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Abstract 

Research productivity distributions exhibit heavy tails because it is common for a 

few researchers to accumulate the majority of the top publications and their corresponding 

citations.  Measurements of this productivity are very sensitive to the field being analyzed 

and the distribution used.  In particular, distributions such as the lognormal distribution 

seem to systematically underestimate the productivity of the top researchers.  In this 

article, we propose the use of a (log)semi-nonparametric distribution (log-SNP) that nests 

the lognormal and captures the heavy tail of the productivity distribution through the 

introduction of new parameters linked to high-order moments.  To compare the results, 

we use research performance data on 140,971 researchers who have produced 253,634 

publications in 18 fields of knowledge (O’Boyle and Aguinis, 2012) and show how the 

log-SNP distribution provides more accurate measures of the performance of the top 

researchers in their respective fields of knowledge.  
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Introduction 

In recent years, the evaluation of academic research productivity in different fields of 

knowledge has been related to the impact of the results of scientific production (Abramo et al. 

2008; Sabharwal 2013; Campanario 2015). The motivation for studying productivity lies in the 

wish to promote academic excellence and render the research from each country as competitive 

as possible on the global stage (Frandsen 2005; Kocher et al. 2006; Abramo and D’Angelo 

2014).  

The quality of a research study is determined by a great number of variables, from the 

personal characteristics of the researcher to national and international policies and trends 

(Genest 1997; Dundar and Lewis 1998; Williamson and Cable 2003; Seggie and Griffith 2009).  

However, the criteria for evaluating research performance are combined mainly in two ways.  

First, the peer review process is assumed as the principal evaluation method, but this in turn is 

the object of a certain subjectivity level (Abramo et al. 2008, Bornmann 2011; Bertocchi et al. 

2015; Day 2015).  

Alternatively, another way of evaluating scientific activity in terms of productivity is 

based on bibliometric analysis.  This method consists mainly of quantifying the number of 

documents published by a country, institution, research group or individual, as well as the 

citations received by such documents (Broadus 1987; Borokhovich et al. 1995; Abramo et al. 

2008; Heberger et al. 2010; Finardi 2013; Bertocchi et al. 2015).  The most common 

bibliometric measurements are those based on publications and citations, and this information 

comes from different databases such as Web of Science (WoS), Scopus, and Google Scholar, 

among others. 

The majority of research productivity studies are focused on a single field of knowledge.  

For example, the literature focused on research performance in economics is abundant 

(Hodgson and Rothman 1999; Coupé 2003; Kocher et al. 2006; Ellison 2013).  As a result, and 

taking into account the existing scientific advancements in each field of knowledge, it becomes 

relevant to study research productivity not only from the standpoint of measuring scientific 

production results, but also for the purpose of analyzing differences between the fields of 

knowledge in question (Sabharwal 2013; Abramo and D’Angelo 2014; Ruiz-Castillo and 

Costas 2014; Bertocchi et al. 2015). 
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In addition, studies on research productivity have taken into account different 

probability distribution functions in order to identify patterns in quantitative relationships 

between authors and their contributions over a period of time.  These studies have determined 

that bibliometric indicators such as the number of articles published or the number of citations 

received by an author are characterized by distributions with heavy tails (Lotka 1926; Price 

1976; Redner 1998; Chung and Cox 1990; Albarrán et al. 2011; Eom and Fortunato 2011; Da 

Silva et al. 2012; Ruiz-Castillo and Costas 2014; Campanario 2015).  

As a result, the probability distribution models that have been applied the most in the 

literature on research productivity are those that obey the following laws: Lotka’s law (Lotka 

1926; Nicholls 1986; Chung and Cox 1990; Kretschmer and Kretschmer 2007), the power law 

(Price 1976; Egghe 2005; Albarrán et al. 2011; Aguinis et al., 2015) and Bradford’s Law 

(Garfield 1980; Rousseau 1994; Nicolaisen and Hjørland 2007; Campanario 2015).  These laws 

are mainly based on distribution functions such as the exponential or Pareto distributions.  

However, studies such as those by Kumar et al. (1998), Radicchi et al. (2008), Perc (2010), 

Eom and Fortunato (2011) and Birkmaier and Wohlrabe (2014) have proposed the application 

of the lognormal distribution to study research activity.   

