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In this paper, a supervised algorithm for the evaluation of 
geophysical sites using a multi-level cellular neural network 
(ML-CNN) is introduced, developed, and applied to real 
data. ML-CNN is a stochastic image processing technique 
based on template optimization using neighborhood 
relationships of the pixels. The separation/enhancement and 
border detection performance of the proposed method is 
evaluated by various interesting real applications. A genetic 
algorithm is used in the optimization of CNN templates.  
The first application is concerned with the separation of 
potential field data of the Dumluca chromite region, which is 
one of the rich reserves of Turkey; in this context, the 
classical approach to the gravity anomaly separation 
method is one of the main problems in geophysics. The other 
application is the border detection of archeological ruins of 
the Hittite Empire in Turkey. The Hittite civilization sites 
located at the Sivas-Altinyayla region of Turkey are among 
the most important archeological sites in history, one reason 
among others being that written documentation was first 
produced by this civilization. 
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I. Introduction 

Potential-field maps usually contain a number of anomalies 
that are superimposed onto each other.  For instance, a 
magnetic map may be composed of regional, local, and micro-
anomalies. In this case, the determination of the causative 
sources’ boundaries suffers from nearby source interferences, 
thus yielding mislocations. Since one type of anomaly often 
masks another, the need arises to separate the various 
anomalies from each other. 

Potential data observed in geophysical surveys are the sum 
of related fields produced by all underground sources. The 
targets for specific surveys are often small-scale structures 
buried at shallow depths, and these targets are embedded in a 
regional field that arises from sources that are usually larger 
and deeper than the targets or are located farther away. 
Moreover, the change in the potential field of residual 
anomalies is much quicker than the corresponding change in 
the potential field of regional anomalies. Correct estimation 
and removal of the regional field from initial field observations 
yields the residual field produced by the target sources. 
Interpretation and numerical modeling are carried out on the 
residual field data, and the reliability of the interpretation 
depends to a great extent upon the success of the regional-
residual separation using the distinguishing properties 
mentioned in this paragraph. 

Interpretation of magnetic and gravity anomalies makes 
extensive use of enhanced maps as an initial step to eliminate 
or attenuate unwanted field components in order to isolate the 
desired anomaly (e.g., residual-regional separations). 
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Frequency analyses of gravity and magnetic anomalies were 
carried out in 1958 and vertical derivatives of contours were 
obtained [1]. Then, for the interpretation of magnetic fields, a 
two dimensional (2-D) harmonic analysis was performed in 
1965 [2]. 2-D filters were employed by interpolating data 
stored on pixels of a square grid [3], [4] using Hankel 
transformations [5] and through Fourier transform techniques 
[6]. A digital filter using Hankel transformations is given in [7]. 
Important observations, based on the density contrast of the 
Mississippian-Pennsylvanian interface, were made by 
separation of regional anomalies from the residual ones using 
Wiener filtering techniques [8]. Applications of linear filters 
and Werner de-convolution algorithms are given in [9]. An 
equally important problem, for which a method is given in [10], 
is the determination of boundaries between different structures 
of buried bodies. The use of wavelets are explored in: i) 
separation of regional and residual anomalies of potential fields 
[11], [12], ii) evaluation of aeromagnetic data in [13], iii) 
modeling the geometry of geological bodies using multi-scale 
edge analysis [14], and iv) de-noising of signals from potential 
field effects and estimating borders of the buried objects [15]-
[17]. In this paper, a supervised algorithm for a multi-level 
cellular neural network (ML-CNN) is developed and applied to 
real data obtained from the Dumluca iron site and 
archeological ruins of the Hittite Empire in Turkey. 

In the first part of section II, the CNN structure is explained 
and the multi-level approach is introduced. In the second part, 
genetic operations and the cost function used in the paper are 
defined; the algorithm used for the applications considered in 
this paper is then presented. 

Section III is concerned with the application of ML-CNN as 
follows: First, the CNN is trained with input-desired output 
(target image) data pairs, tested with synthetic examples, and 
then applied to real data. The best chromosomes and the related 
CNN templates obtained from the algorithm are given; raw 
data maps and the ensuing processed maps that clearly show 
the improvement are also exhibited. 

