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ABSTRACT systems have been studied extensively over theqoagte of
The synchronization problem for a class of delayed decades. As it is well-known, traditional networkse
complex dynamical networks via employing variabieicture mathematically represented by a graph, e.g. a @air{P, E}

control has been explored and a solution propoSdte in which P represents a set oN nodes (or vertices)
synchronization controller guarantees the statheftlynamical P.P,-,Py and E is a set of links (or arcs or edges)

network is globally asymptotically synchronized aobitrary )

state. The switching surface has been designectheialeft Ly,Lp,+ Ly each of which connects two elementsHn. The
eigenvector function of the system, and assures the well known chains, grids, lattices and fully conteet graphs
synchronization sliding mode possesses stabilitye Titting have been formulated to represent the so-calledpletety
condition and the adaptive law for estimating thenown regular networks.

network parameters have been used for designingathieoller
hence the network state hits the switching manifoldinite
time. Two illustrative examples along with the resfive
simulation results are given, which employ the giesd
variable structure controllers.

INTRODUCTION PSR D
Network structures have been subject of research fo e 40 o 00"
considerable time in mathematical systems and acbsatience @)

as well as in physics. Furthermore, it has beeremvks for
some time that complex dynamic networks exist Irfi@lds of
science and humanities as well as in the nowadeggonked
technical and non-technical systems, such formatddnmoving
objects and individuals or societal groups. Thus thtter

Fig. 1. Arandom graph network (a), and a small-world
networlk (b) [7]

In due course of developments, the theory of random
graphs (Figure 1-a) was first introduced by Pauldsrand
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Alfred Rényi [1], who discovered the probabilisticethods
were often useful to tackle problems in graph tiedn
recognition to their work, now these are known &sr&ndom
graph models. The ER random graph models have dease
idealized coupling architectures for gene netwoaksl the
spread of infectious diseases for a long time, r@uently for
studying the spread of computer viruses too.

In recent studies, Watts and Strogatz [2] introduite so-
called small-world networks (Figure 1-b), or soledl WS
networks, in order to describe the transition franregular
network to a random network [3], [7]. Subsequenitytheir
studies [4-6], Barabasi and Albert have argued thatscale-
free nature (Fig. 2) of real-world networks is mxbtin two
general mechanisms: growth and preferential attachm
respectively. It thus gives rise to dynamical nothegsetworks
and not solely static ones. In the real world agda many real
systems such as biological, technological and seggiems can
be described by various models of complex netw@ks[9].
One of the interesting and rather significant pmeeoa in
complex dynamical networks [10] is the synchronaatof all
dynamical nodes as well as the appearance of chaoties.

Fig. 2: A scalefree networ [7]

In this paper, a class of general complex dynamedwork
models with coupling delays is explored with regaodthe
controlled synchronization by applying the varialsteucture
control theory. The synchronization propertieshaddse models
with matched conditions uncertainty and unmatchaatitions
uncertainty by using of the variable structure oan¥/SC are
investigated.

Via Lyapunov functional methodology and by formidat
of an adequate proper adaptive law, we derive sgpmitation
conditions for both case3he next section presents a selected
survey, a continuous-time dynamical network modethw
coupling time-delays and some preliminaries. Inssgjoent
section, the switching surface for the SVC is camded by
using the left eigenvector function method.

The stabilities of the network synchronized statedoth
cases, with known bounds and with unknown bounds on

nonlinear terms, are investigated in the two sestio
respectively, thereafter. Then, the obtained resitd computer
simulations for two of benchmark examples are given
Concluding section and references follow thereafter

FORMULATION OF DYNAMIC NETWORK MODEL
AND APPLICATION OF THE VSC

The synchronization in networks of coupled chaotic
systems has received a great deal of attentiomgluhie last
decade or so, e.g. see [10]-[18] for instancehéirtwork [10],
Wang and Chen have established a uniform dynamitalork
model for such studies; also they explored its kymization
and control. Although, the model of Wang and Cleftects the
complexity from the network structure, still it asfairly simple
uniform dynamical network. A new model and chaos
synchronization of general complex dynamical neksowas
also explored by Hu and Chen in [11], and by Lu aod
authors in [12]. Further, Wang and Chen [13] exgiothe
synchronization problem in small-world dynamicaltwearks,
and similarly Barhona and Pecore studied the symihation
in heir small world systems in [14]. In [15], Waiagd Chen
investigated the synchronization in scale-free péta with
regard to robustness and fragility. Subsequently,iXand Chen
discussed synchronization and de-synchronizatioconfiplex
dynamical networks from an engineering point ofwia [16].