Nevertheless, all of these distributions have the disadvantage that they depend on very 

few parameters to capture the entire shape of the productivity distribution, particularly the right 

tail of the distribution.  This makes the productivity measurements obtained very imprecise and 

comparisons of productivity between different fields of knowledge unreliable.  To obtain 

reliable research productivity estimates, we propose the use of semi-nonparametric (SNP) 

approximations of productivity distributions based on the Edgeworth and Gram-Charlier 

expansions.  These distributions have been applied in very diverse fields, where the precision 

of capturing the tails of distributions is important for the correct measurement of the frequency 

of extreme values (see Blinnikov and Moessner 1998, or Mauleon and Perote 2000, as examples 

of applications to astronomy or finance, respectively).  In this article, we propose their use for 

the first time to measure research productivity and to determine with a higher degree of 

accuracy the quantiles that sort the most productive researchers in each field of knowledge as a 

proxy of the level of difficulty involved in being a star researcher in each field.  In particular, 

we propose logarithmic transformations of an SNP distribution (which we refer to as log-SNP), 

which are extensions of a lognormal distribution that allow for approximating any empirical 

distribution through the introduction of additional parameters. Given that bibliometric 

indicators usually exhibit relatively long tails and multimodality (Guerrero-Bote et al. 2007; 
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Lancho-Barrantes 2010; Sabharwal 2013), we show that, compared to the lognormal 

distribution, the log-SNP distribution provides a better fit when characterizing research 

performance.   

The productivity distribution 

The characterization of a random variable through its probability density function (pdf) 

and its fit to the empirical distribution of a series can be achieved using different approaches, 

from a parametric perspective based on a frequency distribution with a known functional shape 

to a purely nonparametric approach.  An intermediate possibility is the use of SNP 

approximations in which the functional shape is only partly parametrized, with the rest being 

an unknown function (Chen 2007).  In this study, we consider an SNP approach in which the 

unknown function is modelled based on an orthogonal polynomial series expansion.  In 

particular, we will analyze Edgeworth and Gram-Charlier expansions that have been shown to 

be valid asymptotic approximations of any empirical distribution under relatively weak 

regularity conditions (Sargan 1975; Phillips 1977).  Next, we define the SNP distribution based 

on the Gram-Charlier series, as well as its logarithmic transformation, and analyze its basic 

properties. 

The SNP distribution 

Let {𝑃𝑠(𝑥)}, 𝑥 ∈  ℝ and  𝑠 ∈  ℕ be a family of orthogonal polynomials with respect to 

a density function 𝑤(𝑥) that satisfies the following relationship1  

∫ 𝑃𝑠(𝑥)𝑃𝑗(𝑥)𝑤(𝑥)𝑑𝑥 = 0,    ∀𝑠 ≠ 𝑗, 𝑠, 𝑗 = 0,1,2, … 
∞

−∞
    (1) 

Within this family, Hermite polynomials (HPs) are those that use a standard normal 

density distribution, with weight 𝜙(𝑥) =
1

√2𝜋
𝑒−

1

2
𝑥2

.  In particular, the HP of order s, 𝐻𝑠(𝑥), can 

be obtained in terms of the derivative of order s of the density function of the standard normal 

distribution, as expressed in equation (2):  

𝐻𝑠(𝑥) =
(−1)𝑠

𝜙(𝑥)

𝑑𝑠𝜙(𝑥)

𝑑𝑥𝑠
         (2) 

Next, we show the first eight HPs: 

                                                           
1 Different weight functions 𝑤(𝑥) can be used; for details, see Abramowitz and Stegun (1972, pp. 774-775). We 

will consider 𝑃0(𝑥) = 1. 
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𝐻0(𝑥) = 1          (3) 

𝐻1(𝑥) = 𝑥          (4) 

𝐻2(𝑥) = 𝑥
2 − 1         (5) 

𝐻3(𝑥) = 𝑥
3 − 3𝑥         (6) 

𝐻4(𝑥) = 𝑥
4 − 6𝑥2 + 3        (7) 

𝐻5(𝑥) = 𝑥
5 − 10𝑥3 + 15𝑥        (8) 

𝐻6(𝑥) = 𝑥
6 − 15𝑥4 + 45𝑥2 − 15       (9) 

𝐻7(𝑥) = 𝑥
7 − 21𝑥5 + 105𝑥3 − 105𝑥      (10) 

𝐻8(𝑥) = 𝑥
8 − 28𝑥6 + 210𝑥4 − 420𝑥2 + 105     (11) 

It is easy to proof that these polynomials satisfy the mentioned orthogonality property 

given that ∀𝑠, 𝑗 = 0, 1, 2, … 

∫ 𝐻𝑠(𝑥)𝐻𝑗(𝑥)𝜙(𝑥)𝑑𝑥 = {
0,   𝑠 ≠ 𝑗
𝑠! ,   𝑠 = 𝑗

∞

−∞
      (12) 

The HPs also constitute the basis of the Edgeworth and Gram-Charlier (Type A) series, 

which allow, under certain regularity conditions (Cramér 1925), the expression of any pdf, 

𝑓(𝑥), in terms of an infinite series (Wallace, 1958) as follows2 

𝑓(𝑥) = ∑ 𝛿𝑠𝐻𝑠(𝑥)𝜙(𝑥)
∞
𝑠=0 , where 𝛿𝑠 =

1

𝑠!
∫ 𝐻𝑠(𝑥)𝜙(𝑥)𝑑𝑥
∞

−∞
    (13) 

