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Abstract

In this paper we present an optimized software implementation (sFFT-4.0)
of the recently developed Nearly Optimal Sparse Fast Fourier Transform
(sFFT) algorithm for the noisy case. First, we developed a modified version
of the Nearly Optimal sFFT algorithm for the noisy case, this modified al-
gorithm solves the accuracy issues of the original version by modifying the
flat window and the procedures; and second, we implemented the modified
algorithm on a multicore platform composed of eight cores. The experi-
mental results on the cluster indicate that the developed implementation is
faster than direct calculation using FFTW library under certain conditions
of sparseness and signal size, and it improves the execution times of previ-
ous implementations like sFFT-2.0. To the best knowledge of the authors,
the developed implementation is the first one of the Nearly Optimal sFFT
algorithm for the noisy case.
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Efficient Software Implementation of the Nearly Optimal Sparse Fast Fourier Transform

for the Noisy Case

Implementación software eficiente de la
Transformada de Fourier Escasa casi óptima
para el caso con ruido

Resumen
En este artículo se presenta una implementación software optimizada (sFFT-
4.0) del algoritmo Transformada Rápida de Fourier Escasa (sFFT) Casi
Óptimo para el caso con ruido. En primer lugar, se desarrolló una versión
modificada del algoritmo sFFT Casi Óptimo para el caso con ruido, esta
modificación resuelve los problemas de exactitud de la versión origial al
modificar la ventana plana y los procedimientos; y en segundo lugar, se
implementó el algoritmo modificado en una plataforma multinúcleo com-
puesta de ocho núcleos. Los resultados experimentales en el agrupamien-
to de computadores muestran que la implementación desarrollada es más
rápida que el cálculo directo usando la biblioteca FFTW bajo ciertas con-
diciones de escasés y tamaño de señal, y mejora los tiempos de ejecución
de implementaciones previas como sFFT-2.0. Al mejor conocimiento de los
autores, la implementación desarrollada es la primera del algoritmo sFFT
Casi Óptimo para el caso con ruido.

Palabras clave: Transformada de Fourier Escasa; programación multi
núcleo; agrupamiento de computadoras.

1 Introduction

The sFFT term refers to a family of algorithms which allow the estimation
of the Discrete Fourier Transform (DFT) of a sparse signal, faster than
the FFT algorithms found in the literature [1],[2],[3],[4]; in this case, it
is assumed that the signal is sparse or approximately sparse in the DFT
domain.

In the one hand, researchers from the Massachusetts Institute of Tech-
nology (MIT) presented two sFFT algorithms [2] which improve the run-
time over all the previous developments [1],[5],[6],[7] including the most
optimized conventional FFT algorithms like FFTW [8]; the first algorithm
is intended for the noiseless case, and the second algorithm is intended for
the noisy case.

On the other hand, to the best of our knowledge there are only four soft-
ware implementations of the MIT sFFT algorithms reported in literature;
the first one was developed by the algorithm authors for the first version of
the sFFT algorithm [1]; the second one is an optimized implementation of
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the first version of the sFFT algorithm [9]; the third one is a GPU-based
implementation of the first version of the sFFT algorithm [10]; and the
fourth one is an optimized implementation of the Nearly Optimal sFFT
algorithm for the noiseless case [11]. Therefore, there is no software imple-
mentation reported in literature of the Nearly Optimal sFFT algorithm for
the noisy case, which is of practical interest for scientific researchers.

Therefore considering the above, the main contribution of this paper
is the development of a modified version of the Nearly Optimal sFFT al-
gorithm and its optimized software implementation on a multicore envi-
ronment provided by a Beowulf cluster. The modified algorithm has an
improved accuracy when compared with the original version described in
[2], by modifying the flat window and the procedures; to the best of our
knowledge, the modified algorithm is the first implementation of the Nearly
Optimal sFFT algorithm for the noisy case, and it is very suitable for hard-
ware implementation using ASICs or FPGAs.

The rest of the paper is organized as follows: Section 2 describes the
Nearly Optimal sFFT algorithm, section 3 presents the modified version
of the Nearly Optimal sFFT algorithm, section 4 presents experimental
results, and section 5 presents the conclusions and future work.

2 Nearly optimal Sparse Fast Fourier Transform algorithm

In this section, we initially present some concepts about sFFT, then we
describe the Nearly Optimal sFFT algorithm, and finally we show some
software simulations to verify the basic concepts. Given a discrete time
signal x ∈ C

N of length N , its N -point Discrete Fourier Transform (DFT)
x̂ ∈ C

N is defined in Eq. 1.

x̂k =
1

N

∑

n∈[N ]

xnω
kn, k ∈ [N ] (1)

Where N is a power of two, [N ] denotes the set of indexes {0, 1, . . . , N−1},
and ω = e−i2π/N is the N -th root of unity. In this case, the number of
non-zero elements of the vector x̂ is named the sparsity order K and it is
defined in Eq. 2.