Section IV concludes the paper by exploring some future 
applications. 

II. Multi-level Cellular Neural Network  

1. Basic CNN Structure 

A basic 2-D CNN can be viewed as an array of basic 
processing units as shown in Fig. 1.  

In a conventional artificial neural network (ANN), all cells 
communicate with each other, whereas in CNN, only cells 
within a prescribed neighborhood do so. The r-neighborhood 
of cell Ci,j is defined [18] as Nr(i,j) = {C(k,l)|max{|k - i|,|l - j|}≤ r, 

 

Fig. 1. 1- and 2-neighborhoods of the central cell. 
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Fig. 2. A typical circuit cell (i,j). 
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1≤ k≤ M; 1≤ l≤ N} and shown in Fig.1 for r=1 and r=2. As 
each cell communicates with its neighbors, the effect of a cell 
propagates to cells farther away than r. Figure 2 shows a 
possible equivalent circuit of a single cell as given in [18] 
where all elements are linear with the sole exception of the 
dependent current source Iyx defined via the piecewise linear 
sigmoid given in Fig. 3.  

In Fig. 2, uij, xij, and yij show respectively the input, capacitor, 
and output voltages, and Iij is the independent bias current 
source; dependent source coefficients A(i,j;k,l) and B(i,j;k,l) 
reflect respectively the weighted effects of the output and input 
of cell (k,l) in the considered neighborhood, on cell (i,j) (these 
coefficients will be the elements of the template matrices A and 
B). Assuming normalized element values (CRx=1) and a space-
invariant CNN, namely that A(i,j;k,l)= A(i-j,k-l) and B(i,j;k,l)= 
B(i-j;k-l), Kirchoff’s current law written in terms of node 
voltage xij yields the following state equation of the cell:  
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The following advantages of assuming a restricted 
neighborhood and space-invariance are huge: 

i) the natural assignment of double indexed variables and 
weight coefficients to matrices yields a very compact  2-D 
convolution representation as in (2), 

ii) the entire description of a very large ANN is made with 
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two simple matrices (of size 3 × 3 for r=1 and 5 × 5 for r=2) 
called cloning templates, or templates in short, and 

iii) this small size of the templates, by reducing the number 
of network parameters to be found, becomes especially useful 
in the design of a CNN that performs specific tasks in image 
processing among other subjects; as most design procedures 
use optimization techniques where the optimization variables 
are template matrix elements, this number reduction becomes 
of crucial importance. The same goes for genetic algorithms 
and this will soon be appreciated in subsection II.3. 

2. Multi-level CNN 

The cellular neural networks (CNN) introduced above have 
a well-suited structure for image processing. Their normalized 
differential state equations, which are nothing but a compact 
matrix representation of (1), can be described via the matrix 
convolution operator by 

          IUBYAX
dt
dX

+×+×+−= ,          (2) 

where U, X, Y are the M×N input, state, and output matrices; A 
and B represent the feedback and feed-forward connections, 
respectively; and I is an M×N offset matrix representing the 
bias currents. The relationship between the state and the output 
of cell ij shown in Fig.3 is the nonlinear function  

[ ]115.0 −−+×= ijijij
xxy .             (3) 

 

Fig. 3. Piecewise linear sigmoid function 
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According to (2), CNN output changes until the derivative of 

the state variable of the CNN is zero; so, the last stable output is 
defined as 

ijij YY =∞ , when 0=
dt
dX  for all t. 

For designing a stable CNN, A and B should be symmetrical 
and A22 must be greater than one, if the size of A has been 
selected as 3×3. CNNs are used for different special 
signal/image processing applications with various templates. 
The multi-level CNN introduced in this paper consists of the 
serial cascaded connection of similar type CNN structures. The 
same templates are used in each level, and the output of each 
CNN level is the input of the next CNN level in the cascade 
connection. 

