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ABSTRACT 
The synchronization problem for a class of delayed 

complex dynamical networks via employing variable structure 
control has been explored and a solution proposed. The 
synchronization controller guarantees the state of the dynamical 
network is globally asymptotically synchronized to arbitrary 
state. The switching surface has been designed via the left 
eigenvector function of the system, and assures the 
synchronization sliding mode possesses stability. The hitting 
condition and the adaptive law for estimating the unknown 
network parameters have been used for designing the controller 
hence the network state hits the switching manifold in finite 
time. Two illustrative examples along with the respective 
simulation results are given, which employ the designed 
variable structure controllers. 

 
INTRODUCTION 
 Network structures have been subject of research for 
considerable time in mathematical systems and control science 
as well as in physics. Furthermore, it has been observed for 
some time that complex dynamic networks exist in all fields of 
science and humanities as well as in the nowadays networked 
technical and non-technical systems, such formations of moving 
objects and individuals or societal groups. Thus the latter 

systems have been studied extensively over the past couple of 
decades. As it is well-known, traditional networks are 
mathematically represented by a graph, e.g. a pair { }EPG ,=   

in which P  represents a set of N  nodes (or vertices)  

NPPP ,,, 21 L  and  E   is a set of links (or arcs or edges)   

NLLL ,,, 21 L  each of which connects two elements in P  . The 

well known chains, grids, lattices and fully connected graphs 
have been formulated to represent the so-called completely 
regular networks. 

 

   
          (a)                                         (b) 

Fig. 1: A random graph network (a), and a small-world 
network (b) [7] 

 
 In due course of developments, the theory of random 

graphs (Figure 1-a) was first introduced by Paul Erdos and 
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Alfred Rényi [1], who discovered the probabilistic methods 
were often useful to tackle problems in graph theory. In 
recognition to their work, now these are known as ER random 
graph models. The ER random graph models have served as 
idealized coupling architectures for gene networks and the 
spread of infectious diseases for a long time, and recently for 
studying the spread of computer viruses too.  

In recent studies, Watts and Strogatz [2] introduced the so-
called small-world networks (Figure 1-b), or so-called WS 
networks, in order to describe the transition from a regular 
network to a random network [3], [7]. Subsequently, in their 
studies [4-6], Barabasi and Albert have argued that the scale-
free nature (Fig. 2) of real-world networks is rooted in two 
general mechanisms: growth and preferential attachment 
respectively. It thus gives rise to dynamical nodes in networks 
and not solely static ones. In the real world at large, many real 
systems such as biological, technological and social systems can 
be described by various models of complex networks [8], [9]. 
One of the interesting and rather significant phenomena in 
complex dynamical networks [10] is the synchronization of all 
dynamical nodes as well as the appearance of chaotic modes. 

 

 
Fig. 2: A scale-free network [7] 

 
 
In this paper, a class of general complex dynamical network 
models with coupling delays is explored with regard to the 
controlled synchronization by applying the variable structure 
control theory. The synchronization properties of these models 
with matched conditions uncertainty and unmatched conditions 
uncertainty by using of the variable structure control VSC are 
investigated.  

Via Lyapunov functional methodology and by formulation 
of an adequate proper adaptive law, we derive synchronization 
conditions for both cases. The next section presents a selected 
survey, a continuous-time dynamical network model with 
coupling time-delays and some preliminaries. In subsequent 
section, the switching surface for the SVC is constructed by 
using the left eigenvector function method.  

 
The stabilities of the network synchronized states in both 

cases, with known bounds and with unknown bounds on 

nonlinear terms, are investigated in the two sections, 
respectively, thereafter. Then, the obtained results and computer 
simulations for two of benchmark examples are given. 
Concluding section and references follow thereafter. 