K = | supp (x̂)| (2)

ing.cienc., vol. 11, no. 22, pp. 73–94, julio-diciembre. 2015. 75|



Efficient Software Implementation of the Nearly Optimal Sparse Fast Fourier Transform

for the Noisy Case

Where supp (x̂) is the set of indexes of the non-zero elements of the vector
x̂. Then, a time domain signal x is sparse in the DFT domain if K << N .

In this context, a set of algorithms named sFFT takes advantage of the
signal sparsity in the DFT domain to speed up the runtime of the Fast
Fourier Transform (FFT) algorithms used to calculate the DFT [1],[2],[3].
Then, taking into account the above, we performed the software implemen-
tation of the Nearly Optimal sFFT algorithm for the noisy case presented
in [2] by considering the mathematical tools: pseudo-random spectral per-
mutation [1],[7], flat filtering window [2] and hashing function [1],[2]; and
using the procedures for approximate sparse recovery [6],[2] and median
estimation [1],[2],[7].

2.1 Mathematical background about sFFT

2.1.1 Pseudo-random spectral permutation This permutation iso-
lates spectral components from each other [7], and it is performed as de-
scribed in Eq. 3.

xpn = xσ(n−a)modN , x̂pπp(k,σ,N) = x̂kω
σka (3)

Where xp and x̂p are the permuted spectrum signals in time domain and
DFT domain, respectively; πp(k, σ,N) = σk mod N is the spectral per-
mutation function; and σ ∈ {2c+1 | c ∈ [N/2]} and a ∈ [N ] are the spectral
permutation parameters. The spectral permutation function translates the
frequency bin from the k-th location to the πp(k, σ,N)-th location, in this
case σ−1 mod N exists for all odd σ if N is a power of two. The sFFT
algorithm chooses at random the spectral permutation parameters σ and
a from a uniform distribution, then the spectral permutation with these
pseudo-random parameters is related to a pseudo-random sampling scheme
[1],[7].

2.1.2 Flat filtering window The flat window is a mathematical tool
that allows to reduce the FFT size from N to B points, this is accom-
plished by extending a flat passband region of width N/B around each
sparse component; this approach replaces the filter bank of previous sFFT
algorithms [7],[5]; additionally, the flat window avoids the use of non e-
quispaced data FFTs [12]. A flat window is defined with the time domain
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vector G ∈ R
N and the DFT domain approximation Ĝ′ ∈ R

N [1], and
the work in [2] presents a flat window with the parameters B ≥ 1, δ > 0,
α > 0, | supp (G)| = O(B/α log (N/δ)), where the conditions described in
Eq. 4 are satisfied [2].

Ĝ′
i = 1 for |i| ≤ (1− α)n/(2B)

Ĝ′
i = 0 for |i| ≥ n/(2B)

Ĝ′
i ∈ [0, 1] for all i

|Ĝ′ − Ĝ|∞ < δ

(4)

It is important to mention that the practical construction of a flat window
lead to a total bandwidth BW

Ĝ′ in the DFT domain that satisfies Eq. 5.

BW
Ĝ′ ≤ N/B (5)

Finally, the windowing process is described in Eq. 6, and it is performed in
time domain after the pseudo-random spectral permutation is carried out.

y = xp ◦G (6)

Where y is the windowed signal in time domain.

2.1.3 Hashing function The hashing function obtains B points from
the N -point spectrum of the signal y, these points are separated by N/B
bins where B is a power of two, and they are obtained by calculating the
B-point DFT of the sub-sampled signal y. The vector that has the hashes
of the signal y is û ∈ C

B and it is calculated using Eq. 7, [1],[2].

ûj = DFT







∑

i∈[N/B]

yj+Bi







, j ∈ [B] (7)

From Eqs. 4, 6 and 7, it is possible to note that for each sparse component
of the signal x there is one hash located in the offset given by Eq. 8

or(j, σ,N,B) = πp(j, σ,N) − hr(j, σ,N,B)N/B (8)

Where hr(j, σ,N,B) = ⌊πp(j, σ,N)B/N +0.5⌋ is the round-hash function;
and hr(j, σ,N,B) mod B is the index of an element of the vector û that
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hashes a single sparse component. It is important to note, that due to the
condition presented in Eq. 5, the hash can be zero which could reduce the
capability of the sFFT algorithm to locate a sparse component.