3. Genetic Algorithms 

Genetic algorithms are based on the mechanisms of natural 
selection and genetics and have proven to be effective in a 
number of applications. They work with a binary coding of the 
parameter set and search from a number of points of the 
parameter space for the best one; they use only a cost function 
during the optimization and do not need derivatives of the cost 
function or other information. In genetic algorithms, 
reproduction and mutations may cause the chromosomes of 
children to be different from those of their biological parents, 
and crossing-over processes create different chromosomes of 
children by interchanging some parts of the parent 
chromosomes. Like in nature, the genetic approach solves the 
problem of finding good chromosomes by manipulating the 
chromosomes blindly without any knowledge about the 
problem they are trying to solve [19]-[21]. A general outline of 
the genetic approach used in this paper is presented next. 

Step 1. Construction of the initial population. A matrix called 
a population matrix is constructed. Each row of the population 
matrix represents chromosomes and each column represents 
the bits in chromosomes, and its size is m×n. At the beginning, 
this matrix is constructed randomly. 

Step 2. Extraction of the CNN templates. Chromosomes 
represent the binary codes of the elements of the CNN 
templates, A, B, I. In this step, each chromosome is decoded 
and the elements of the CNN are computed in a chosen interval. 
Since templates A and B contain two entries each, the center 
ones a22 , b22 and a11 , b11 representing all other equal template 
elements, the total number of elements becomes five including 
the value for I. These elements are shown in vector form as 

          S = [a11, a22, b11, b22, I].               (4) 

Each of the elements of S being coded in binary, the 
chromosome S0 used in the algorithm is obtained from S as 
follows: The first five bits in S0 represent the first five bits of the 
template elements, the second five bits represent the second 
five bits of the template elements in each chromosome, and so 
on; the length of each chromosome will be denoted by LengthS. 

Step 3. Evaluation of the cost function value for each 
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chromosome. In this step, an image that was selected as the 
training image is fed as input to the CNN, which works with 
the templates belonging to the first chromosome. After the 
CNN output appears to be stable, the cost function is computed 
between this output image and the desired target image. This 
process is repeated with the template sets belonging to each 
chromosome in the population. The cost function has been 
selected in this study as follows: 

 ( ) ji

M

i

N

j
ji TPIBA ,,,,cost ∑∑ ⊕= ,           (5) 

where P and T represent the CNN output image and the target 
image, respectively, and the symbol ⊕  stands for the XOR 
operation between respective elements (pixels) of P and T. 
After finding the cost function, the associated fitness function is 
evaluated for each chromosome according to the rule, 

 ),,cost(),,( IBANMIBAfitness −×= .       (6) 

Another rule has been defined for the stopping criterion as 

 NMnstcriterio ××= 99.0 .            (7) 

If the maximum fitness value of the chromosome is greater 
than the stopping criterion, the algorithm is stopped and the 
chromosome whose fitness value is the maximum in the 
population is selected. The templates, which have been 
extracted from this selected chromosome, are the most proper 
templates that satisfy the task desired to be realized. 

Step 4. Creation of a new generation. Before creating the 
next generation, fitness values of the population are sorted in 
descending order and normalized relative to the sum of the 
fitness values of the population. A random number r between 0 
and 1 is generated. Then, the first population member is 
selected whose normalized fitness, added to the normalized 
fitness of the preceding population members, is greater than or 
equal to r. This operation is repeated several times and any 
chromosome whose fitness is bad is deleted from the 
population. This above procedure is called reproduction in 
genetic algorithms. The reproduction process does not generate 
new chromosomes, but rather elects the best chromosomes in a 
population and increases the number of chromosomes whose 
fitness values are relatively greater than the others. After the 
reproduction, depending on the application, K pairs of 
chromosomes are selected as parents randomly. Two numbers 
s1, and s2 between 1 and the length of chromosomes are 
generated. The bit strings between s1 and s2 are called the 
crossover site. During the crossing-over process, bit strings in 
the crossover sites in each pair of chromosomes are 

interchanged and two new chromosomes are created from a 
pair of old chromosomes. At last, 2K new chromosomes, 
which are called children, are generated to build the new 
population. Over these chromosomes, the mutation operation is 
carried-out. Since the mutation probability has been set to 1%, 
0.01×m×n bits are selected randomly from the population and 
inverted. The chromosome whose fitness value was the best 
before the reproduction process is added and another randomly 
selected chromosome is deleted form the final generation; the 
purpose of this addition is to preserve the fittest chromosome of 
the previous step; this new population is the next generation 
population. After obtaining the new generation, the search 
procedure goes to the second step and continues until the 
stopping criterion is met. 