 
 FORMULATION OF DYNAMIC NETWORK MODEL 
AND APPLICATION OF THE VSC 

The synchronization in networks of coupled chaotic 
systems has received a great deal of attention during the last 
decade or so, e.g. see [10]-[18] for instance. In their work [10], 
Wang and Chen have established a uniform dynamical network 
model for such studies; also they explored its synchronization 
and control. Although, the model of Wang and Chen reflects the 
complexity from the network structure, still it is a fairly simple 
uniform dynamical network. A new model and chaos 
synchronization of general complex dynamical networks was 
also explored by Hu and Chen in [11], and by Lu and co-
authors in [12]. Further, Wang and Chen [13] explored the 
synchronization problem in small-world dynamical networks, 
and similarly Barhona and Pecore studied the synchronization 
in heir small world systems in [14]. In [15], Wang and Chen 
investigated the synchronization in scale-free networks with 
regard to robustness and fragility. Subsequently, X. Li and Chen 
discussed synchronization and de-synchronization of complex 
dynamical networks from an engineering point of view in [16].  

More recently, in works [17]-[21], the complex dynamical 
networks with time-delays have received particular attention 
more attentions because its presence is frequently a source of 
instability. For, time-delays commonly, or even unavoidably, 
exist in various network-like systems due to some inherent 
mechanism and/or the finite propagation speed of information 
carrying signals. Z. Li and Chen proposed in [17] a linear state 
feedback controller design to realize the synchronization for the 
networks with coupling delays. Similarly, C. Li and Chen 
proposed a solution in the case with coupling delays in work 
[18]. Further, P. Li and co-authors explored in [19] one way of 
global synchronization in delayed networks, and Z. Li and co-
authors in [20] solved the same with regard to desired orbit. It 
should be noted controlled synchronization in complex 
dynamical networks with either nonlinear delays or with 
coupling delays in [18]-[21] was studied via the methodology of 
Lyapunov stability analysis. In parallel, also the design of robust 
decentralized control for large-scale systems with time-varying 
or uncertain delays has been revisited via several approaches 
and feasible designs derived in [22]-[25]. These studies too 
have been carried out via Lyapunov stability analysis and 
synthesis. The approach via variable structure control (VSC) is 
to be noted for their efficiency in dealing with all sorts of time-
delay and uncertainty phenomena in dynamical systems. 

We consider a complex dynamical network consisting of   
N identical nodes (n dimensional dynamical systems) with 
time varying delay coupling 
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,))((),(
1
∑
=

+−++=
N

j
iiijjijiii uBttxAtxfAxx τ&     

Ni ,,2,1 L=                         (1) 

Where: nT
iniii Rxxxx ∈= ),,,( 21 L , represents the state 

vector of the i-th node; ),( txf i : nn RRR →×  are smooth 

nonlinear vector function; )(tijτ  is bounded time varying delay 

and differentiable too satisfying ∞<≤≤ ijij t ττ )(0 , where ijτ is 

positive scalar; and ∑
=

−
N

j
ijjij ttxA

1
))(( τ  represent the uncertain 

interconnections with time delay. Furthermore, nnRA ×∈ , 
mn

i RB ×∈  are constant system matrices of appropriate 

dimensions, and m
i Ru ∈  represents the control input. When the 

network achieves synchronization, namely, the state 

Nxxx === L21 , as ∞>−t , the coupling control terms 

should vanish: 0))((
1

=+−∑
=

ii

N

j
ijjij uBttxA τ . This ensures that 

any solution )(txi  of a single isolate node is also a solution of 

the synchronized coupled network. 
Let )(ts  be a solution of the isolate node of the network, 

which is assumed to exist and is unique, satisfying: 

( )tsfAss ,+=&  .                        (2) 

In here )(ts  can be an equilibrium point, a nontrivial 
periodic orbit, or even a chaotic orbit. The objective of control 

here is to find some smooth controllers m
i Ru ∈  such that the 

solution of systems (1) asymptotically synchronize with the 
solution of (2), in the sense that 

 
0)()(lim =−

→∞
tstxi

x
, Ni ,,2,1 L=       (3) 

Let it be defined stxe ii −= )( . Then subtracting (2) from (1) 

yields the error dynamical system 

ii

N

j
ijjijiii uBttxAsxfAee +−++= ∑

=1
))((),(

~ τ&   (4) 

where  

),(),(),(
~

tsftxfsxf ii −= . 

For deriving the proofs, given in sequel, certain convenient 
assumptions are given next. 