Also, it has been noted that the use of pseudo-random spectral permu-
tation and small support windows leads to a sub-Nyquist random sampling
scheme; where, under certain conditions, the average sampling rate is below
Nyquist.

2.2 Procedures and sFFT algorithm description

The sFFT algorithm, presented in [2] and described in Alg. 1, calculates
the DFT estimation ẑ ∈ C

N of a noisy sparse signal; the algorithm has the
following input parameters: the time domain signal x, the sparsity order
K, the constant ǫ for the maximum error in the sparse recovery, and the
parameter δ of the flat window [2].

Algorithm 1: sFFT algorithm.

Input: x ∈ C
N , K ∈ N

+, ǫ ∈ R , δ ∈ R

Output: ẑ ∈ C
N

procedure sFFT (x , K, ǫ, δ)
RsFFT = O (logK/loglogK);

ẑ
(0)
j = 0 ∀ j ∈ [N ];

// Main loop

for r ∈ [RsFFT ] do
Choose Br, Kr, αr as in Theorem 4.9 of [2].

Rest = O
(

log
(

Br
αrKr

))

// Location of Components

L= LocateSignal(x,ẑ, Br, δ, αr);
// Estimation of Components

ẑ(r+1) =ẑ(r)+EstimateV alues(x, ẑ,Br, δ, αr L, 3Kr,
Rest);

end

return ẑ(R)

The sFFT algorithm calculates the DFT of a noisy sparse signal using
four processing stages: the first one adjusts the flat window parameters
Br, αr, and Kr; the second one locates the sparse components using the
procedure LocateSignal ; the third one estimates the DFT values of the
located sparse components using the procedure EstimateValues; and the
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fourth one updates the DFT estimation ẑ by accumulating the results of
the procedure EstimateValues. In this case, the above procedures use the
procedure HashToBins.

2.2.1 Procedure HashToBins This procedure, presented in Alg. 2,
calculates the hashes-error by subtracting the hashes of ẑ from the hashes
û, and it has the following input parameters: the time domain signal x; the
instantaneous estimation ẑ of x̂; the parameter B; the spectral permutation
parameters σ, and a; and the flat window parameters δ, and α.

Algorithm 2: Hash to bins function.

Input: x ∈ CN , ẑ ∈ CN , B ∈ {2c | c ∈ [log 2(N)]},
σ ∈ {2c + 1 | c ∈ [N/2]}, a ∈ [N ], δ ∈ R, α ∈ R

Output: û ∈ C
B

procedure HashToBins(x, ẑ, B, σ, a, δ, α)
uj = 0 ∀ j ∈ [B];
// Spectral Permutation and Sub-sampling

for j ∈ {N − | supp(G)|/2 , N + | supp(G)|/2− 1} do
ujmodB = ujmodB + xσ(j−a) mod NGj−N+| supp(G)|/2;

end

// Sub-sampled DFT

û = FFTB(u);
// Efficient convolution calculation

for j ∈ supp(ẑ) do

ûhr(j,σ,N,B)modB = ûhr(j,σ,N,B)modB − Ĝ′
|or(j,σ,N,B)|ẑjω

σaj ;

end

return û

This procedure calculates the hashes-error using three processing stages:
the first one simultaneously calculates in time domain the pseudo-random
spectral permutation, the windowing, and the hashing process; the second
one calculates the DFT domain hashes û by performing the B-point FFT
of the time domain hashes u; and the third one calculates the hashes-error
by subtracting the DFT domain hashes of ẑ from the hashes û [2].

2.2.2 Procedure LocateSignal This procedure, presented in Alg. 3,
calculates the set L ∈ N

O(B) of frequency bins corresponding to O(B)
sparse components found in x; and it has the following input parameters:
the time domain signal x; the instantaneous estimation ẑ of x̂; the param-
eter B; and the flat window parameters δ, and α.
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Algorithm 3: Locate signal function.

Input: x ∈ C
N , ẑ ∈ C

N , B ∈ {2c | c ∈ [log 2(N)]}, δ ∈ R, α ∈ R

Output: L ∈ N
O(B)

procedure LocateSignal(x, ẑ, B, δ, α)
Choose a uniformly at random a from the set [N ];
Choose σ uniformly at random from the set of odd numbers in
[N ];

l
(0)
j = jN/B ∀ j ∈ [B];
w0 = N/B;
t = logN ;
t′ = t/4;
Dmax = ⌈logtprime(w0 + 1)⌉;
Rloc = Θ

(

log1/α (t/α)
)

;