Moreover, thanks to the orthogonality of the HPs, truncating the series to a specific order 

n of the expansion allows for defining a family of SNP distributions, 𝑔(𝑥; 𝒅), where 𝒅 =

(𝑑1, … , 𝑑𝑛)′ ∈ ℝ
𝑛 denotes the vector of the parameters.3 

𝑔(𝑥; 𝒅) = [1 + ∑ 𝑑𝑠𝐻𝑠(𝑥)
𝑛
𝑠=1 ]𝜙(𝑥)

𝑛
→  𝑓 (𝑥)     (14) 

However, the SNP distribution defined in equation (14) is only a density function for a 

subset of values of 𝒅 that guarantee 𝑔(𝑥; 𝒅)  0. To solve this problem, different types of 

restrictions or positivity transformations have been proposed (Gallant and Nychka 1987), even 

though they involve the introduction of unnecessary complexity for empirical applications that 

implement maximum likelihood (ML) algorithms (given that in the optimum ML leads to 

estimations that guarantee positivity).  

                                                           
2 For more details about the Edgeworth and Gram-Charlier series, see Kendall and Stuart (1977 pp. 167-172).  
3 It must be noted that given a truncating order, the resulting distribution is purely parametric, but the truncating 

order is flexible to achieve a more accurate approximation to a given distribution.  Without loss of generality, we 

will assume that 𝑑0 = 1. 
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The great advantage of SNP distributions when compared to other parametric 

specifications lies precisely in the improved fit to empirical data, given their great parametric 

flexibility.  In addition, the resulting higher number of parameters does not involve more 

complexity in theoretical or empirical terms.  For example, the central moments can be easily 

obtained as linear functions of the distribution parameters (see Appendix A).  Note that the even 

(odd) moment of order n depends only on the n first even (odd) parameters.  This fact allows 

for the search of initial values for the optimization logarithms through the direct application of 

the method of moments (MM).  A closed expression can also be obtained for the cumulative 

distribution function (cdf) of the SNP distribution as a function of the normal distribution cdf, 

as shown in equation (15) (see the proof in Appendix B).  This allows for a simple calculation 

of the probabilities and quantiles of the SNP distribution.  

𝐺𝑥(𝑎) = ∫ 𝑔(𝑥; 𝒅)𝑑𝑥
𝑎

−∞

 

 = ∫ 𝜙(𝑥)𝑑𝑥 − 𝜙(𝑎)∑ 𝑑𝑠𝐻𝑠−1(𝑎)
𝑛
𝑠=1

𝑎

−∞
     (15) 

The log-SNP distribution 

Ñíguez et al. (2012) define a variable 𝑧 > 0 as (standard) log-SNP if the variable 𝑥 =

log (𝑧) is SNP distributed and its pdf defined as in equation (14).  The resulting distribution 

inherits all the good properties of the SNP distribution, particularly its flexibility in capturing 

the extreme values of the distribution.  We will go a step further and similarly define a log-SNP 

distribution, but rather over a linear transformation 𝑦 = 𝜎𝑥 + 𝜇.  

Definition: We will say that the variable 𝑧 > 0 is log-SNP distributed with location 

parameter 𝜇 ∈ ℝ, scale 𝜎2 ∈ ℝ and shape parameters 𝒅 = (𝑑1, … , 𝑑𝑛)′ ∈ ℝ
𝑛 if its pdf can be 

expressed as  

ℎ(z;  μ, 𝜎2, 𝒅) = [1 + ∑ 𝑑𝑠𝐻𝑠 (
log(𝑧)−𝜇

𝜎
)𝑛

𝑠=1 ] (
1

𝑧𝜎√2𝜋
𝑒
−(log(𝑧)−𝜇)2

2𝜎2 ).   (16) 

Defined in this manner, the lognormal distribution is a particular case of the log-SNP 

(for 𝑑𝑠 = 0,𝑠), which allows for a comparison of the improvements in the fit of the latter to 

those obtained with the lognormal by using linear restrictions tests such as the likelihood ratio 

(LR).  This article shows that, in effect, the parametric flexibility of the log-SNP allows for 

significant fit improvements to productivity distributions, as the log-SNP is capable of 
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representing different shapes (including jumps in the probability mass function and heavy tails) 

through the incorporation of parameters in addition to those of a traditional parametric 

distribution, such as the lognormal distribution. 

Data and Methodology 

Data 

To test whether a lognormal or a log-SNP distribution fits the best to the performance 

distribution of 140,971 researchers who have produced 253,634 publications in 18 fields of 

knowledge, we used the data from O’Boyle and Aguinis (2012).4 These authors classified the 

fields of knowledge based on the Journal Citation Reports (JCR), which provide impact factors 

(IFs) in different fields of knowledge labeled within the categories of “sciences” and “social 

sciences”. 

