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Abstract—In the context of computer numerical control (CNC) and
computer aided manufacturing (CAM), the capabilities of program-
ming languages such as symbolic and intuitive programming, pro-
gram portability and geometrical portfolio have special importance.
They allow to save time and to avoid errors during part programming
and permit code re-usage. Our updated literature review indicates that
the current state of art presents voids in parametric programming,
program portability and programming flexibility. In response to this
situation, this article presents a compiler implementation for EGCL
(Extended G-code Language), a new, enriched CNC programming
language which allows the use of descriptive variable names, geomet-
rical functions and flow-control statements (if-then-else, while). Our
compiler produces low-level generic, elementary ISO-compliant G-
code, thus allowing for flexibility in the choice of the executing CNC
machine and in portability. Our results show that readable variable
names and flow control statements allow a simplified and intuitive
part programming and permit re-usage of the programs. Future work
includes allowing the programmer to define own functions in terms
of EGCL, in contrast to the current status of having them as library
built-in functions.

Keywords—CNC Programming, Compiler, G-code Language, Nu-
merically Controlled Machine-Tools.

GLOSSARY

APT : Automatically Programming Tool
AST : Abstract Syntax Tree
EGCL : Extended G-Code Language
IGCL : ISO G-code Language
GUI : Graphic User Interface
NC : Numerical Control
NCPP : Numerical Control Program Processor
STEP-NC : Standard for the Exchange of Product data for NC

I. INTRODUCTION

THE interaction between programmers and CNC machine-
tools is implemented through machining languages. The

most widely used language is G-code, even though there are
other programming languages such as APT and STEP-NC (
[11], [6] see section II-A1).

G-code was defined in the 1960’s by the ISO6983 standard (
[5]). It can be considered as a low-level programming language
as it lacks implementation variables, arithmetic and boolean
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expressions, flow control structures and function calls. There
are currently several ways to produce G-code. They include:
(1) manual programming, (2) vendor macro-language pro-
gramming and (3) CAD-CAM systems. Manual programming,
covering most industry applications ( [9]), is a technique based
on the ISO G-code language (IGCL), in which each movement
through coordinate point sequence must be specified by an
instruction. Additionally, the traditional G-code language does
not permit symbolic coordinate programming. This in general
implies reprogramming and new programming errors when
changes in the designed part are made. At the expense of
program portability, NC machine-tools vendors have extended
the IGCL creating their own macro-languages by adding some
features such as numeric variables, flow control statements and
machining cycles (e.g. drilling cycle). This implies that each
vendor macro-language can only be executed on a specific
machine-tool.

In CAD-CAM systems, machining instructions are obtained
from a 3D geometric model and user-defined machining
strategies, obtaining a specific G-code program by selecting
a post-processor of a given machine vendor.

The APT programming language was developed in the
1950’s at MIT ( [11]). In APT, the user must describe the
geometrical part and give a high-level description of the tool
path. Notice that in CNC-oriented CAD-CAM systems, the
geometry of the part is either imported as a file or defined
via a GUI and the tool path is defined by expert systems
which propose one of several machining programmer-friendly
strategies.

In the present article, the problem of IGCL insufficient
programming capabilities is faced by defining a new language
and by creating its compiler to produce generic ISO G-code,
thus allowing for flexibility in the choice of the executing CNC
machine and in code re-usability.

This paper is organized as follows: In section II, a literature
review is presented. Section III explains how the grammar was
defined and the proposed language compiler was implemented.
Section IV discusses the results and application cases. Section
V concludes the article and poses future work questions.

II. LITERATURE REVIEW

Many discussions take place on how to improve the capa-
bilities of IGCL programming and on how to solve portability
problems of vendor programs. Some authors face this problem
by creating new languages or by modifying the machine
control systems whereas other propose to translate G-code
programs from a specific vendor language to another. In this
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section we discuss the existing literature, giving a taxonomy
along with conclusions about the aspects to improve, which
explain the objectives of the present article.