Assumption 1: The matrix pair ( )iBA,  is controllable. 

Assumption 2:  Each input matrix iB  is of full rank. 

Assumption 3: The nonlinear function f  satisfying 

)()(),(),( txtxtxftxf jiiji −≤− µ      (5) 

where 0>iµ  are constants, Nji ,,2,1, L= . 

Assumption 4: Suppose the interconnection matrix satisfy 
matching condition as follow: 

ijiij HBA =                                  (6) 

Assumption 5: The time delay terms in system (4) satisfy 

)())(( max txttx jijj ≤−τ                   (7) 

where  

)(max)(max txtx jj = . 

Therefore equation (4) can be rewritten as follows:  

∑
=

+−++=
N

j
iiijjijiiii uBttxHBsxfAee

1
))((),(

~ τ&  (8) 

 
CONSTRUCTING THE SWITCHING SURFACE FOR 
APPLYING VARIABLE STRUCTURE CONTROL  

The composite sliding surface of system (8) is defined by 
letting the composite sliding vector )(eσ in the state space be 
zero. This is to say that 

( ) [ ])(),(),( 2211 N
T
N

TT eeee σσσσ L=  (9) 

where 

( ) 0== iiii eCeσ , Ni ,,1L=          (10) 

are called the local sliding surface and [ ] NT
N

T Reee ∈= ,,1 L , 

while iC  are nm ×   constant matrices to be determined in due 

course. 
In order to construct the controller sought, the following 

two relevant lemmas from the literature are needed as well. 
Lemma 1 [24].  Suppose β  and Nbbb ,,, 21 L  be arbitrary 

vectors, then 

∑∑
==

+≤
N

i
i

T
i

T
N

i

T bbaaba
11

1
)(2

β
β           (11)  

where 0>β  is a positive constant. 

Lemma 2[24]. Suppose matrix 







=

2212

1211

DD

DD
D T  and its 

inverse matrix  







=

2212

1211

ΠΠ
ΠΠ

Π T  















−
= −

−
−

ΨΨ
ΠΠ

1
1112

1
131211111

DD

DD
D T

 (12) 

where 1
12

1
111213 )( −−−= DDDD TΨ  and 

1
12

1
13121111 )( −−−= TDDDDΠ  are the inverses.  
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Further, let the isolate subsystem as follows 

iiii uBAee +=&                              (13) 

be selected. Because ( )iBA,  is controllable, there exists 

matrix nm
i RK ×∈  that can make the matrix iii KBAA +=~

 be 

stable. And iB  is full rank matrix, we can assume 







=

i
i B

B ~
0

, 

mm
i RB ×∈~

. When the controller iiii veKu +=  is substituted 

in to (13), the equation is transformed to 

2121111
~~

iiiii eAeAe +=&                           (14) 

iiiiiii vBeAeAe
~~~

2221212 ++=&                      (15) 

Assume the stability eigenvalues of iA
~

 are 

miniimi −µµλλ ,,,,, 11 LL , and then define:  

















=

−min

i

i

µ

µ
Λ O

1

1 ,
















=

im

i

i

λ

λ
Λ O

1

2  

(16) 
The corresponding eigenvectors constitute the eigenvector 

matrix as 








21

21

ii

ii

VV

GG
. The eigenvector matrix is the inverse 

through the pole placement, so that the following equation 
holds 
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(17) 
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21
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0

0
~~

~~

i

i

ii

ii

ii

ii

ii

ii

AA
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Λ
Λ

ηη
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ηη
ξξ

 (20) 

Therefore  

11112111
~~

iiiiii AA Λξηξ =+                     (21) 

From the above, we know that 








21

21

ii

ii

ηη
ξξ

 is the right 

eigenvector matrix of 













2221

1211
~~

~~

ii

ii

AA

AA
. If we select 

[ ]21 iii VVC =                            (22) 

when the system trajectory hit the sliding mode, 
i.e. 2211 iiiiiii eVeVeC +==σ , then  

11
1

22 iiii eVVe −−=                         (23) 

Substitution of (23) into (14) yields the sliding mode equation  

11
1

212111 )
~~

( iiiiii eVVAAe −−=&                (24) 

Because mm
i RV ×∈2  and )( 1

1
221 iiii VVGG −−  are inverse, and 

due to Lemma 2, it follows 

11
1

21 iiii VV ξη −−=                             (25) 

Also upon substitution of (25) into (21) yields 

1111
1

21211 )
~~

( iiiiiii VVAA Λξξ =− −              (26) 

From the above we can know the eigenvalues of the sliding 
mode equation of system (13) represent the desired mn −  
stable eigenvalues. It is obvious that the sliding mode equation 
(14) is stable. From the above analysis, iC  is the left 

eigenvector of iA
~

 with desired m stable eigenvalues, then 

iiii CAC 2
~ Λ=                            (27) 

 
For the error complex system (4), because the coupling term is 
satisfying the matching condition, the sliding mode equation of 
system (4) is still satisfying equation (24), which has the 
desired eigenvalues. If the nonlinear and the coupling terms do 
not satisfy the matching condition, the system (4) can be 
written as follows 

),(
~~~