// Main loop

for D ∈ [Dmax] do

l(D+1)=LocateInner(x, ẑ, B, σ, δ, α, w0/(t
′)D, t, Rloc,

l(D));
end

L = {σ−1⌊l(Dmax)
j + 0.5⌋|j ∈ [B]};

return L

This procedure locates the sparse components of x using four processing
stages: the first one sets the initial conditions, the second one adjusts the
frequency locations, the third one reduces the search region, and the fourth
one inverts the spectral permutation. The setting of initial conditions is

performed by pre-calculating an initial guess of value l
(0)
j = jN/B ∀ j ∈ [B]

of frequency locations in the permuted spectrum, and by pre-calculating
the initial values of w, t, Dmax, and Rloc, where w is the width of the
region for searching the frequency adjustment, t is the number of candi-
date adjustments in w, Dmax is the number of adjustments, and Rloc is
the number of location iterations for each adjustment. The adjustment of
frequency locations is performed by using Dmax times the procedure Lo-
cateInner. The reduction of search region is performed by dividing w by a
factor 1/(t′)D−1 at the D-th adjustment, this reduction allows a systematic
refining of the frequency location. Finally, the spectral permutation inver-
sion is performed by calculating the function π−1

p (k, σ,N) on each located
frequency.

2.2.3 Procedure LocateInner This procedure, presented in Alg. 4,
performs the adjustment of the frequency locations in the permuted spec-
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trum as described in [2], and it has the following input parameters: the
time domain signal x; the instantaneous estimation ẑ of x̂; the parameter
B; the spectral permutation parameter σ, the flat window parameters δ,
and α; the width of search region w; the number of candidate adjustments
t; the number of location iterations Rloc; and the current estimation of
frequency locations l.

Algorithm 4: Locate signal inner function.

Input: x ∈ C
N , ẑ ∈ C

N , B ∈ {2c | c ∈ [log 2(N)]},
σ ∈ {2c + 1 | c ∈ [N/2]}, δ ∈ R, α ∈ R, w ∈ R, t ∈ N

+,
Rloc ∈ N

+, l ∈ N
O(B)

Output: l′ ∈ N
O(B)

procedure LocateInner(x, ẑ, B, σ, δ, α, w, t, Rloc, l)

s = Θ(α1/3);
vj,q = 0 ∀ (j, q) ∈ [B]× [t];
// Main loop

for i ∈ [Rloc] do
Choose a uniformly at random
from the set [N ];
Choose β uniformly at random
from the set {⌊sNt

4w ⌋, . . . , ⌊sNt
2w ⌋};

û=HashToBins(x, B, ẑ, σ,
a, δ, α);
û′=HashToBins(x, B, ẑ, σ,
a+ β, δ, α);
for j ∈ [B] do

if lj 6= ⊥ then

rj = ûj/û′
j ;

cj =
arctan2(ℑ{rj},ℜ{rj});
if cj < 0 then

cj = cj + 2π;
end

for q ∈ [t] do

mj,q = lj +
q+1/2

t w;

θj,q =
2πβmj,q

N
mod 2π;
if

min{|θj,q − cj |, 2π −
|θj,q − cj |} < sπ then

vj,q = vj,q + 1;
end

end

end

end

end

for j ∈ [B] do
Q = {q ∈ [t] | vj,q > Rloc/2}
if Q 6= ∅ then

l′ = lj +minq∈Q
qw
t ;

else

l′ = ⊥;
end

end

return l′

ing.cienc., vol. 11, no. 22, pp. 73–94, julio-diciembre. 2015. 81|



Efficient Software Implementation of the Nearly Optimal Sparse Fast Fourier Transform

for the Noisy Case

This procedure performs the adjustment of the frequency location using
five processing stages: the first one sets the initial conditions, the second
one calculates the hashes-error, the third one calculates the angles of the
hashes-error and candidate frequency bins, the fourth one performs the vo-
ting stage, and the fifth one locates the frequency bins. The setting of initial
conditions calculates the value of the location threshold s, and clears the
vote counters of the t candidate adjustments for the B candidate frequency
bins. The hashes calculation stage obtains Rloc couples of the form û,û′,
which are calculated from the signal x by using the procedure HashToBins
with pseudo-random permutation parameters of the form (σ, a) and (σ, a+
β), respectively. The angle calculation stage obtains the vector c, which is
the angle differences between the hashes û and the hashes û′. The voting
stage increments the vote counter vj,q corresponding to the j-th frequency
bin and q-th adjustment, if Eq. 9 is satisfied.

min{|θj,q − cj |, 2π − |θj,q − cj|} < sπ (9)

Where θj,q is the angle of the j-th candidate frequency bin for the q-th
adjustment, that is, θj,q is related to the q-th candidate frequency adjust-
ment qw/t. Additionally, the above calculation converges if β is chosen
at random from the set {snt