The authors used the IFs to select the five main journals within each field of knowledge.  

For these journals, they identified all the authors who published at least one article in one of 

them during the period that ranges from January of 2000 to June of 2009.5  With this information 

they measured the productivity of the researchers as the number of articles published by an 

author in each of the fields of knowledge during the observation period of 9.5 years. 

In addition, we use the JCR of the year 20076 for each of the categories sciences and 

social sciences in order to obtain the Median Impact Factor (MIF) indicator of the five main 

journals in each of the selected fields of knowledge.  The objective behind this indicator is to 

obtain a broader view of each of the selected fields and to make inferences about their behavior.  

Table 1 shows the descriptive statistics of the sample selected in this study.   

[Insert Table 1] 

It can be seen that throughout the 18 fields of knowledge analyzed, the minimum 

number of researchers is 1,073 for the field of Ethics and the maximum is 30,531 for 

Dermatology.  The publications average in the five top journals for each field and for each of 

the researchers in the sample varies from 1.42 to 2.26, and the standard deviation has a range 

                                                           
4 The authors thank Herman Aguinis and Ernest O’Boyle for allowing us to use their database on academic 

productivity compiled in O’Boyle and Aguinis (2012). 
5 For details about the data treatment, see O’Boyle and Aguinis (2012), p.86. 
6 We took the JCR of the year 2007 to be consistent with O’Boyle and Aguinis (2012), as that was the year used 

by the authors to select the five main journals within each field of knowledge. 
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of 0.97 to 3.38 publications.  When analyzing the skewness and excess kurtosis of the 

productivity distribution, it is clear that all the fields exhibit positive skewness and 

leptokurtosis, with the field of Genetics being the most skewed and leptokurtic of the sample. 

The maximum number of articles per researcher varies from 13 (Law) to 120 (Genetics), 

depending on the field considered. 

In addition, we find large differences when considering the MIF indicator (of the top 

five journals in each area), which varies from 0.85 (History) to 18.30 (Genetics).  Furthermore, 

as seen in Table 1, the MIF is related to the maximum number of articles per researcher. As a 

result, Genetics has the highest MIF and the maximum number of publications per researcher, 

while the MIF of History places 18th and 17th in number of publications per researcher. 

The results show that the behavior of each field of knowledge is different.  The fields 

that belong to the Sciences JCR category have a larger number of researchers and, then, a larger 

MIF. Therefore, this exploratory analysis suggests that the level of research productivity that 

can be attained depends on the field of knowledge being studied. 

Methodology 

This section presents the methodology applied to characterize the research productivity 

in each field of knowledge based on the log-SNP distribution. Details are provided on the ML 

estimation methodology and its related goodness of fit measures used to choose between the 

different pdfs nested on the family of log-SNP distributions (including the lognormal).  The pdf 

of the log-SNP distribution is sequentially estimated up to a truncating order of 𝑛 = 8. 

Let 𝑧𝑖 be the number of articles published by an author in one of the selected fields of 

knowledge; the log-likelihood function for a log-SNP(μ, 𝜎2, 𝒅) distributed observation 

truncated to the eighth moment is given by: 

𝑙𝑜𝑔𝐿(𝜇, 𝜎2, 𝒅|𝑧𝑖) = −
1

2
log(2𝜋𝜎2𝑧𝑖

2) −
1

2
(
log(𝑧𝑖)−𝜇

𝜎
)
2

+ log [1 + ∑ 𝑑𝑠𝐻𝑠 (
log(𝑧𝑖)−𝜇

𝜎
)8

𝑠=1 ] (17) 

The sequential estimation begins with the simplest nested density, the lognormal, and 

the 𝑑𝑠 parameters are recursively added, the initial values of which are selected consistently 

with their sample moments counterparts.  The inclusion of new parameters in the productivity 

distribution is performed according to accuracy criteria, i.e. the log-likelihood (logL) and the 

Akaike Information Criterion (AIC), and linear restrictions tests provided by the LR statistic.  
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Based on these criteria, n=8 was selected as the optimum truncating order, and only the even 

parameters, 𝑑2, 𝑑4, 𝑑6 and 𝑑8, were selected. 

Results 

Table 2 presents the ML estimates of the parameters of the performance distributions 

for each of the fields selected.  Panel A shows the estimated parameters for a lognormal 

distribution, and Panel B shows the estimated parameters for the log-SNP distribution.  Panel 

C displays the LR statistic for comparing the log-SNP and the lognormal distributions. 

[Insert Table 2] 

The results of the estimation reveal that all the models adequately capture the mean and 

standard deviation of each of the fields, denoted as parameters  and , respectively.  The p-

values clearly indicate that these parameters are highly significant for both distributions.  