12121111 sxfeAeAe iiiiiii ++=&             (28) 

ii

N

j
ijjiji

iiiiiii

vBttxHB

sxfeAeAe

~
))((

~~

),(
~~~

1

22221212

+−+

++=

∑
=

τ

&

        (29) 

When 0=iσ , then 11
1

22 iiii eVVe −−= , so the above sliding mode 

equation of system (28) is 

),(
~

111 sxfeAe iiiii +=&                        (30) 

where 1
1

21211
~~

iiiii VVAAA −−= . It is obvious, matrix iA  is stable. 
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The first novel result is the synchronization condition for 
the complex network with unmatched uncertainty that is given 
according the next theorem. 

Theorem 1. If the nonlinear term ),(
~

sxf i  is unmatched, then 

the decentralized sliding mode of the interconnected system 
(30) is asymptotically stable, if and only if the inequality 

)(1 iiiik βλβµ +−<                     (31) 

holds true, where 01 >k  is constant, and 

{ } 0,max 1 <= imii λλλ L . 

Proof: Let V  be a candidate Lyapunov function for the 
dynamic system (30),  

∑
=

=
N

i
i

T
i eeV

1
11

&                           (32) 

Taking the derivative of V along the trajectory of system (30) 
yields 

[ ]∑
=

+=
N

i
iii

T
i sxfeAeV

1
111 ),(

~
2&               (33) 

Due to Assumption 3, there exist positive constant 1k  that 

makes 111 ),(
~

iiii eksxf µ≤ . Thus 

2
11

2
1

2
1

1
ii

i
iiii ekeeV µ

β
βλ ++≤&     

2
11

1
ii

i
ii ek 










++= µ

β
βλ            (34) 

due to Lemma 1. And then because 0<iλ , if ii
i

i k λµ
β

β −<+ 1
1  

it follows 0<V&  at once.  

DESIGNING THE SYNCHRONIZATION CONDITION: 
KNOWN BOUNDS ON NONLINEAR TERMS  

Although we have a set of stable sliding surfaces, unless the 
initial states and all system dynamics are always ensured to stay 
on the surface for all time, a set of decentralized sliding 
controllers is required, such that the global robust stability of 
the surface is assured. Traditionally, the hitting condition for 
small-scale system is 

0)()( <tt T σσ &                   (35) 

where 0)( =tσ is the sliding surface of some small-scale 
systems. Since the existence of interconnections and the lack of 
global information, equation (35) is not easily satisfied for the 
interconnected system. Hence, we require a global hitting 
condition of the sliding surface  

0
)(

)()(

1
<∑

=

N

i ii

iii
T
i

e

ee

σ
σσ &

                  (36) 

If ∑
=

=
N

i
iV

1
σ , the condition is readily derived from the stability 

theory of Lyapunov . 

Theorem 2: The motion of the system (4) asymptotically 
converges to the composite sliding surface 0)( =eσ , if and only 
if the following condition  

i
i

i
iiiiii eRBCeKu

σ
σ1)( −−= ,          (37) 

where  

∑
=

++=
N

j
jijiiiii txHBCCR

1
max )( εµ     

and  0>ε is constant, is satisfied.  

Proof: From (4) and (10), the sliding dynamics can be written as  

iii eC && =σ  

∑
=

+−++=
N

j
iiijijiiiiii uBCtxHBCsxfCAeC

1
)(),(

~ τ    

∑
=

−++

+−=
N

j
jijiiii

iiiiiiiii

txHBCsxfC

uBCeKBC

1

2

)(),(
~ τ

σΛ
       (38) 

Upon substitution of (37) into (38), the (38) can be written  
down as 

 

∑
=

−++−=
N

j
jijiiiii

i

i
ii txHBCsxfCeR

1

~

12

.
)(),( τ

σ
σσΛσ  

   (39) 
Then construct Lyapunov function as 

∑
=

=
N

i
iidV

1
σ                    (40) 

and obtain the time derivative of (40) as 