III. ML-CNN Applications on Synthetic and Real Data 

Various applications of ML-CNN have been considered and 
the performance of the proposed approach has been evaluated. 
The first example is on the evaluation of the separation of 
potential anomalies. The other example is on the border 
detection property of ML-CNN. The numerical values used in 
the steps of the algorithm given in section II.3 are listed in 
Tables 2 and 5. It should be observed that for general templates 
A, B, I, LengthS = [2(2r+1)2+1]k, where r is the neighborhood 
considered in the CNN, and k is the precision (number of bits) 
of each template element. For r=1 and k=16, LengthS=304 
for general templates, whereas it reduces to 
LengthS=(2+2+1)16=80 for templates considered in this paper. 

1. For Magnetic Data 

Figure 4 shows the location and physical attributes of a 
dipole that will be used to calculate the vertical magnetic field 
Z at the point P caused by this dipole; these calculations are 
done using (8). 

Z = (Vertical component of field due to –m) 
– (Vertical component of field due to +m) 

( ) ( ){ }3
2

3
10 /sin/ rLzrzSkF α+−= ,           (8) 

where k is the susceptibility, F0 is the earth’s total field, z is the 
average depth of the dipole, S is the surface, and the vertical 
field being positive downward; other parameters are defined in 
Fig. 4. 

A. Training CNN for Gravitational Data 

In order to cover the most difficult separation problem, two 
dipoles different in size and location as described in Table 1  
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Fig. 4. Synthetic dipole model. 
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Table 1. Parameters of two dipoles having the same (x,y) coordinates

Parameters Dipole 1 Dipole 2 

(x,y) coordinates (32,32) (32,32) 

Z (dip) 5 25 

L (along) 8 30 

α (angle) 90 90 

 

 
 

Fig. 5. Synthetic example for training procedure of magnetic
data: 2 dipoles having the same (x,y) coordinates with
properties as in Table 1: (a) regional anomaly of dipole 2
(contour interval 0.008 nT) (b) residual anomaly of
dipole 1 (contour interval 0.4 nT) (c) total vertical
magnetic anomaly of 2 dipoles (contour interval 0.2 nT) 
(d) ML-CNN output (contour interval 0.04 nT). 
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constitute the first synthetic example; the main reason for 
selecting this configuration being that when using magnetic 

data it is relatively very difficult to separate structures lying one 
on top of the other. 

The effect of the larger dipole 2, creating the regional 
anomaly, covers the residual effects of the smaller dipole 1 and 
thus makes its detection difficult from raw data. The vertical 
magnetic anomaly map of these two dipoles, with the same x, 
y but with different z coordinates, will be evaluated. The 
approach used for determining CNN templates is as follows: 

i) total vertical magnetic field, with both dipoles present, is 
calculated from (8) providing the training input data, 

ii) using (8), the vertical magnetic field of the small dipole 
closer to the surface is calculated giving the desired output, and 

iii) genetic training is applied to data obtained in i) and ii), 
and the templates A, B, I are obtained. 

The regional and residual anomalies and their sum total 
vertical anomaly map are drawn in Figs. 5(a) through 5(c), 
using (8) and the properties in Table 1. The total vertical 
anomaly and residual anomaly maps are taken as input and 
desired output, respectively. At the end of the training process, 
genetic algorithm parameters were obtained as in Table 2. 
 

Table 2. Genetic training algorithm parameters for magnetic data.

Parameters Value 

Number of chromosome 20 

Bits per parameter 16 

Number of parameters 5 

Chromosome length 80 

Total bits in the population 1600 

Mutation probability 1 % 

Number of inverted bits 16 

Templates parameters range [-5, 5] 

 

  The best chromosome and the following templates were 
found after the 108 generations: 
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Figure 5 shows that residual/regional anomalies are 
satisfactorily separated by the genetically trained ML-CNN 
approach. 