More recently, in works [17]-[21], the complex dynigal
networks with time-delays have received particuddétention
more attentions because its presence is frequansigurce of
instability. For, time-delays commonly, or even voidably,
exist in various network-like systems due to somberent
mechanism and/or the finite propagation speed fofrimation
carrying signals. Z. Li and Chen proposed in [1Thaar state
feedback controller design to realize the synclaation for the
networks with coupling delays. Similarly, C. Li andhen
proposed a solution in the case with coupling deliaywork
[18]. Further, P. Li and co-authors explored in][@8e way of
global synchronization in delayed networks, and.izand co-
authors in [20] solved the same with regard toreéesorbit. It
should be noted controlled synchronization in caxpl
dynamical networks with either nonlinear delays with
coupling delays in [18]-[21] was studied via thethmelology of
Lyapunov stability analysis. In parallel, also ttesign of robust
decentralized control for large-scale systems wiftie-varying
or uncertain delays has been revisited via sewapploaches
and feasible designs derived in [22]-[25]. Thesedigts too
have been carried out via Lyapunov stability arialysnd
synthesis. The approach via variable structurerobf¥SC) is
to be noted for their efficiency in dealing with sbrts of time-
delay and uncertainty phenomena in dynamical system

We consider a complex dynamical network consistihg
N identical nodes IQdimensional dynamical systems) with
time varying delay coupling
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N
% = Ax + f(Xi:t)*'ZlAij (t-r; (1) + By,
J:

i:lzal"aN (1)
Where: x = (Xg, %2, %,)" OR", represents the state
vector of the i-th node;f(x,t):R"xR -~ R" are smooth
nonlinear vector functionr;; (t) is bounded time varying delay
and differentiable too satisfying < r; (t) < 7;; < oo, wherer;; is
N
positive scalar; and}, A;x; (t —7;; (t)) represent the uncertain
j=1
interconnections with time delay. Furthermoré O R™",
B, OR™™ are constant system matrices of appropriate

dimensions, and; OR™ represents the control input. When the

network achieves synchronization, namely, the
X =X, =---=Xy, as t—->ow, the coupling control terms

N
should vanish:} A;x; (t —7; (t)) + By, =0. This ensures that
i=

any solutionx (t) of a single isolate node is also a solution of

the synchronized coupled network.
Let s(t) be a solution of the isolate node of the network,

which is assumed to exist and is unique, satisfying

s=As+f(s t). (2)

In here s(t) can be an equilibrium point, a nontrivial
periodic orbit, or even a chaotic orbit. The ohijextof control
here is to find some smooth controlless1R™ such that the

solution of systems (1) asymptotically synchronizih the
solution of (2), in the sense that

lim|x ) - s =0, i=12-N  (3)

Let it be definedg = x (t) -s. Then subtracting (2) from (1)
yields the error dynamical system

- N
& =Ag "’f(xi,s)"'zlAij t-r; ) +BY (4)
J_

where

f(%,5)=f(x.t)-f(st).
For deriving the proofs, given in sequel, certanvwenient
assumptions are given next.
Assumption 1: The matrix pair(A, Bi) is controllable.

Assumption 2: Each input matrixB, is of full rank.

Assumption 3: The nonlinear functiorf satisfying

(HETORRICH By MYGESMG 6!

where 44 >0 are constants, j =12,---,N .

Assumption 4: Suppose the interconnection matrix satisfy
matching condition as follow:

Aj =BiHjj (6)
Assumption 5: The time delay terms in system (4) satisfy
I (€ =73 ()] = X max(®) 7

where
Xj max(t) = ma>1|xj (t)" .
Therefore equation (4) can be rewritten as follows:

- N
& = Ag +1(x,9+2 BHjx (t-7; 1) +Bu (8)
=

state CONSTRUCTING THE SWITCHING SURFACE FOR
APPLYING VARIABLE STRUCTURE CONTROL

The composite sliding surface of system (8) is rafi by
letting the composite sliding vectar(e) in the state space be

zero. This is to say that

o@)=|of @), i), - olen)]©)

where

oi(e)=Cig =0,i=1--N (10)

are called the local sliding surface aad lelT e{,JD RN,

while C; aremxn constant matrices to be determined in due

course.

In order to construct the controller sought, thibofeing
two relevant lemmas from the literature are neededell.
Lemma 1 [24]. Supposep and b;,b,,---,by be arbitrary

vectors, then

2a7 (%b) < ,BaTa+%§jl o'b (11)

where 8> 0 is a positive constant.