∑
=

=
N

i i

i
T
i

idV
1 σ

σσ &
&                  (41) 

Substitution of (37) and (39) into (41) yields 

[ ]∑
=

=
N

i i

T
i

i VdV
1

Σσ
σ&                          (42-a) 

[ ] =ΣV  












−−++ ∑

=

N

j
i

i

i
iijjijiiiiii eRtxHBCsxfC

1
2 )(),(

~

σ
στσΛ  (42-b) 

Because of 1max{ , , } 0i i imλ λ λ= <L  and Assumption 2, it 

follows that 
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∑
∑=
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−−+

+
≤

N

i

N

j
iiiijjijiii

iiiiiii

eRdtxHBCd

eCdd

V
1

1
)( τ

µσλ
&  

[ ]

∑ ∑

∑

= =

=












+−−−−

=

N

i
i

N

j
ijjijiiiiii

N

i
iii

eRtxHBCeCd

d

1 1

1

)( τµ

σλ
 

.0)(

)(

1 1
max

1 11

<−−

−+=

∑∑

∑∑∑

= =

= ==

N

i

N

j
jijiii

N

i

N

j
ijjijiii

N

i
iii

txHBCd

txHBCdd

ε

τσλ

(43) 

Thus, on the grounds of the designed controller and according 
to Theorem 2, the motion of the system (4) asymptotically 
converges to the composite sliding surface. 

DESIGNING THE SYNCHRONIZATION CONDITION: 
UNKNOWN BOUNDS ON NONLINEAR TERMS  

In practical terms, there exist iii esxf µ≤),(
~

, where iµ  

represents unknown parameters. In this section, we will design 
robust adaptive controller with unknown parameters. In order to 
derive the proof, conveniently, first another two assumptions are 
presented.  

Assumption 6: Let ( ) ( )ii BrankBfrank =,
~

. 

Assumption 7: Let 







=

i
i B

B
2

0
, where mm

i RB ×∈2  is an 

nonsingular matrix. 

When the transformation iiii veKu +=   is selected, then 

the sliding mode equation becomes 

11
1

212111 )
~~

( iiiiii eVVAAe −−=& .               (44) 

It is fairly easy to prove the asymptotic stability of the sliding 
mode trajectory by the constructing switching function. 
Therefore the main task here is to design a robust controller that 
guarantees the system trajectory shall reach the sliding surface 
from an arbitrary initial state. 

Theorem 3 Let Assumption 4 and Assumption 5 hold true. 
Then with  

iii eC=µ&̂ , iii µµµ −= ˆ~ ,        (45-a) 

the following robust adaptive controller 

  

−= iii eKu  

















++
−

∑
=

− N

j
iijijii

iii

ii xHBC

eC

BC

1
max

1

sgn

ˆ

)(
σε

µ
,   (45-a) 

where ˆiµ  is the estimate of the unknown parameter, and iµ , 

0>iε  are constants, uniformly, asymptotically stabilize the 

system (4) in the large. 

Proof: Consider the Lyapunov function as follows 

∑∑
==

+=
N

i
i

N

i
iV

1

2

1

~
2

1 µσ                 (46) 

The time derivative of (46) is as follows: 

∑∑
==

+=
N

i
ii

N

i i

iii
T
i ee

V
11

ˆ~)()( µµ
σ

σσ &&
&   

∑∑

∑
==

=

+

























−+

++

−

=
N

i
ii

N

i N

j
ijjijii

iiiii

iiiiii

i

T
i

txHBC

sxfCuBC

eKBC

11

1

2

ˆ~

)(

),(
~ µµ

τ

σΛ

σ
σ &   

.ˆ~

)(

11

1
1

i

N

i
ii

N

i
ii

N

i

N

j
iiiijjijii

iiiiiiiii

uBCtxHBC

eCeKBC

εσλµµ

τ

µσλ

−≤+



















+−+

+−

≤

∑∑

∑
∑

==

=
=

&

  (47) 

Because of 0<iλ , 0>iε , apparently (47) is negative. Thus, 

the system (4) can be stabilized by means of the controller (45-
a, b) , which is designed according to Theorem 3. 
 

ILLUSTRATIVE EXAMPLES AND COMPUTER 
SIMULATIONS  

The chaotic Chua circuit is assumed in the nodes of the 
complex dynamical network. A singular Chua circuit is 