B. ML-CNN Applications to Synthetic Examples 

The multi-level CNN with templates obtained as in (9) was 
applied to magnetic data of the synthetic example consisting of 
four dipoles with properties described in Table 3; the magnetic 
map corresponding to the raw data of Table 3 is shown in Fig. 
6(c) and that of CNN output data in Fig. 6(d). 
 

Table 3. Synthetic magnetic data with 4 dipoles. 

Parameters (x,y) coordinate Z (dip) L (along) α (angle) 

Dipole 1 32,32 15 20 20 

Dipole 2 40,45 5 10 90 

Dipole 3 40,25 6 8 90 

Dipole 4 25,30 8 8 90 

 

 

Fig. 6. A synthetic example for testing procedure of magnetic
data: vertical magnetic field of 4 dipoles having different
(x,y) coordinates with properties as in Table 3: (a) 
regional anomaly (contour interval 0.03 nT), (b) residual
anomaly (contour interval 0.2 nT), (c) total vertical
magnetic anomaly of 4 dipoles (contour interval 0.1 nT), 
and (d) ML-CNN output (contour interval 0.02 nT). 
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C. Detection of Hittite Empire Walls with ML-CNN 

The Hittite civilization has been investigated since1966 by 
archeologists such as A. Muller and geophysicists like H. 

Stumpel [22], [23].  
The magnetic anomaly map of the ruins of the Hittite Empire 

is shown in Fig. 7(a), and data obtained from Fig. 7(a) is taken 
as initial data and applied to CNN as input as well as the initial 
state. In the following, ML-CNN results shown in Figs. 7(c) 
through 7(d) are compared with the results of the classical 
Halck’s second vertical-derivative-based approach shown in 
Fig. 7(b). It is clearly observed that ML-CNN has much better 
separated potential anomalies, as compared to the classical 
deterministic methods. The real data can also be evaluated by 
altering multi-level process parameters, a feature that is not 
available with the classical methods. It has been observed that 
as the level number is increased, the ML-CNN’s output 
separates the dominant factors of the real data. The precise 
information about the location of the buried walls of the Hittite 
civilization in the Sivas-Altinyayla region of Turkey has been 
obtained and is exhibited with Figs. 7(c) and 7(d) in the paper 
and compared with those of the other methods. 
 

 

Fig. 7. Treatment of data from ruins of the Hittite Empire: (a) 
magnetic anomaly map of ruins of the Hittite Empire, (b) 
Halck’s second vertical derivative approach output for 
real data, (c) ML-CNN output for real data of the Hittite 
Empire, and (d) three-level ML-CNN output. 
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2. For Gravitational Data 

The second application to potential anomaly separation is the 
classification of raw gravitational data using ML-CNN. The 
following formula is used to calculate the gravity effects of a 
buried sphere at any point P on the earth’s surface: 
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where k0 =6.67×10-8 cm3gr-1s-2 is the gravitational constant, r 
the radius of the sphere ρ , the density of the sphere, h the depth 
of the sphere’s center, x and y the coordinates of P measured 
with the origin being the projection of the sphere’s center to the 
surface, and G the value of the gravity anomaly. Figure 8 
shows the change in the gravity anomaly with respect to 
distance in the x direction. 

A. Training CNN for Gravitational Data 

Three spheres with different sizes, densities, and coordinates 
as described in Table 4 have been used for training an ML-
CNN. The sphere placed at the deepest location disturbs the 
gravity anomaly effects of the sphere closer to the surface. 
Genetic algorithm parameters are shown in Table 5. Figure 9(c) 
depicts the input data and Fig. 9(b) the desired output data. 

Training based on these data resulted in the following best 
chromosome and templates after 403 generations: 
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As clearly indicated by Fig. 9, very good separation is 
achieved by using the ML-CNN approach. 

 
 

Fig. 8. Synthetic sphere model 
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Table 4. Gravity model with 3 spheres. 

Parameters (x,y) coordinates h (depth) r (radius) ρ (density)

sphere 1 31,31 10 6 1 

sphere 2 46,51 3 2 13 

sphere 3 16,16 4 2 1.2 

 

 

Table 5. Genetic algorithm training parameters for gravitational data.