A. CNC Languages

1) STEP-NC: It is a programming language specified in
2003 by the ISO14649 standard ( [6]). This language does not
only allow storing machining instructions, but also relevant
information as the geometrical description of a part, work
plans, machining strategies, tools and so on ( [4]). STEP-NC
was created to improve the G-code. Nevertheless, replacing
the traditional way to program CNC will take many years
due to the costs of the technological transformation of the
industry ( [13]). In addition, distinguished CNC machine-tool
vendors (e.g. Fanuc and Mitsubishi) have not yet implemented
STEP-NC in their products ( [3]). On the other hand, STEP-
NC is designed to be used by integrated complete CAD-CAM
systems, resulting non affordable for small companies ( [12]).

2) G-code Expansions: Neagle and Wiegley ( [10]) report
the embedding of IGCL grammar into Java Language. The
user can then program G-code instructions inside a Java script
and compile it to produce traditional G-code. This implies that
the compiler generates the Abstract Syntax Tree (AST) as an
intermediate representation of the source program, solely in
terms of Java language. It does not allow, before the code
generation, to handle the AST to do a code optimization or a
geometrical tool path verification.

Arroyo, Ochoa, Silva y Vidal ( [2]) propose the use of
Haskell to design IGCL programs. Haskell is a high level,
general-purpose and pure functional programming language.
The authors create functions in Haskell which produce G-Code
instructions. In order to produce basic G-code, the programmer
must execute the functions. This implies to assemble these
instructions with the rest of the code, resulting in an error-
prone process.

B. Program Processors

In a CNC machine, the NC program processor (NCPP)
is in charge of checking the syntax of NC programs and
decoding them into specific outputs such as motion command,
parameter setting or error messages ( [3]). Some authors have
created new proccesors in order to solve IGCL shortcoming.
References [3] and [9] present a universal NCPP that accepts
NC programs inputs in different vendor macro languages
such as Fanuc and Mitsubishi. Reference [15] proposes an
intelligent open CNC system in which natural language (e.g.
English) is used to describe the machining routines. This kind
of solution could be undesirable for companies because they
must modify the existing control system by including the new
NCPP. It must also be noticed that natural language technology
still presents inherent unsolved ambiguities an challenges, not
only related to CNC activities.

C. Translators

In order to solve the portability problems of IGCL programs,
Schroeder and Hoffman ( [12]) proposed a translator that can

take a program written in a specific vendor language and
convert it into another specific vendor language by defining
the converting grammar rules. This proposal, being a specific
solution for portability problems instead of a general one,
requires that the user have knowledge in formal language
theory to define the converting grammar rules. In addition, it
is a language-to-language converter. So there could potentially
be 2.n.(n− 1) converters for a set of n languages.

D. Conclusions of the Literature Review

According to the taxonomy conducted in this literature
review, there are several capabilities that remain elusive in
CNC programming. These include: (1) program portability (2)
mnemonic variable names, (3) symbolic coordinates program-
ming and (4) flow control structures such as IF and WHILE.

In response to these limitations, this paper presents the
implementation of EGCL, an Extended G-Code Language for
CNC machining, which enhances the traditional IGCL by
adding to it the grammar of arithmetic and boolean expressions
and control flow statements. By taking advantage of the
fact that most machining controls are able to process IGCL
programs, the output of our EGCL compiler is a program
written in vendor-independent IGCL. This solution is available
without the need of replacing or modifying the machine
control.

III. METHODOLOGY

A. Compiler Design

In order to design a extended G-code language (EGCL) able
to recognize readable variable names, symbolic coordinates,
IF and WHILE statements and functions, it was necessary
to define a non-ambiguous grammar which accepts IGCL,
arithmetic and boolean expressions and control flow statements
grammars.

The front-end of a compiler is composed by the lexical
analyzer (also called lexer) and the syntactical analyzer (also
called parser). They have the responsibility of construct an
intermediate representation (AST) of the input program (see
Figure 1). The back-end is in charge of code generation. The
middle-end is responsible of performing transformations on
the intermediate representation, so that the back end can pro-
duce a better target program than it would otherwise have been
produced from an unoptimized intermediate representation (
[1]).

1) Lexical Analyzer: In our case, the lexical analyzer was
created with the software Flex c©, a generator of lexical scan-
ners ( [8]). The finite automata regular definitions for lexical
analyzer are shown in Figure 2.