D D
Lemma 2[24]. Suppose matril = Tll 121 and its
D12 Dy,

7 7
inverse matrix /7 =| _ M 2
T 12 [Ty

D_lz[ 114
T =
_"LDlz Dlll

¥ =(Dy3 - DszDl_llDlz)_l

/711D12 D1_31J (12)

where and

/1,,=(Dy; - D;,D;3D,, ) are the inverses.
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Further, let the isolate subsystem as follows
& = Ae By (13)

be selected. Becausfh, B;) is controllable, there exists

matrix K; OR™" that can make the matriiz‘ = A+BK; be

0
stable. AndB; is full rank matrix, we can assunt :£§ j
i

B OR™™. When the controllen, = K, +V; is substituted
in to (13), the equation is transformed to

€1 = A6t + A8 (14)
€2 = A2181 + Aoz + BY, (15)
Assume the stability eigenvalues  of A are

Airs s Aims i+ Min—m » @nd then define:

Hia Aig )
My = iz = .
Hin-m Aim
(16)

The corresponding eigenvectors constitute the e&sar

matrix as (Gil Sizj. The eigenvector matrix is the inverse
i1 Vi2
through the pole placement, so that the followingiagion
holds
[Gil QZJ[E}H '512]:[41 OIGH sza?)
Vii V2 \Ax Az 0 A A\Vu V
[511 5121(311 G\zj_lz(cu G\zj_l(/\l OJ(18)
Azr A \Vii M2 Vi 0 A,
(Gil Giz]_lz(fil 52} (19)
Vii M 12
(511 512}(51 {iz]:(fil 52}(41 OJ (20)
Az A\ T2) \a M2\ 0 A
Therefore

'meil + ;112’7i1 =&k (21)

From the above, we know th%"zil Siz

j is the right
M1 12

eigenvector matrix oE Au 612] . If we select

AZl Ai22
G = [Vil Viz] (22)
when the system trajectory hit the sliding mode,
l.e.o; =Cig =V;18; tVi28;, then
8, = Vi; Vi, (23)
Substitution of (23) into (14) yields the slidingpde equation
&1 = (Ans~ AnMiz Vi) (24)

BecauseV,, DR™™ and (G, -G,,V;;'V,;) are inverse, and
due to Lemma 2, it follows

M = ~VizVisin (25)
Also upon substitution of (25) into (21) yields

(A1~ Ailzvi?vil)ﬁcil =i (26)

From the above we can know the eigenvalues of lilag
mode equation of system (13) represent the desirech

stable eigenvalues. It is obvious that the slidiragge equation
(14) is stable. From the above analysis, is the left

eigenvector of,zﬁ with desiredm stable eigenvalues, then

G 'E\ = /.G (27)

For the error complex system (4), because the oayfErm is
satisfying the matching condition, the sliding medgiation of
system (4) is still satisfying equation (24), whitlas the
desired eigenvalues. If the nonlinear and the d¢ogpérms do
not satisfy the matching condition, the system ¢4n be
written as follows

&1= A1+ Aps8z + fr(%.9) (28)

G2 = A+ Aoz + fi2(%.9)
N s (29)
+ Y BiHjjx; (t—7;; (1) + By,
i=1

When g, =0, then e, =-V,;%V,;e;, So the above sliding mode
equation of system (28) is
&= A1+ fi(x,9) (30)

where A = A;, - AV, . Itis obvious, matrixa is stable.
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The first novel result is the synchronization caiodi for
the complex network with unmatched uncertainty thagiven
according the next theorem.

Theorem 1. If the nonlinear termf(xi,s) is unmatched, then
the decentralized sliding mode of the interconrcgstem
(30) is asymptotically stable, if and only if threeguality

ki <=B (A + ) (31)

where k; >0 is  constant, and

/]im}<0'

holds true,

A =max{Ay,

Proof Let V be a candidate Lyapunov function for the

dynamic system (30),

eh81 (32)

'MZ

V=

1
Taking the derivative o¥/ along the trajectory of system (30)
yields
. N T~ ~
\ :Zzell[Aell+ fia(%,s) (33)
i=1

Due to Assumption 3, there exist positive constk_rgtthat

makes" fi1.(% ,s)" <kt g - Thus

- 1
V<Al + Al +- sl
I

1
(4o el (34)
1
due to Lemma 1. And then becauseO0, if 5, +ﬁik1yi <=
[

it follows V <0 at once.

