–<50) 48200 (20500–88400) <0.05
Albumin (g/l)b 42.0 (40.5–44.0) 41.0 (40.0–42.0) 0.86
Bilirubin (mmol/l)b 12.0 (8.5–17.5) 9.0 (5.8–13.0) 0.15
Platelet count (109 cells/l)b 174 (150–203) 210 (149–224) 0.58
AST (U/l)b 71.0 (45.5–89.8) 53.0 (49.0–79.0) 0.64
ALT (U/l)b 74.0 (60.0–176.0) 58.0 (50.0–88.0) 0.68
Lactate (mmol/l)b 1.50 (1.23–2.05) 1.70 (1.35–1.75) 0.88

Duration of HAART at the time of biopsy
Total (n¼14) (months) 28 (11–94)
D-drugs (n¼2) (months)c 22 (–)
PI (n¼10) (months)d 23 (15–40)
NNRTI (n¼6) (months)d 22 (10–35)

qPCR and EM results
mtDNA/nDNA 506 (381–804) 508 (394–823) 0.90
COX1 mtRNA/b-actin mRNAe 25.7 (17.0–41.6) 34.6 (22.9–37.9) 0.80
COX8 mtRNA/b-actin mRNAe 1.0 (0.8–1.4) 1.1 (0.6–1.6) 0.83
Mitochondria volume fraction (%) 17.3 (15.8–20.0) 18.4 (16.3–22.2) 0.49
Cristae density (mm2/mm3) 4.7 (4.5–6.0) 6.5 (5.0–7.1) 0.23
Glycogen (%)f 24.7 (22.5–30.0) 22.2 (18.7–30.8) 0.67
Lipid (%) 2.0 (0.8–5.0) 2.1 (0.8–7.0) 0.87
Cell size (mm3) 4425 (3369–5317) 3369 (2721–3596) 0.05
Ishak–Knodell score 7.0 (5.0–9.0) 7.0 (6.0–12.3) 0.44

aHAART naı̈ve (n¼5) or longer than 6 months off HAART (n¼4) at the time of biopsy.
bNormal range: albumin 35–48 g/l, bilirubin total<20 mmol/l, platelet 150–400�109 cells/l, AST<40 U/l, ALT 7–56 U/l, lactate 0.5–2.1 mmol/l.
cD-drugs ¼ stavudine (d4T), didanosine (ddI) or zalcitabine (ddC). D4T in both cases.
dTwo patients were taking both PI and NNRTI at the same time (i.e. eight on a protease inhibitor, 4 on a NNRTI and 2 on both protease inhibitor and
NNRTI).
eTotal 17 samples RNAlater treated were analyzed (n¼10 for ON-HAART and n¼7 for OFF-HAART).
fTwo samples were not analyzed as they were not fixed with potassium ferrocyanate.
gBetween-groups comparisons were done using the Krusskal–Wallis test.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; EM, electron microscope; HAART, highly active antiretroviral therapy; HCV,
Hepatitis C virus; IQR, interquartile range; NNRTI, nonnucleoside reverse transcriptase inhibitors; PI, protease inhibitors.
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expression levels (R¼ 0.63, P¼ 0.006). Volume fractions
of hepatocyte metabolic constituents did not significantly
differ between ON-HAARTand OFF-HAART samples,
however, hepatocytes were weakly but significantly larger
in the ON-HAART group compared with the OFF-
HAARTone (P¼ 0.05), and median cristae surface den-
sity was 28% lower ON-HAART (Table 1). All study
participants were infected with either HCV genotype 1 or
3a, and the latter was associated with significantly higher
intrahepatocyte lipid accumulation [median (interquartile
range¼ 1.3 (0.6–2.3)% vs. 12.0 (8.0–14.1)%, P¼ 0.002].

HIV/HCV coinfected individuals are more at risk of
hepatotoxicity than HIV or HCV monoinfected ones
[2,4,6,16]. It has been hypothesized that NRTI-induced
liver mitochondrial toxicity may further exacerbate liver
damage and contribute to lower tolerance of HCV
therapy [5,17]. NRTIs of the dideoxynucleotide type
[D-drugs: d4T, ddI and zalcitabine (ddC)] are blamed for
mitochondrial toxicity in both clinical and in-vitro
studies [11,18]. Decreased liver mtDNA levels in HIV/
HCV coinfected patients on D-drugs, but not in those on
non-D-drug-containing HAART have been reported
[19]. We found no evidence of increased liver mito-
chondrial damage in association with current HAART.
As the majority of ON-HAART subjects were receiving
non-D-drug HAARTregimens, our results are consistent
with the previous finding [19] and suggest low liver
mitochondrial toxicity for non-D-drug HAART. Mito-
chondrial gene expression of both nDNA and a mtDNA-
encoded genes did not differ between the two groups, yet
showed a significant correlation between them, suggest-
ing the absence of mtDNA-specific alterations in expres-
sion patterns.

We rigorously and objectively evaluated hepatocyte cell
volume, mitochondria volume fraction, cristae surface
density, lipid and glycogen volume fraction by quanti-
tative electron microscopy. No difference in any of the
studied parameters was detected between ON-HAART
and OFF-HAART liver samples, except for the cell size,
which was marginally larger in ON-HAART samples.
This appears to be inconsistent with two studies in HIV/
HCV coinfected individuals that suggested an association
between HAART and increased liver mitochondrial
ultrastructural alterations [9,10]. Only two of our parti-
cipants received d4T and none was on ddI or ddC.
Exposure to different NRTIs in these small studies may
partially explain this difference. Hepatomegaly has been
observed in HIV patients [20] and coinfection with HCV
increases the risk of steatosis or steatohepatitis, which may
enlarge hepatocytes. However, the relationship between
hepatomegaly and HAART remains unclear since mito-
chondrial dysfunction can also lead to steatosis and
steatohepatitis [21,22]. Although our data do not suggest
increased mitochondrial damage in ON-HAART indi-
viduals, it is possible that enlarged hepatocytes reflect
weak hepatotoxicity. As noted by others [23], HCV

genotype 3 was statistically significantly associated with
higher lipid volume fraction (Table 1), validating the
stereological methodology used in this study.

In conclusion, although the sample size was limited, this
study provided no evidence that patients coinfected
with HIV and HCV show increased liver mitochondrial
damage if on concomitant HAART. These results suggest
that HAART with predominantly non-D-drug-contain-
ing regimen may not be a reason to delay or avoid the start
of HCVantiviral therapy in coinfected individuals. This is
especially true as liver disease progression and not drug-
induced hepatotoxicity is the most common cause of
mortality in this population [24].
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