2) Syntactic Analyzer: The syntactic analyzer or parser
determines whether a sequence of valid EGCL words (tokens)
corresponds indeed to a valid EGCL sentence or sequence
of sentences. A parsing process does not perform semantic,
geometric and machining validations. The semantic process is
in charge of such check ups. In the parser, if an unexpected
token is read, the parser stops the compilation and shows an
error message. On the other hand, if a valid statement or
sequence of statements are recognized by the parser, it stores
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Fig. 1. Internal scheme of the compiler.

LETTER → [a-zA-Z]
DIGIT → [0-9]

POSINTEGER → 0 | [1-9] DIGIT*
POSREAL → POSINTEGER? . DIGIT*
INTEGER → -? POSINTEGER

REAL → -? POSREAL
PROG_NAME → (O | o) DIGIT+

LINE_NUM → (N | n) DIGIT+

G0_CODE → (G | g) 0? 0
G1_CODE → (G | g) 0? 1
G2_CODE → (G | g) 0? 2
G3_CODE → (G | g) 0? 3
X_COORD → (X | x) (REAL | INTEGER)
Y_COORD → (Y | y) (REAL | INTEGER)
Z_COORD → (Z | z) (REAL | INTEGER)

X_CENTER_COORD → (I | i) (REAL | INTEGER)
Y_CENTER_COORD → (J | j) (REAL | INTEGER)
Z_CENTER_COORD → (K | k) (REAL | INTEGER)

RADIUS → (R | r) (POSREAL | POSINTEGER)
ADD_INFO → M_FUN | G_FUN | TOOL_COMP

SPEED → FEED_RATE | SPINDLE_SPEED
T_CHANGE_CODE → (M | m) 0? 6

TOOL_NUM → (T | t) DIGIT+

TOOL_COMP → (G | g) (41 |42)
G43_CODE → (G | g) (43)

LENGTH_ADD → (H | h) DIGIT+

FEED_RATE → (F | f) (POSREAL | POSINTEGER)
SPINDLE_SPEED → (S | s) (POSREAL | POSINTEGER)

M_FUN → (M | m) DIGIT+

G_FUN → (G | g) DIGIT+

FINISH → (M | m) (30 | 02 | 2)
TRUE → true

FALSE → false
ELSEIF → else if

IF → if
ELSE → else

WHILE → while
SPIRAL → spiral

HOLESLINE → holesLine
CIRCARRAY → circArray

TOK_X → X | x
TOK_Y → Y | y
TOK_Z → Z | z
IDENT → LETTER (DIGIT | LETTER | _)*
BINOP → + | - | * | \ | ^

BOOLOP → && | ||
UNIOP → !

LOGOP → == | != | <= | < | >= | >

Fig. 2. Regular definitions for the Lexical Analyzer EGCL.

prog → ε | start stms end
start → PROG_NAME
end → FINISH

stms → ε | stms stm
stm → cond | loop | g_line | functions

g_line → move_code add_info_l
| T_CHANGE_CODE TOOL_NUM
→ G43_CODE z_coord LENGTH_ADD

move_code → coord_l
| G0_CODE coord_l
| G1_CODE coord_l
| coord_l cen_or_rad
| G2_CODE coord_l cen_or_rad
| G3_CODE coord_l cen_or_rad

coord_l → x_coord y_coord z_coord
x_coord → X_COORD | x_exp

x_exp → TOK_X “<” exp “>”
y_coord → Y_COORD | y_exp

y_exp → TOK_Y “<” exp “>”
z_coord → Z_COORD | z_exp

z_exp → TOK_Z “<” exp “>”
exp → TRUE | FALSE

| INTEGER | REAL | IDEN | call
| exp BINOP exp
| “(” exp “)”

call → IDENT “(” exp “)”
assing → IDENT = exp

bool_exp → TRUE | FALSE
| bool_exp BOOLOP bool_exp
| exp LOGOP exp
| “(” bool_exp “)”

loop → WHILE “(” bool_exp “)” “{” stms “}”
cond → IF ( bool_exp “)” “{” stms “}” elseif else
else → ε | ELSE “{” stms “}”

elseif → ε | ELSEIF “(” bool_exp “)” “{” stms “}”
functions → SPIRAL_TOK | HOLES_TOK | C_ARRAY_TOK

Fig. 3. Context-free grammar for the Syntactic Analyzer EGCL.