4w , . . . , snt2w } with small enough threshold s. Fi-
nally, the frequency location stage selects the minimum q from the set
Q = {q ∈ [t] | vj,q > Rloc/2}; thus the estimated j-th permuted-frequency
bin is refined using Eq. 10

l′ = lj +min
q∈Q

qw

t
(10)

2.2.4 Procedure EstimateValues This procedure, presented in Alg.
5, calculates the DFT estimation adjustment ŵJ , and it has the following
input parameters: the time domain signal x; the instantaneous estimation
ẑ of x̂; the parameter B; the flat window parameters δ and α; the set of
located sparse components L; the number of sparse components to estimate
K ′; and the number of estimation iterations Rest.
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Algorithm 5: Estimate values function.

Input: x ∈ C
N , ẑ ∈ C

N , B ∈ {2c | c ∈ [log 2(N)]}, δ ∈ R, α ∈ R,
L ∈ N

O(B), K ′ ∈ N
+, Rest ∈ N

+

Output: ŵJ ∈ C
min{| supp(L)|,K ′}

procedure EstimateV alues(x, ẑ, B, δ, α L, K ′, Rest)
ŵj = 0 ∀ j ∈ [| supp(L)|];
// Main loop

for i ∈ [Rest] do
Choose ai uniformly at random from [N ];
Choose σi uniformly at random from the set of odd numbers
in [N ];
û=HashToBins(x, B, ẑ, σi, ai, δ, α);
for j ∈ [| supp(L)|] do

û′
i,j = ûhr(Lj ,σi,N,B)modBω

−σiaiLj

end

end

for j ∈ [| supp(L)|] do

// Median for real and imaginary parts separately

across the i dimension

ŵj = medianiû′
i,j

end

J = argmax| supp(J)|=K ′ ‖ŵJ‖2

return ŵJ

This procedure calculates the DFT estimation adjustment ŵJ using
three processing stages: the first one calculates the Rest sets of hashes-error
from the signal x by using the procedure HashToBins and considering di-
fferent pseudo-random permutation parameters; the second one separately
calculates the median of the real and imaginary parts of the calculated
hashes-error by only considering the set of located sparse frequency bins in
L [1],[7], and by cancelling the pseudo-random spectral permutation; and
the third one saves the K ′ most energetic components ŵJ .

3 Modified nearly optimal Sparse Fast Fourier Transform

algorithm

In this section we describe the Modified Nearly Optimal sFFT algorithm
and its optimized software implementation named sFFT-4.0, this imple-
mentation presents an improved accuracy compared with the original des-
cription [2].
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3.1 Description of the modified nearly optimal sFFT algorithm

The modified sFFT algorithm is accomplished by designing a different
flat window and by performing several modifications to the procedures
described in section 2.

3.1.1 Modified flat window In this case, we designed a flat window
of the form (1/B, 1/2B, δ,O(B log (N/δ))) as the one described in [1], and
considering the time domain and DFT domain representations. The time
domain representation of the flat window is described in Eq. 11, and this
window does not depend on the parameter α and its support only depends
on the parameters B and δ.

Gn+N
2

modN = 2Ce
−2π2(n−N/2)2

σg2 sinc(2C(n−N/2)), n ∈ [N ] (11)

In this case, the flat window in time domain has a small support given
by O(B log (N/δ)) and it is designed with an ideal low-pass filter using a
Gaussian window with finite duration to truncate the impulse response.
The cutoff frequency of the low-pass filter is 2C, where C is defined in Eq.
12 and the standard deviation of the Gaussian window is defined in Eq.
13.

C =
1

2B
(12)

σg = 2B
√

2 log(N/δ) (13)

The DFT domain representation the flat window is described in Eq.
14.
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Ĝ′
k+N

2
modN

=














1, if |k −N/2| ≤ N(C −
√

2 log(1/δ)/σg)

0, if |k −N/2| ≥ N(C +
√

2 log(1/δ)/σg)
ncdf(σg((k −N/2)/N + C))
−ncdf(σg((k −N/2)/N −C)), otherwise

, k ∈ [N ] (14)

Where the vector Ĝ′ is the approximated flat window and ncdf(x) =
erfc(−x/

√
2)/2 is the Normal Cumulative Distribution Function [13]. In

this case, Ĝ′ satisfies |Ĝ′ − Ĝ|∞ < δ, and it has a flat super-pass re-
gion, a transition band of width 2N

√

2 log(1/δ)/σg, and a total band-
width of BW

Ĝ′ = N/B(1 +
√

2 log(1/δ)/
√

2 log(N/δ)) which satisfies
BW

Ĝ′ ≤ 2N/B.