DESIGNING THE SYNCHRONIZATION CONDITION:
KNOWN BOUNDS ON NONLINEAR TERMS

Although we have a set of stable sliding surfacetess the
initial states and all system dynamics are alwangsieed to stay
on the surface for all time, a set of decentraliztiding
controllers is required, such that the global rokstability of
the surface is assured. Traditionally, the hittoandition for
small-scale system is

o®)Tot)<0 (35)

where o(t)=0is the sliding surface of some small-scale

systems. Since the existence of interconnectiodgtanlack of
global information, equation (35) is not easilyisféd for the
interconnected system. Hence, we require a glolitihdh
condition of the sliding surface

ol @)i(a) _, 26
> EO (36)

N
If V=3 |oi|, the condition is readily derived from the statili
i=1

theory of Lyapunov .

Theorem 2: The motion of the system (4) asymptotically
converges to the composite sliding surfade) =0, if and only

if the following condition
Ke-CB)R T [e 37
i§ ( i |) R‘"Ul""q" ( )
where
N
R = uci|+ _Zluci B; ||||H i ||||X j max(t)" +e
J:
and & > Ois constant, is satisfied.

Proof From (4) and (10), the sliding dynamics can bittenw as
=G§
=GAg +C|f %,9)+G ZEHU jt-1)+GBuy

= Ap0; ~C BKIQ +CiBu;

+G; f(xI s)+GC; ZB Hjjxj(t-1) (38)

Upon substltunon of (37) into (38), the (38) canwritten
down as

. - ~ N
0=/My0 - R o[+ C (%9 +C X B Hyx; (t-1)
o | El
(39)
Then construct Lyapunov function as
N
V=X do (40)
i=1
and obtain the time derivative of (40) as
V= Zd (41)
i IIJ ||
Substitution of (37) and (39) into (41) yields
V Zd " " [VZ] (42'3-)
[Vz] =
NG +GT(x, S)+ZQBH., 1 ij>—RHZ%HHeH (42-b)
I

Because ofd, =max{A,,--,
follows that

A} <0 and Assumption 2, it
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MEZCARCT el

*E+a3lcall s ¢-rl-arlel

= aAloil

N N -
‘Ed{‘q”q‘éqa'*nxj =)+ Rle]

N N N

=2 d lloil+ 22 e Hifx; -]
& i=1j=1 (43)
Z

N
S sl a2 <0

Thus, on the grounds of the designed controlleraaubrding
to Theorem 2, the motion of the system (4) asynualhy
converges to the composite sliding surface.

DESIGNING THE SYNCHRONIZATION CONDITION:
UNKNOWN BOUNDS ON NONLINEAR TERMS

In practical terms, there exisﬂh?(xi,s)"syi le] . where s

represents unknown parameters. In this sectionyileesign
robust adaptive controller with unknown parametierarder to
derive the proof, conveniently, first another tves@amptions are
presented.

Assumption 6: Let rank(?, Bi):rank(Bi).
0

Assumption 7: Let B':(B j whereB, OR™™ is an
2i

nonsingular matrix.

When the transformation; = K;g +v; is selected, then

the sliding mode equation becomes

& = ('5111 A112V 2 Ve -

It is fairly easy to prove the asymptotic stabildf the sliding
mode trajectory by the constructing switching fimact
Therefore the main task here is to design a rotsiroller that
guarantees the system trajectory shall reach ttimglsurface
from an arbitrary initial state.

(44)

Theorem 3 Let Assumption 4 and Assumption 5 hold true.

Then with

/Z[i = ”Ci ””Q ” B = - (45-a)

the following robust adaptive controller

u =Kiq -

Gitle]

+SicH e} s | s

-GB)™
where fI is the estimate of the unknown parameter, and
& >0 are constants, uniformly, asymptotically stabilittes
system (4) in the large.

Proof Consider the Lyapunov function as follows

V= EN ||U~ ||+1 EN 112 (46)
~ 1 2__/'1|
i=1 i=1

The time derivative of (46) is as follows:

V= ZUI (Q)U|(Q)+Z/jﬂ
= | =

T |20 ~CiBiKig
=> —| +CiBju; +Ci f (x,9)
I:l"a_lll 1= 1 1

z

N~,'\
+ D Hi
i=1

N
+Ci ZBIHI]XJ (t_fij)

A ||0||| CiBiKig +Cisifa

Mz

“z +ZIIC B W[ ¢ - 7] + i 47)

+Zﬁi/;1i < Z/]i loi| -«
i1 i1

Because ofA, <0, & >0, apparently (47) is negative. Thus,

the system (4) can be stabilized by means of théraiter (45-
a, b) , which is designed according to Theorem 3.