However, as shown in Panel B, for the log-SNP distribution, the 𝑑𝑠 parameters are also highly 

significant for the majority of fields of knowledge.  When analyzing the AIC (which penalizes 

log-likelihood value with the inclusion of additional parameters) for the two distributions, we 

found that this criterion is consistently lower for the log-SNP distribution, which suggests that 

the modeling based on this distribution is clearly superior. In addition, from the LR statistics 

included in Panel C, we conclude that for all the selected fields, incorporating the 𝑑𝑠 parameters 

improves the accuracy of the model. 

An example of the fit quality obtained for two selected randomly fields, Finance and 

Dentistry, is captured in Fig. 1.  This figure depicts the empirical histogram and pdf values 

estimated under a lognormal specification and under the log-SNP.  In both cases, the log-SNP 

distributions more adequately capture not just the values around the mean but also the extreme 

values.  Fig. 2 shows in detail the right tails of the distribution, which capture the frequency of 

the researchers with higher productivity.  From these figures it is clear that the log-SNP 

specification allows the better characterization of the research activity. 

[Insert Fig. 1] 

[Insert Fig. 2] 

Fig. 3 shows the comparison between the fitted densities for Finance and Dentistry in 

terms of the empirical and theoretical cdfs for both specifications, the log-SNP and the 
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lognormal.  The latter appears to underestimate the cumulative probability (especially for 

Dentistry) when compared to the log-SNP. 

[Insert Fig. 3] 

The Fig. 3 shows how the lognormal distribution underestimates research productivity, 

especially for the more extreme values (under the lognormal distribution, a researcher must 

publish less articles to be included in the top quantiles of the performance distribution).  Table 

3 illustrates these effects for the different fields of knowledge by computing the empirical and 

estimated quantiles under the lognormal and log-SNP for confidence levels of 5%, 1%, 0.1% 

and 0.05%.7 

[Insert Table 3] 

The values in the table clearly indicate the higher accuracy of the log-SNP distribution 

fits, particularly in the tails, and the underestimation of the productivity of top researchers 

obtained from the traditional parametric distributions such as the lognormal.  For example, for 

the field of Agronomy, it can be seen that to belong to the top 0.05% of researchers who publish 

the highest number of articles in the best journals, 15 publications are empirically required. This 

limit is much less strict if we assume that the distribution is lognormal (6) as compared to log-

SNP (12).  These results are consistent with the research by Kumar et al. (1998), Perc (2010) 

and Eom and Fortunato (2011), who, when applying the lognormal distribution to bibliometric 

indicators, found that it fell short when modeling series with very heavy tails. 

Conclusions 

Bibliometric analysis has been shown to be a valuable method for evaluating scientific 

production and has a growing impact in the academia.  However, the literature indicates that in 

most cases, the distributions commonly used for measuring productivity have been shown to 

underestimate the behavior of the top researchers, given that their productivity seems to be 

generated by a distribution with very heavy tails.  This fact calls for the search of more 

appropriate distributions and methodologies. 

This study analyzes the research productivity in 18 fields of knowledge belonging to the 

JCR categories of sciences and social sciences between the years 2000 and 2009.  The results 

                                                           
7 The quantiles of the log-SNP distribution are obtained from the cdf displayed in equation (15) and the Inverse 

Transform Method (ITM). 
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show that the level of productivity, as measured by the number of publications per author, 

depends on the field of knowledge being studied.  In particular, the fields that belong to the 

category of sciences have a higher number of publications per author.  In addition, we observe 

that the MIF indicator is highly correlated to the maximum number of articles per researcher; 

that is, the greater the number of articles published in top journals by each researcher (usually 

the most cited), the greater the MIF by field of knowledge. 

This study proposes a novel methodology based on the log-SNP distribution for 

measuring the scientific productivity distribution of top researchers in different fields of 

knowledge. Such a distribution nests the lognormal and includes new parameters for accurately 

capturing the heavy tail of the research productivity distribution.  Our study shows that the log-

SNP provides a better fit of research performance distribution than the lognormal and quantifies 

the differences in the measures of the top researchers’ productivity attached to the distributional 

hypothesis. We also find that the results are very sensitive to the field of knowledge being 

studied and thus the productivity of top researchers depends on the field of knowledge. 
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Appendix A 

This appendix lists the first eight 𝑑𝑠 parameters in terms of the central moments of the 

SNP distribution.  For more information, see Del Brio and Perote (2012). 