Parameters Value 

Number of chromosome 30 

Bits per parameter 16 

Number of parameters 5 

Chromosome length 2400 

Total bits in the population 1600 

Mutation probability 1% 

Number of inverted bits 24 

Templates parameters range [-8, 8] 

 

 

Fig. 9. A synthetic example of three spheres with properties in 
Table 4 for training gravitational data: (a) regional 
anomaly field (contour interval 100 mGal), (b) residual 
anomaly map (contour interval 10 mGal), (c) total gravity 
anomaly field (contour interval 100 mGal), and (d) ML-
CNN output (contour interval 0.005 mGal). 
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B. ML-CNN Applications to Synthetic Examples 

The ML-CNN with templates obtained in part A of this 
section was applied to the gravitational data of the synthetic 
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example consisting of four spheres with properties described as 
in Table 6; the measured potential anomaly map corresponding 
to the raw data of Table 6 is shown in Fig. 10(c) and that of 
ML-CNN output data in Fig. 10(d). 
 

Table 6. Synthetic gravity data with 4 spheres. 

Parameters (x,y) coord. h (depth) r (radius) ρ (density)

Sphere 1 31,31 20 10 1.2 

Sphere 2 41,43 8 4 1 

Sphere 3 18,44 6 3 0.9 

Sphere 4 19,16 5 3 1.1 

 

 

 

Fig. 10. The synthetic example of four spheres with properties
in Table 6 for testing ML-CNN for gravitational data: 
(a) regional anomaly field (contour interval 100 mGal),
(b) residual anomaly map (contour interval 15 mGal), (c) 
bouguer anomaly field (contour interval 100 mGal), and 
(d) ML-CNN output (contour interval 0.003 mGal). 
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C. Analysis of Potential Anomaly Map of Dumluca Chromite 
Iron Ore Using ML-CNN 

The gravity anomaly map of the Dumluca chromite ore 
around Divriği, Turkey is given in Fig 11(a); the real data  
corresponding to this map was applied to a multi-level CNN 
with templates obtained in part A of this section. Halck’s   
second vertical derivative approach is applied to Fig 11(a), and 
its outputs are shown in Figure 11(b), while CNN outputs are 
shown in Figs. 11(c) through 11(d). The studies on this region 
show that the coordinates of anomalies obtained using the ML-
CNN approach conform with the iron ore concentration 

regions reported in [24] in the sense that some minor 
concentrations were missed but there were no false detections. 
 

 

Fig. 11. (a) Dumluca gravity anomaly map (contour interval is 
0.2), (b) Halck’s second derivative approach output 
(contour interval is 0.01), (c) three level ML-CNN 
output (contour interval is 0.003), and (d) five level 
ML-CNN output (contour interval is 0.003). 

0 50 100 150 200 
meter 

scale 

0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

(a)

(c) (d)

(b) 
0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.55 

0.6 

0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.55 

0.6 

 

IV. Conclusions 

In this paper, multi-level cellular neural networks (ML-
CNN) have been presented and used for evaluating 
geophysical data concerning potential anomaly separation and 
border detection. CNNs trained with synthetic data using 
genetic algorithms have been successfully applied in particular 
to the real data of two important geophysical sites in Turkey: 
the Dumluca chromite ore site and the Hittite ruins 
archeological site. The studies on Dumluca show that the 
coordinates of anomalies obtained using the ML-CNN 
approach conformed well with the iron ore concentration 
regions reported in [24] by MTA, the General Directorate of 
Research and Exploration. In particular, the residual separation 
of ML-CNN has provided satisfactory results; it has been 
observed that as the level number is increased ML-CNN better 
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separates the dominant factors of the real data and has a sharper 
separation and edge detection property than the classical 
derivative based methods.  

Future research directions may include applications such as 
fault-line location and land-mine detection. 

References 

[1] W.C. Dean., “Frequency Analysis for Gravity and Magnetic 
Interpretation,” Geophysics, vol. 23, 1958, pp. 97-127. 