ILLUSTRATIVE EXAMPLES AND COMPUTER
SIMULATIONS

The chaotic Chua circuit is assumed in the nodethef
complex dynamical network. A singular Chua circug
described by the piecewise-linear system

Xx=p(-x+y-f(x),y=x-y+z, z=-qy
where
1
f (9 = mox+ > (my = m)(x+1 ~[x~1)

with constants my<0 and m <0, p=10, q=1487,
my =—-127,m, =-068. Let it be set
X =X X, =Y, X;=2Z. Then this Chua circuit can also be
represented as follows:

% =Pl +x = (X)), %

=X XX, X3 =0% .
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The corresponding complex network with couplingdidelay The Duffing forced-oscillation system is used agsle®in a
is represented by dynamical network. A singular Duffing forced-osatibn
system is described as

%) (=P P 0Yxg) (—Pf(Xa)
%, [=| 1 -1 1]x,|+| 0 x=y, y=-01y-x°+12cost
%i3 0 -gq 0)xs 0 : , ,
Let it be definedx, =x, X, =y. Then the Duffing forced-
iizxkyl(t -7y) 0 oscillation system can also be expressed as fallows
+ i: 0 +1 0 |u; % =Xy, % =—01x, — X +12cost

kZ__Xk,a(t-Ti,-) 1

Its phase portrait is depicted in the next figure.

-1 05 o ; 05 1
Fig. 5: Trajectory of Duffing forced-oscillation sem in its 2D state
(phase) space.

Fig. 3: Trajectories of chaotic chua circuit in its 3Dtstapace.

In order to simulate it conveniently, it has beesumed The corresponding network is described by

rj; <002. On the grounds of Theorem 1, the synchronization X1 0 1 Y% 0
= +
error trajectory of chaotic Chua circuit can be paoter Xio 0 -01)\x%, -x3 +12cost

simulated to give the results on synchronizatiaowshin Fig. 4. i+2

These results show the synchronization has beemoenf rather 2 %t —175) 0
efficiently by synchronization employing the propdsvariable + kaé +(:Jui
structure control design. > X (t=13)
k=i
]
15
10
= 5
) =
m 0
Et
S0H
0 1 2 \ 3 4 5 0 1 2, 3 4 5
Fig. 4: Synchronization errorg, of chaotic Chua circu. Fig. 6: The synchronization errors of the Duffing forced-

oscillation system.
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By using making use of the controller in Theorentt®& random networks,” Science, v@s6, pp. 509-512.
synchronization error trajectories of Duffing fodeescillation
system has been simulated and the error signaldeguieted in
Fig. 6. These simulation results show that the astw
synchronization by the designed variable structanetroller is
enforced rather efficiently.

[5] Barabasi, A. L., Albert, R. , Jeong, H., 1999, ‘didfield
theory for scale-free random networks,” Physca Al. v
272, pp. 173-187.

CONCLUSION [6] Liu,T., Dimirovski, G.M., Zhao,J., 2008, “Exponesiti
The synchronization problem in coupled complex dyica synchronization of complex delayed dynamical neksor

delay network has been explored. Both systems kiibwn with general topology,” Physica A — Statistical Meaics

bound and with unknown bound on nonlinear termseHzaen and Its Applications, voB87, is. 2-3, pp. 643-652.

successfully taken into consideration. Stabilitusons to

synchronization are proposed that employ varialttactire [7] Strogatz, S. H., 2001, “Exploring complex netwsmtk

control theory along with constructive design oé thliding Nature, vol410, pp. 268—276.

surfaces and the switching. The switching surfaes heen
designed via the left eigenvector function of tlgetem, which

can assure the synchronization sliding mode possesability. [8] Yang, X.S., 2001, “Chaos in small-world networks,”

The hitting condition and the adaptive law for ®stiing the Physics Review E, vob3, pp. 46-206.

unknown network parameter have been used for desgighe

controller, which can assure the network stateiniittthe [9] Wang, X. F., 2002, “Complex networks: topology,

switching manifold in finite time. dynamics and synchronization,” Int. J. Bifurcatiamd
The two benchmark examples, based on employingtichao Chaos, vol2, no. 5, pp. 885-916.

Chua circuit and on Duffin’s oscillator at the nedbave been

used for illustrating the performance via synchzation error [10]Wang, X. F., Chen, G., 2003, “Complex networks: lsma

trajectories. The respective computer simulatiommahstrated world, scale-free, and beyond,” IEEE Circuits arystsms

both efficient network synchronization as well asality

. Magazine, vol3, no. 1, pp. 6-20.
transient performance.

[11]Hu, J.L.,Chen, G., 2003, “New general complex dyical
network models and their controlled synchronization
criteria,” A preprint (private communication).
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