𝑑1 = 𝜇1          (A.1) 

𝑑2 =
1

2
(𝜇2 − 1)         (A.2) 

𝑑3 =
1

6
(𝜇3 − 3𝜇1)         (A.3) 

𝑑4 =
1

24
(𝜇4 − 6𝜇2 + 3)        (A.4) 

𝑑5 =
1

120
(𝜇5 − 10𝜇3 + 15𝜇1)       (A.5) 

𝑑6 =
1

720
(𝜇6 − 15𝜇4 + 45𝜇2 − 15)       (A.6) 

𝑑7 =
1

5040
(𝜇7 − 21𝜇5 + 105𝜇3 − 105𝜇1)      (A.7) 

𝑑8 =
1

40320
(𝜇8 − 28𝜇6 + 210𝜇4 − 420𝜇2 + 105)     (A.7) 

Appendix B 

This appendix derives the cdf of the SNP distribution.  

𝐺𝑥(𝑎) = ∫ 𝑔(𝑥; 𝒅)𝑑𝑥
𝑎

−∞

 = ∫ 𝜙(𝑥)𝑑𝑥 +∑𝑑𝑠∫ 𝐻𝑠(𝑥)𝜙(𝑥)𝑑𝑥
𝑎

−∞

𝑛

𝑠=1

𝑎

−∞

 

  = ∫ 𝜙(𝑥)𝑑𝑥 −∑𝑑𝑠𝐻𝑠−1(𝑥)𝜙(𝑥)

𝑛

𝑠=1

|

−∞

𝑎
𝑎

−∞

 

  = ∫ 𝜙(𝑥)𝑑𝑥 − 𝜙(𝑎)∑𝑑𝑠𝐻𝑠−1(𝑎)

𝑛

𝑠=1

𝑎

−∞

 

Given that lim
𝑥→±∞

𝐻𝑠(𝑥)𝜙(𝑥) = 0  ∀𝑠 ≥ 1, it follows that  

∫𝐻𝑠(𝑥)𝜙(𝑥)𝑑𝑥 = ∫(−1)
𝑠
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𝑑𝑥𝑠
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𝑑𝑥𝑠−1
 

= (−1)𝑠(−1)𝑠−1𝐻𝑠−1(𝑥)𝜙(𝑥) = −𝐻𝑠−1(𝑥)𝜙(𝑥).□ 
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Table 1 Descriptive statistics  

Field of knowledge N  Mean  Std  Skew  K  Max MIF 

N 

(ordinal 

position) 

Max 

(ordinal 

position) 

MIF 

(ordinal 

position) 

JCR edition 

Agronomy 8,923 1.42 1.16 6.36 72.68 26 2.36 7 13 12 Science 

Anthropology 5,755 1.87 1.95 4.49 34.52 30 2.31 9 8 14 Social Sciences 

Clinical psychology 10,418 1.89 2.38 10.80 267.22 93 4.68 6 2 3 Social Sciences 

Dentistry 12,345 2.26 2.98 6.54 74.62 66 3.37 3 4 6 Science 

Dermatology 30,531 2.25 3.38 8.01 113.19 93 3.50 1 2 5 Science 

Ecology 5,730 1.71 1.68 7.88 148.90 50 4.82 10 6 2 Science 

Economics 3,048 1.62 1.67 7.14 82.10 27 3.69 13 11 4 Social Sciences 

Educational psychology 3,032 1.70 1.55 5.41 52.04 27 2.35 14 11 13 Social Sciences 

Ethics 1,073 1.65 1.78 6.82 71.24 26 1.31 18 13 16 Social Sciences 

Ethnic studies 2,003 1.48 1.38 5.99 50.89 17 0.89 16 15 17 Social Sciences 

Finance 3,019 2.14 2.52 4.69 33.93 28 2.99 15 9 8 Social Sciences 

Forestry 12,211 1.82 1.80 5.66 68.58 46 2.14 4 7 15 Science 

Genetics 16,574 1.71 2.18 26.42 1240.47 120 18.30 2 1 1 Science 

History 6,708 1.54 0.97 3.33 25.11 14 0.85 8 17 18 Social Sciences 

Law 1,350 1.55 1.24 3.88 24.07 13 3.09 17 18 7 Social Sciences 

Linguistics 3,600 1.73 1.78 5.98 59.06 28 2.37 12 9 11 Social Sciences 

Mathematics 3,972 1.45 1.02 4.86 41.42 15 2.56 11 16 10 Science 

Statistics 10,679 2.08 2.52 6.22 67.39 54 2.97 5 5 9 Science 

This table shows the descriptive statistics of the publications in the five top journals for 18 fields of knowledge belonging to the JCR categories of sciences and social 

sciences between the years 2000 and 2009.  N=number of researchers, Std=standard deviation, Skew=skewness, K=excess kurtosis coefficient, Max=maximum score, 

MIF=Median Impact Factor (five top journals in 2007). 
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Table 2 Results of the estimation  

Field of knowledge 

Panel A 

Lognormal   

Panel B 

Log-SNP   Panel C 

LR 
µ σ logL AIC  µ σ d2 d4 d6 d8 logL AIC  

Agronomy 0.2143 0.4368 -3359.52 6723.04  0.1182 0.4771 -0.0786 0.1448 0.0252 0.0042 -1890.49 3792.98  2938.07 