[2] B.K. Bhattacharyya, “Two-Dimensional Harmonic Analysis as a 
Tool for Magnetic Interpretation” Geophysics, vol. 30, no. 5, Oct. 
1965, pp.829-857.  

[3] D. Fuller, “Two-Dimensional Frequency Analysis and Design of 
Grid Operators,” Mining Geophysics, vol. 2, 1967, pp. 658-708. 

[4] E.G. Zurflueh, “Applications of Two-Dimensional Linear Wave-
Length Filtering,” Geophysics, vol.32, no. 6, 1967, pp. 1015-1035. 

[5] P.M. Lavin and J. F. Devane, “Direct Design of Two-Dimensional 
Digital Wavenumber Filters,” Geophysics, vol. 35, 1970, pp.1073-
1078. 

[6] W. G. Clement, “Basic Principles of Two-Dimensional Digital 
Filtering,” Geophysical Prospecting, vol. 21, 1973, pp. 125-145. 

[7] W. L. Anderson, “Computer Program Numerical Integration of 
Related Hankel Transforms of Orders 0 and 1 by Adaptive Digital 
Filtering,” Geophysics, vol. 44, no. 7, 1979, pp. 1287-1305. 

[8] R.O. Hansen and R.S. Pawlowski, “Reduction to the Pole at Low 
Latitudes by Wiener Filtering,” Geophysics, vol. 54, 1989, pp. 
1607-1613. 

[9] R.O. Hansen and M. Simmonds, “Multiple-Source Werner 
Deconvolution,” Geophysics, vol. 58, 1993, pp. 1792-1800. 

[10] R.J. Blakely and R.W. Simpson, “Approximating Edges of Source 
Bodies from Magnetic or Gravity Anomalies,” Geophysics, vol. 
51, no. 7, 1986, pp. 1494-1498. 

[11] M. Fedi and T. Quarta “Wavelet Analysis for the Regional 
Residual and Local Separation of Potential Field Anomalies,” 
Geophysical Prospecting, vol. 46, 1988, pp.507-525. 

[12] P. Hornby, F. Boschetti, and F.G. Horowitz, “Analysis of Potential 
Field Data in the Wavelet Domain,” Geophysical J. International, 
vol. 137, 1999, pp. 175-196. 

[13] T.A. Ridsdill-Smith and M.C. Dentith, “Wavelet Transform in 
Aeromagnetic Processing,” Geophysics, vol. 64, no. 4, 1999, pp.  
1003-1013.    

[14] D. Holden, N. Archibald, F. Boschetti, and M. Jessell, “Inferring 
Geological Structures Using Wavelet-Based Multiscale Edge 
Analysis and Forward Models,” Exploration Geophysics, vol. 31, 
2000, pp. 617-621.  

[15] F. Boschetti, P. Hornby, and F.G. Horowitz, “Wavelet Based 
Inversion of Gravity Data,” Exploration Geophysics, vol. 32, 
20001, pp. 48-55.  

[16] O.N. Ucan, B. Sen, A.M. Albora, and A. Özmen, “A New Gravity 

Anomaly Separation Approach: Differential Markov Random 
Field (DMRF),” Electronic Geosciences, vol. 5, no. 1, 2000. 

[17] O.N. Ucan, S. Şeker, A. M. Albora, and A. Özmen, “Separation of 
Magnetic Field Data Using 2-D Wavelet Approach,” J. Balkan 
Geophysical Society, vol. 3, 2000, pp. 53-58. 

[18] L.O. Chua and L. Yang, ‘‘Cellular Neural Networks: Theory,’’ 
IEEE Trans. on Circuit and Systems, vol.35, 1988, pp. 1257-1272. 

[19] J.H. Holland, Adaptation in Neural and Artificial Systems, 
University of the Michigan Press, Ann Arbor, MI, 1975. 

[20] T. Kozek, T. Roska, and L.O. Chua. ‘‘Genetic Algorithms for 
CNN Template Learning,’’ IEEE  Trans. on Circuit and Systems, 
vol. 40, no. 6, 1988, pp. 392-402. 

[21] L. Davis, Handbook of Genetic Algorithms, Van Nostrand 
Reinhold, New York, 1991. 