3.1.2 Modified procedure HashToBins This modified procedure is
shown in Alg. 6 by considering the designed flat window.

Algorithm 6: Modified hash to bins function.

Input: x ∈ C
N , ẑ ∈ C

N , B ∈ {2c | c ∈ [log 2(N)]},
σ ∈ {2c + 1 | c ∈ [N/2]}, a ∈ [N ], G ∈ R

B⌈log(N/δ)⌉,

Ĝ′ ∈ R
N⌈1/(2B)+

√
2 log(1/δ)/σg)⌉

Output: û ∈ CB

procedure HashToBins(x, ẑ, B, σ, a, G, Ĝ′)
uj = 0 ∀ j ∈ [B];
// Spectral Permutation and Sub-sampling

for j ∈ {N − | supp(G)|/2 , N + | supp(G)|/2− 1} do
ujmodB = ujmodB + xσ(j−a) mod NGj−N+| supp(G)|/2;

end

// Sub-sampled DFT

û = FFTB(u);
// Efficient convolution calculation

for j ∈ supp(ẑ) do

ûhf (j,σ,N,B)modB = ûhf (j,σ,N,B)modB − Ĝ′
|of (j,σ,N,B)|ẑjω

σaj ;

ûhc(j,σ,N,B)modB = ûhc(j,σ,N,B)modB − Ĝ′
|oc(j,σ,N,B)|ẑjω

σaj ;

end

return û

In this case, due to the designed flat window has a doubled bandwidth,
each sparse component has two hashes located in the offsets of (j, σ,N,B)
and oc(j, σ,N,B) given by the Eqs. 15 and 16, respectively.
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of (j, σ,N,B) = πp(j, σ,N) − hf (j, σ,N,B)N/B (15)

oc(j, σ,N,B) = πp(j, σ,N) − hc(j, σ,N,B)N/B (16)

Where hf (j, σ,N,B) = ⌊πp(j, σ,N)B/N⌋ is the floor-hash function and
hc(j, σ,N,B) = ⌈πp(j, σ,N)B/N⌉ is the ceil-hash function; hf (j, σ,N,B)
mod B and hc(j, σ,N,B) mod B are indexes of the two hashes in û for
a single sparse component of x. The proposed flat window improves the
accuracy of the algorithm by solving the problem of the zero-value hashes,
and it reduces the sampling cost by considering a smaller support.

3.1.3 Modified procedures LocateSignal and LocateInner These
modified procedures are presented in Alg. 7 and Alg. 8, respectively. In
this case, we reduced the number of modified procedure HashToBins used
by the modified procedure LocateInner by fixing the parameter a of the
pseudo-random spectral permutation; this allows the usage of the same
hashes-error û for all the iterations of the modified procedure LocateInner,
thus the sampling cost and the speed are improved.

Algorithm 7: Modified locate signal function.

Input: x ∈ C
N , ẑ ∈ C

N , B ∈ {2c | c ∈ [log 2(N)]},
G ∈ R

B⌈log(N/δ)⌉, Ĝ′ ∈ R
N⌈1/(2B)+

√
2 log(1/δ)/σg)⌉, s ∈ R,

Rloc ∈ N
+

Output: L ∈ NO(B)

procedure LocateSignal(x, ẑ, B, G, Ĝ′, s, Rloc)
Choose a uniformly at random a from the set [N ];
Choose σ uniformly at random from the set of odd numbers in
[N ];

l
(0)
j = jN/B ∀ j ∈ [B];
w0 = N/B;
t = log2N ;
t′ = t/4;
Dmax = ⌈logtprime(w0 + 1)⌉;
û=HashToBins(x, ẑ, B, σ, a, G, Ĝ′);
// Main loop

for D ∈ [Dmax] do

l(D+1)=LocateInner(x, ẑ, B, σ, a, G, Ĝ′, s, Rloc,
w0/(t

′)D, t, û, l(D));
end

L = unique{σ−1⌊l(Dmax)
j + 0.5⌋|j ∈ [B]};

return L
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Algorithm 8: Modified locate signal inner function.