 (<.0001) (<.0001)    (0.000) (<.0001) (0.000) (<.0001) (<.0001) (<.0001)    (<.0001) 

Anthropology 0.3753 0.6024 -3089.70 6183.40  0.1693 0.5438 0.1912 0.2733 0.0408 0.0050 -2259.29 4530.58  1660.83 

 (<.0001) (<.0001)    (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)    (<.0001) 

Clinical psychology 0.3791 0.5994 -5501.26 11006.52  0.1689 0.5556 0.1535 0.2611 0.0444 0.0055 -4236.31 8484.63  2529.90 

 (<.0001) (<.0001)    (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)    (<.0001) 

Dentistry 0.4934 0.6763 -6598.224 13200.45  0.2959 0.6913 0.0194 0.1481 0.0157 0.0027 -5740.93 11493.86  1714.58 

 (<.0001) (<.0001)    (<.0001) (<.0001) (0.1765) (<.0001) (<.0001) (<.0001)    (<.0001) 

Dermatology 0.4553 0.6914 -18154.32 36312.64  0.8375 0.4294 1.1923 0.3812 0.1092 0.0179 -7262.16 14536.32  21784.32 

 (<.0001) (<.0001)    (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)    (<.0001) 

Ecology 0.3335 0.5445 -2736.83 5477.66  0.1653 0.5435 0.0499 0.1708 0.0174 0.0037 -2027.75 4067.50  1418.16 

 (<.0001) (<.0001)    (<.0001) (<.0001) (0.0023) (<.0001) (<.0001) (<.0001)    (<.0001) 

Economics 0.2887 0.5198 -1450.68 2905.37  0.1418 0.5133 0.0538 0.2073 0.0277 0.0041 -935.65 1883.29  1030.08 

 (<.0001) (<.0001)    (<.0001) (<.0001) (0.0819) (<.0001) (<.0001) (<.0001)    (<.0001) 

Educational psychology 0.3404 0.5320 -1356.60 2717.21  0.1764 0.5367 0.0381 0.1614 0.0194 0.0034 -1108.26 2228.51  496.70 

 (<.0001) (<.0001)    (<.0001) (<.0001) (0.0900) (<.0001) (<.0001) (<.0001)    (<.0001) 

Ethics 0.2952 0.5262 -516.72 1037.45  0.1556 0.5301 0.0282 0.2231 0.0351 0.0048 -338.55 689.11  356.34 

 (<.0001) (<.0001)    (0.0028) (<.0001) (0.4423) (<.0001) (0.0017) (<.0001)    (<.0001) 

Ethnic studies 0.2287 0.4647 -849.22 1702.44  0.1290 0.5045 -0.0854 0.1877 0.0347 0.0050 -511.39 1034.78  675.66 

 (<.0001) (<.0001)    (0.0038) (<.0001) (0.0011) (<.0001) (<.0001) (<.0001)    (<.0001) 

Finance 0.4560 0.6688 -1692.96 3389.92  0.1693 0.5763 0.2975 0.2992 0.0484 0.0060 -1390.41 2792.82  605.10 

  (<.0001) (<.0001)       (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)       (<.0001) 

 

continues 
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Table 2 (continued) 

Field of knowledge 

Panel A 

Lognormal   

Panel B 

Log-SNP   Panel C 

LR 
µ σ logL AIC  µ σ d2 d4 d6 d8 logL AIC  

Forestry 0.3785 0.5755 -5958.31 11920.63  0.1797 0.5490 0.1149 0.1942 0.0232 0.0037 -4879.51 9771.02  2157.61 

 (<.0001) (<.0001)    (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)    (<.0001) 

Genetics 0.3338 0.5350 -7617.37 15238.74  0.1720 0.5379 0.0399 0.1748 0.0224 0.0037 -6015.27 12042.54  3204.20 

 (<.0001) (<.0001)    (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)    (<.0001) 

History 0.3080 0.4570 -2198.69 4401.39  0.1984 0.5112 -0.0776 0.0627 -0.0004 0.0013 -2095.15 4202.29  207.10 

 (<.0001) (<.0001)    (<.0001) (<.0001) (<.0001) (<.0001) (0.8251) (<.0001)    (<.0001) 

Law 0.2788 0.4908 -578.29 1160.59  0.1507 0.4953 0.0244 0.1747 0.0163 0.0027 -389.59 791.18  377.40 

 (<.0001) (<.0001)    (<.0001) (<.0001) (0.6560) (<.0001) ´(0.0272) (<.0001)    (<.0001) 

Linguistics 0.3307 0.5556 -1801.66 3607.31  0.1558 0.5395 0.0844 0.2007 0.0246 0.0042 -1270.77 2553.54  1061.77 