described by the piecewise-linear system  

))(( xfyxpx −+−=& , zyxy +−=& , qyz −=&  

where 

)11)((
2

1
)( 010 −−+−+= xxmmxmxf  

with constants 00 <m  and 01 <m , 10=p , 87.14=q , 

68.0,27.1 10 −=−= mm . Let it be set 

1 2 3, ,x x x y x z= = = . Then this Chua circuit can also be 

represented as follows: 

))(( 1211 xfxxpx −+−=& , 3212 xxxx +−=& , 23 qxx =& . 
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The corresponding complex network with coupling time-delay 
is represented by 
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Fig. 3: Trajectories of chaotic chua circuit in its 3D state space. 

 
In order to simulate it conveniently, it has been assumed 

02.0<ijτ . On the grounds of Theorem 1, the synchronization 

error trajectory of chaotic Chua circuit can be computer 
simulated to give the results on synchronization shown in Fig. 4. 
These results show the synchronization has been enforced rather 
efficiently by synchronization employing the proposed variable 
structure control design. 
 

 
Fig. 4: Synchronization errors 1ie  of chaotic Chua circuit. 

 

The Duffing forced-oscillation system is used as nodes in a 
dynamical network. A singular Duffing forced-oscillation 
system is described as 

yx =& , txyy cos121.0 3 +−−=&  

Let it be defined xx =1 , yx =2 . Then the Duffing forced-

oscillation system can also be expressed as follows: 

21 xx =& , txxx cos121.0 3
122 +−−=&  

Its phase portrait is depicted in the next figure.  
 

 
Fig. 5: Trajectory of Duffing forced-oscillation system in its 2D state 

(phase) space. 
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Fig. 6: The synchronization errors of the Duffing forced-

oscillation system. 
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By using making use of the controller in Theorem 3, the 
synchronization error trajectories of Duffing forced-oscillation 
system has been simulated and the error signals are depicted in 
Fig. 6. These simulation results show that the network 
synchronization by the designed variable structure controller is 
enforced rather efficiently. 

CONCLUSION 

The synchronization problem in coupled complex dynamic 
delay network has been explored. Both systems with known 
bound and with unknown bound on nonlinear terms have been 
successfully taken into consideration. Stability solutions to 
synchronization are proposed that employ variable structure 
control theory along with constructive design of the sliding 
surfaces and the switching. The switching surface has been 
designed via the left eigenvector function of the system, which 
can assure the synchronization sliding mode possesses stability. 
The hitting condition and the adaptive law for estimating the 
unknown network parameter have been used for designing the 
controller, which can assure the network state hitting the 
switching manifold in finite time.  

The two benchmark examples, based on employing chaotic 
Chua circuit and on Duffin’s oscillator at the nodes, have been 
used for illustrating the performance via synchronization error 
trajectories. The respective computer simulations demonstrated 
both efficient network synchronization as well as quality 
transient performance.   
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