1: O001; Program name
2: Tool_num_1 = true; Variable declaration
3: if (Tool_num_1 == true)
4: {
5: M06 T01; To take tool number 1
6: }
7: else
8: {
9: M06 T02; To take tool number 2

10: }
11: M30; Program end

Fig. 4. An IF-ELSE instruction in EGCL.

the sequence in a hierarchical structure of internal instructions,
which is an intermediate representation of the input program.
This intermediate representation is usually built as a tree data
structure called Abstract Syntax Tree (AST). Figure 5 shows
the AST produced for the EGCL code displayed in Figure 4.

The syntactic analyzer was created with the software
Bison c© ( [7]), based on the grammar shown in Figure 3.

3) Code Generator: The AST is generated as a by-product
of the syntactical validation of the input EGCL code. A further
processing of the AST translates it into a IGCL file.

In line 2 of Figure 4, the assignment in EGCL expresses
that the variable Tool_num_1 must be created and a value
assigned to it. If the boolean expression in line 3 evaluates to
TRUE, the statement of the IF domain is executed and then
the text M06 T01 (tool change in the magazine of the CNC
machine) is written to the output file. The output stream is
ended by the closing M30 text. The output file looks as shown
in Figure 6. This simple example illustrates the compiling pro-
cess showing the capabilities of the EGCL to use mnemonic
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prog. end 
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Fig. 5. AST for the EGCL example program in Figure 4.

1: O001
2: N10 M06 T01
3: N20 M30

Fig. 6. Output of IF-ELSE Instruction in EGCL in Figure 4

Fig. 7. Proposed Star Pocket part.

variables and to control the program flow. In this manner,
one EGCL script is able to produce several different IGCL
programs by changing some geometric parameters defined at
the header. The produced IGCL programs will generate diverse
parts once they are executed in a CNC machine.

4) Code Simulator: A tool path simulator based in
OpenGL c© was created in our work to check the output
of EGCL compiler. This simulation is generated by other
compiler whose input is an IGCL program and whose output
is a graphical tool path representation. CncSimulator c© ( [14])
was used to double-check the EGCL compiler output and the
tool path simulator.

IV. RESULTS AND DISCUSSION

In order to check the functioning of the designed compiler,
two application cases were proposed (Figures 7 and 11), as
follows.

A. Star Pocket Part

In the metalwork industry, some parts must be machined
using a contour-parallel tool path strategy. The programming
of this type of parts can be simplified with the implementation
of loop statements. In order to program the part proposed in
Figure 7 which its details are shown in Figure 8, it was first
defined some geometric parameters (lines 6-8, Figure 9). Two
WHILE instructions are used in lines 23 y 25 respectively. The
outer loop (line 23) controls the number of passes depending
on the total of the hole depth (Depth) and the depth per pass
(DPass). The innermost loop (line 25) controls the number
of parallel cuts in one pass, depending on the tool diameter
and the overlap percentage of the tool between parallel passes
(OV_LAP) and the circumscribed star diameter in a pass (DL,
see Figure 8). Finally, parametric statements of movements
were programmed in lines 47-58 of Figure 9. A stream of
elementary G-code machining instructions were obtained as
the result of the EGCL program compilation. They were
simulated in the software CncSimulator c© ( [14]) obtaining
the result shown in Figure 10.

This application case highlights the capabilities of the
EGCL in geometry parametrization through symbolic pro-
gramming and the advantages of nested loops statements to
control the number of passes and parallel cuts.

B. Drill Target Pattern Part

In order to illustrate the capabilities of the language to
program hole drilling, a part with a large number of holes was
designed (see Figures 11 and 12). The largest central hole was
programmed by a spiral compiler built-in function (line 18,
Figure 13). A set holes to build the cross were programed in
line 48 of Figure 13 with the function holesLine by defining
the center coordinates of the first one ((X1ini,Y1ini)),
the depth of the holes (DepthBC) and the upper retract plane
(Zseg). Finally, the holes in circumference pattern were pro-
gramed with the built-in function circArray in line 56 of the
Figure 13. This function is able to create any number of arc-
equidistant holes placed in a circumference of any diameter
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Fig. 8. Geometric parameters of the designed Star Pocket part.
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1: O002; Star Pocket Part Program
. . .