Input: x ∈ C
N , ẑ ∈ C

N , B ∈ {2c | c ∈ [log 2(N)]},
σ ∈ {2c+ 1 | c ∈ [N/2]}, a ∈ [N ], G ∈ R

B⌈log(N/δ)⌉,

Ĝ′ ∈ R
N⌈1/(2B)+

√
2 log(1/δ)/σg)⌉, s ∈ R, Rloc ∈ N

+, w ∈ R,
t ∈ N

+, û ∈ C
B , l ∈ N

O(B)

Output: l′ ∈ N
O(B)

procedure LocateInner(x, ẑ, B, σ, a, G, Ĝ′, s, Rloc, w, t, û,
l)

vj,q = 0 ∀ (j, q) ∈ [B]× [t];
// Main loop

for i ∈ [Rloc] do
Choose β uniformly at random from the set
{⌊sNt

4w ⌋, . . . , ⌊sNt
2w ⌋};

û′=HashToBins(x, B, ẑ, σ, a+ β, G, Ĝ′);
for j ∈ [B] do

if lj 6= ⊥ then

rj = ûj/û′
j;

cj = arctan2(ℑ{rj},ℜ{rj});
if cj < 0 then

cj = cj + 2π;
end

for q ∈ [t] do

mj,q = lj +
q+1/2

t w;

θj,q =
2πβmj,q

N mod 2π;
if min{|θj,q − cj |, 2π − |θj,q − cj |} < sπ then

vj,q = vj,q + 1;
end

end

end

end

end

for j ∈ [B] do
Q = {q ∈ [t] | vj,q > Rloc/2}
if Q 6= ∅ then

l′ = lj +minq∈Q
qw
t ;

else

l′ = ⊥;
end

end

return l′
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3.1.4 Modified procedure EstimateValues This modified procedure,
presented in Alg. 9, improves the estimation of the DFT values by adding
a correction factor that cancels the effect of the windowing in DFT domain.

Algorithm 9: Modified estimate values function.

Input: x ∈ C
N , ẑ ∈ C

N , G ∈ R
B⌈log(N/δ)⌉,

Ĝ′ ∈ R
N⌈1/(2B)+

√
2 log(1/δ)/σg)⌉, B ∈ {2c | c ∈ [log 2(N)]},

L ∈ N
O(B), K ′ ∈ N

+, Rest ∈ N
+

Output: {ŵJ ∈ C
min{| supp(L)|,K ′}, Ĵ ∈ N

min{| supp(L)|,K ′}}

procedure EstimateV alues(x, ẑ, G, Ĝ′ ,B, L, K ′, Rest)
ŵj = 0 ∀ j ∈ [| supp(L)|];
// Main loop

for i ∈ [Rest] do
Choose ai uniformly at random from [N ];
Choose σi uniformly at random from the set of odd numbers
in [N ];
û=HashToBins(x, B, ẑ, σi, ai, G, Ĝ′);
for j ∈ [| supp(L)|] do

û′
i,j = ûhr(Lj ,σi,N,B)modBω

−σiaiLj/Ĝ′
|or(Lj ,σi,N,B)|

end

end

for j ∈ [| supp(L)|] do

// Median for real and imaginary parts separately

across the i dimension

ŵj = medianiû′
i,j

end

J = argmax| supp(J)|=min{| supp(L)|,K ′} ‖ŵJ‖2

return {ŵJ ,J}

3.1.5 Modified procedure sFFT Taking into account the above im-
provements, the proposed modified Nearly Optimal sFFT algorithm is pre-
sented in Alg. 10, and it has the following input parameters: the time
domain signal x, the sparsity order K, the parameter δ of the flat win-
dow [2], the location threshold s, and the number of estimation iterations
(Rest).

The modified algorithm simplifies the calculation of the parameters B
and K by halving their values during odd-numbered iterations (r mod 2 =
1), also the modified algorithm improves the accuracy of the DFT estima-
tion ẑ.
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Algorithm 10: Modified sFFT algorithm.

Input: x ∈ C
N , K ∈ N

+, δ ∈ R, s ∈ R , Rest ∈ N
+

Output: ẑ ∈ C
N

procedure sFFT (x , K, δ, s, Rest)
RsFFT = ⌊log2(K)⌋;
B = 2⌈log2(K)⌉+1;
Rloc = ⌊log2log2N⌋;
Calculate flat window G, Ĝ′ by using equations 11, 12, 13, and
14;
ẑj = 0 ∀ j ∈ [N ];
// Main loop

for r ∈ [RsFFT ] do

// Location of Components

L= LocateSignal(x, ẑ, B, G, Ĝ′, s, Rloc);
// Estimation of Components

{wJ ,J} =EstimateV alues(x, ẑ, B, G, Ĝ′ , L, 3K,
Rest);
ẑLJ

= ẑLJ
+wJ

// Reduction of Window Support

if (B > 2) ∧ (r mod 2 = 1) then
B = B/2;
K = ⌊K/2⌋;
Calculate flat window G, Ĝ′ by using equations 11, 12,
13, and 14;

end

end

return ẑ

4 Experimental results

We developed a software implementation of the modified sFFT algorithm
named sFFT-4.0 [1],[2] by using the modified procedures HashToBins, Lo-
cateSignal, LocateInner, and EstimateValues. The Linux-based software
implementation was developed using C language, the Intel R© C Compiler,
OpenMP [14], and the Intel MKL library; it was tested on one node of
the Adroit cluster at Princeton University by using eight cores; and it was
integrated with MATLAB R© by using MEX-files shared libraries. We used
OpenMP in some portions of the code in order to execute up to eight calls of
the procedure HashToBins in parallel, hence we parallelized the main for-
loops of the procedures LocateInner and EstimateValues. The source code
of sFFT-4.0 is available at https://sourceforge.net/projects/sfft40/.