 (<.0001) (<.0001)    (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)    (<.0001) 

Mathematics 0.2458 0.4342 -1346.20 2696.39  0.1652 0.4945 -0.1013 0.1159 0.0071 0.0019 -971.81 1955.62  748.77 

 (<.0001) (<.0001)    (<.0001) (<.0001) (<.0001) (<.0001) (0.0210) (<.0001)    (<.0001) 

Statistics 0.4510 0.6390 -5553.69 11111.38  0.2429 0.6251 0.0779 0.1858 0.0253 0.0036 -4758.50 1590.38  1590.38 

  (<.0001) (<.0001)       (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)       (<.0001) 

This table reports the ML estimation for each of the fields selected.  Panel A shows the estimated parameters for the lognormal distribution.  Panel B shows the estimated 

parameters for the log-SNP distribution.  Panel C shows the likelihood ratio applied to both distributions.  µ and σ are the location and scale parameters, respectively, 

and d2, d4, d6 and d8 are the weight parameters of the Hermite polynomials.  logL=log-likelihood, AIC= Akaike Information Criterion, LR=likelihood ratio for testing the 

log-SNP and lognormal.  P-values are shown in parentheses. The study corresponds to 18 fields of knowledge that belong to the JCR categories of sciences and social 

sciences between the years 2000 and 2009. 
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Table 3 Number of articles observed empirically versus those expected theoretically under the lognormal and log-SNP 

Field of knowledge  N  

Observed No. of articles 

Top 

  Expected number of articles 

 
Lognormal 

Top 
 

Log-SNP 

Top 

5% 1% 0.1% 0.05%  5% 1% 0.1% 0.05%  5% 1% 0.1% 0.05% 

Agronomy 8,923  3 7 13 15  3 4 5 6  3 4 10 12 

Anthropology 5,755  5 10 19 22  4 6 10 11  4 9 16 17 

Clinical psychology 10,418  5 11 27 35  4 6 10 11  4 9 17 19 

Dentistry 12,345  7 15 32 36  5 8 14 16  5 11 29 34 

Dermatology 30,531  7 16 40 50  5 8 14 16  7 14 20 22 

Ecology 5,730  4 8 17 20  4 5 8 9  4 7 14 16 

Economics 3,048  4 8 25 26  4 5 7 8  3 7 13 14 

Educational psychology 3,032  4 8 18 18  4 5 8 9  4 7 14 16 

Ethics 1,073  4 9 24 25  4 5 7 8  3 8 14 16 

Ethnic studies 2,003  3 8 16 16  3 4 6 6  3 5 12 14 

Finance 3,019  6 13 26 28  5 8 13 15  5 11 19 21 

Forestry 12,211  5 9 18 22  4 6 9 10  4 8 15 17 

Genetics 16,574  4 8 18 23  4 5 8 9  4 7 14 16 

History 6,708  3 5 8 12  3 4 6 7  3 5 8 11 

Law 1,350  4 7 13 13  3 5 7 7  3 6 11 12 

Linguistics 3,600  5 9 22 23  4 6 8 9  4 7 14 16 

Mathematics 3,972  3 6 13 14  3 4 5 6  3 5 10 11 

Statistics 10,679  6 13 26 35   5 7 12 13   5 10 22 26 

This table compares the number of articles observed empirically in each of the fields with those theoretically expected under the lognormal and log-SNP distributions.  

N=number of researchers.  The values 5%, 1%, 0.1% and 0.05% are distribution percentiles.  The study corresponds to 18 fields of knowledge that belong to the JCR 

categories of sciences and social sciences between the years 2000 and 2009. 
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Fig. 1 Pdf of research productivity in Finance and Dentistry 

 

 

The figure shows the distribution of the empirical frequencies (histogram) of the productivity of the 

researchers who published in the five top journals (in JCR-2007 terms) in Finance and Dentistry during the 

period 2000-2009.  The estimated pdfs under the lognormal and log-SNP specifications are depicted in 

dashed line and solid line, respectively. 
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Fig. 2 Pdf of research productivity in Finance and Dentistry 

 

 

The figure shows the right tail of the distribution of empirical frequencies (histogram) of productivity of 

the researchers who published in the five top journals (in JCR-2007 terms) in Finance and Dentistry during 

the year 2000-2009.  The fitted lognormal and log-SNP pdfs are depicted in dashed line and solid line, 

respectively. 
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Fig. 3 Cdf of research productivity in Finance and Dentistry  

 

 

The figure shows the empirical cumulative distribution function of the productivity of the researchers who 

published in the five top journals (in JCR-2007 terms) in Finance and Dentistry during the period 2000-

2009.  The fitted lognormal and log-SNP cdfs are depicted in dashed line and solid line, respectively. 

 