6: DE = 140
7: CenX = 0
8: CenY = −7

. . .
23: while (DPass <= abs(Depth))
24: {
25: while (DL ∗ OV _LAP > T _DIAM )
26: {
27: P0X = CenX
28: P0Y = CenY + DM/2

. . .
47: G0 X<P0X> Y<P0Y> Z<Zseg>
48: G1 Z<-DPass>
49: X<P1X> Y<P1Y>

. . .
62: }

. . .
69: }

. . .
72: M30

Fig. 9. EGCL program for producing the Star Pocket in Figure 7.

Fig. 10. Star pocket part simulated in CncSimulator c© software ( [14]).

by specifying the number of holes (NumElem), circumference
radius (Radius) and center ((Cenx,Ceny)), the depth of
the holes (DepthBC) and the upper retract plane (Zseg). This
case study illustrates the built-in function advantages of EGCL
for programming geometric patterns of machining features.

The afore mentioned application cases (sections IV-A and
IV-B), would require long programming time programmed
manually. To illustrate this contrast, input and output files were
compared (Table I). Additionally, programs manually written
are valid only for the set of coordinate points for which they
were created, while macro-based programming on EGCL can

Fig. 11. Proposed Drill Target Pattern part.

1: O003;
. . .

6: CenX = 0
7: CenY = 0
8: Depth = −2.5
9: Zseg = 5

. . .
18: spiral(Pitch,Rext, CenX,CenY,Depth, Zseg)

. . .
26: NumHoles = 4
27: dx1 = 10
28: dy1 = 0
29: Xini1 = 25
30: Y ini1 = 0
31: DepthBC = −5

. . .
48: holesLine(NumHoles, dx1, dy1, Xini1, Y ini1, DepthBC,Zseg)

. . .
52: NumElem = 16
53: Radius = 65
54: Cenx = 0
55: Ceny = 0
56: circArray(NumElem,Radius, Cenx,Ceny,DepthBC,Zseg)

. . .
67: M30

Fig. 13. EGCL program for producing the Drill Target Pattern part in Figure
11.

Fig. 14. Drill Target Pattern part simulated in CncSimulator c© software (
[14]).

re-use code by simply modifying the mnemonic geometric
variables defined at the header of the programs.

V. CONCLUSION AND FUTURE WORK

This article presents the implementations of a language
extension for G-code (EGCL). The compiler for ECGL pro-
duces ISO compliant elementary G-code as output. The output
programs of the compiler are portable due to the fact that the
most CNC machines are able to process this basic ISO G-
code. The developed EGCL has the following characteristics:
(1) it allows to use of mnemonic variable names, (2) it permits
symbolic coordinates, (3) it accepts flow control structures,
such as IF and WHILE, and (4) it allows to use built-in
geometric functions (e.g. 2D spiral, geometric holes arrays).
These capabilities save time in part programming and make
re-programmation easier and more immune to errors.

Star Pocket Drill Target Pattern
Lines in the EGCL file 72 64
Lines in the IGCL file 257 236

TABLE I
COMPARISON OF NUMBER OF LINES OF EGCL VS. IGCL EQUIVALENT

PROGRAMS.
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Fig. 12. Geometric parameters of the designed Drill Target Pattern part.

The EGCL grammar was achieved by extending IGCL with
arithmetic and boolean expressions, flow control statements
(e.g. IF, WHILE and function use capabilities). The lexical,
syntactic and intermediate G-code generation software were
accordingly implemented. The code generator was created to
produce the output file in IGCL.

Future work includes allowing the part-programmer to pre-
define own geometrical functions in both, source and object
form and to use them as libraries for the EGCL programs.
Likewise, we seek to optimize the code (following criteria
usual in CNC machining) and conduct geometrical verifica-
tions by using the middle-end of the compiler.
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