Finally, in order to test the performance of sFFT-4.0 implementation;
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first, we developed some comparisons of sFFT-4.0 implementation against
the previous sFFT implementations AAFFT and sFFT-2.0 in terms of
runtime and accuracy versus Signal to Noise Ratio (SNR); and second, we
present the achieved improvements when the multicore architecture is used
for sFFT-4.0 implementation.

4.1 Comparison tests

Figure 1(a) shows simulation results of the runtime versus N for K = 50;
where, red plot represents the runtime of sFFT-4.0 using a single core,
the blue plot represents the runtime of sFFT-2.0 [1], and the green plot
represents the runtime of AAFFT [7]. Even though our implementation
is running on a single core, it is faster than AAFFT for all N values and
faster than sFFT-2.0 for N ≥ 218.

Figure 1(b) shows the simulation results of the runtime versus K for
N = 222; in this case, sFFT-4.0 is faster than AAFFT and sFFT-2.0 for
all K values.
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Figure 1: 1(a) Comparison of sFFT-4.0 runtime versus N for K = 50 with
two sFFT implementations. 1(b) Comparison of sFFT-4.0 runtime versus K for
N = 222 with two sFFT implementations.

Figure 2 shows the simulation results of the l1-error versus SNR for
N = 222 and K = 50; where the blue plot represents the error for sFFT-4.0
and the red plot represents the error for sFFT-2.0, the results for AAFFT
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are not worthy and were not included due to this algorithm is extremely
sensitive to noise.
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Figure 2: sFFT-4.0 error versus SNR for N = 222 and K = 50.

From 2 it can be seen that for values of SNR greater than −3 dB sFFT-
4.0 has improved accuracy when compared with sFFT-2.0.

4.2 Multicore tests

Figure 3(a) shows simulation results of the runtime versus N for K =
50; where, red plot represents the runtime of FFTW3 [8], the blue plot
represents the runtime of sFFT-4.0 when one core is used, and the the
green plot represents the runtime of sFFT-4.0 when eight cores are used.
In this case, sFFT-4.0 is faster than FFTW3 for N above to 216 in the eight
cores case; however, there is no a significant speed improvement by using
the multicore architecture, this is due to the low sparsity of signal that leads
to for-loops with small number of iterations which do not take advantage
of the multicore architecture, hence the OpenMP’s overhead times have a
strong influence on the overall execution time [14].

Figure 3(b) shows the simulation results of the runtime versus K for
N = 222; in this case, sFFT-4.0 is faster than FFTW3 for K below to 2500
when a single core is used. From Figure 3(b), it can be noted that there
is a significant speed improvement by using the multicore architecture due
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the increased sparsity of signal; in this case we achieved an acceleration
near to 4×.
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Figure 3: 3(a) sFFT-4.0 runtime versus N for K = 50. 3(b) sFFT-4.0 runtime
versus K for N = 222.

Finally, the modified sFFT algorithm uses the following arithmetic o-
perators: FFT, multiply-accumulate, trigonometric functions (sine, cosine,
atan, atan2), modular inversion based on the Fermat’s Little Theorem,
among others; these operators can be easily mapped to hardware, thus
this advantage could facilitate the implementation of the modified sFFT
algorithm on an FPGA or an ASIC.

5 Conclusions

In this paper we present a modified Nearly Optimal sFFT algorithm for
the noisy case, this algorithm reduces the sampling cost and corrects the
zero-hash issue of the original algorithm by doubling the bandwidth of the
flat window and by modifying the original procedures. Additionally, we
developed an efficient software implementation of the modified Nearly Op-
timal sFFT algorithm using a multicore platform, under certain conditions
this implementation is faster than the optimized FFT library FFTW3 and
previous sFFT implementations. To the best knowledge of the authors,
the developed implementation is the first one of the Nearly Optimal sFFT
algorithm for the noisy case reported in literature. Finally, the future work
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will be addressed to perform an efficient hardware implementation of the
modified Nearly Optimal sFFT algorithm using an FPGA.
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