[22] H. Stümpel, ‘‘Untersuchungen in Kusakli: Geophysikalische 
Prospektion,” Mitteilungen der Deutschen Orient-Geselschaft, 
Berlin, vol. 129, 1997, pp. 134-140. 

[23] H. Stümpel, ‘‘Untersuchungen in Kusakli: Geophysikalische 
Prospektion,” Mitteilungen der Deutschen Orient-Geselschaft, 
Berlin, vol. 130, 1998, pp. 144-153. 

[24] N. Yıldız, “Drilling Report of Divriği-Dumluca Iron Ore,” MTA 
Report, no. 315, Ankara, 1977. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Erdem Bilgili received the BS degree in 
electronics and communication engineering 
from Yıldız Technical University (YTU), 
Turkey in 1996 and the MS degree in 
electronics engineering from Gebze Institute of 
Technology (GYTE), Turkey in 1999. He is 
currently a PhD student in electronics 

engineering, GYTE, Turkey. From 1998 to 2004, he worked for 
GYTE as a Research Assistant. From 2000 to 2004, he also worked for 
TUBITAK MAM as a Part-Time Researcher. Since 2004, he has been 
working for TUBITAK MAM. His research interests include the 
applications of neural networks, cellular neural networks, genetic 
algorithms, image processing, pattern recognition, microwave imaging 
techniques, microwave tomography, and geophysics. 



ETRI Journal, Volume 27, Number 3, June 2005 Erdem Bilgili et al.   303 

I. Cem Göknar (F IEEE) was born in Istanbul, 
Turkey. He received the B.Sc. and M. Sc. 
degrees from Istanbul Technical University and 
the Ph.D degree from Michigan State 
University in 1969. He received NATO’s Senior 
Scientist Grant and the Minna-James-
Heineman-Stiftung Award and was a Visiting 

Professor at the Univ. of California at Berkeley, Univ. of Illinois, U-C, 
Univ. of Waterloo at Ontario, Canada and Technical University of 
Denmark at Lyngby. From 1995-1997 he served as European Circuit 
Society Council member. Currently, he is a professor, head of 
Electronics and Communications Engineering Department, Director of 
Science and Technology Institute at Doğuş University, Istanbul, Turkey, 
and IEEE-CAS Chapter Chair, Turkey Section. His research interests 
include nonlinear networks and systems, signal processing in general 
and neural networks and applications, interconnect modeling and 
simulation, and fast-timing simulators in particular. 
 

Ali Muhittin Albora received the BS, MS and 
PhD degrees in geophysics engineering from 
Istanbul University, Istanbul, Turkey, in 1985, 
1992 and 1998. He was appointed as an 
Assistant Professor in 2001, and as an Associate 
Professor in 2003. Since 2003, he has been with 
Istanbul University, Engineering Faculty, 

Department of Applied Geophysics. His research interests include the 
use of potential field methods in the solution of regional and crustal 
geological problems, and the applications of computer techniques in 
geophysics. 
 

Osman Nuri Uçan was born in Kars in January, 
1960. He received the B.Sc., M.Sc. and PhD 
degrees in electronics and communication 
engineering from Istanbul Technical University 
(ITU) in 1985, 1988, and 1995. During 1986-
1997 he worked as a Research Assistant at ITU 
and was a Supervisor at TUBITAK-Marmara 

Research Center in 1998. He is a Professor, Vice Dean of the 
Engineering Faculty, and Vice Chair of EE Engr. Dept., all at Istanbul 
University (IU). He is an Organization Committee Member of “IEEE 
Signal Processing and Applications Conference (SIU)” and Chief 
Editor of “Recent Researches on Electronics and Earth Science 
Conference (RREESC).” His current research areas include 
information theory, jitter analysis of modulated signals, channel 
modeling, cellular neural network systems, random neural networks, 
wavelets, turbo coding and Markov Random Field applications on real 
geophysics data, satellite based 2-D data, and underwater image 
processing. 


	I. Introduction
	II. Multi-level Cellular Neural Network
	III. ML-CNN Applications on Synthetic and Real Data
	IV. Conclusions
	References

