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Summary

The work presented in this thesis is concerned with the dynamical behavior of a C-
Bandola’s acoustical box at low resonances. Two models consisting of two and three
coupled oscillators are proposed in order to analyse the response at the first two and
three resonances, respectively. These models describe the first resonances in a bandola
as a combination of the lowest modes of vibration of enclosed air, top and back plates.
Physically, the coupling between these elements is caused by the fluid-structure inter-
action that gives rise to coupled modes of vibration for the assembled resonance box.
In this sense, the coupling in the models is expressed in terms of the ratio of effective
areas and masses of the elements which is an useful parameter to control the coupling.

Numerical models are developed for the analysis of modal coupling which is per-
formed using the Finite Element Method. First, it is analysed the modal behavior of
separate elements: enclosed air, top plate and back plate. This step is important to
identify participating modes in the coupling. Then, a numerical model of the reso-
nance box is used to compute the coupled modes. The computation of normal modes
of vibration was executed in the frequency range of 0-800Hz. Although the introduced
models of coupled oscillators only predict maximum the first three resonances, they
also allow to study qualitatively the coupling between the rest of the computed modes
in the range.

Considering that dynamic response of a structure can be described in terms of the
modal parameters, this work represents, in a good approach, the basic behavior of a C-
Bandola, although experimental measurements are suggested as further work to verify
the obtained results and get more information about some characteristics of the coupled
modes, for instance, the phase of vibration of the air mode and the radiation efficiency.
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Glossary

e Bandola’s C tuning: It is the tuning for the bandola in which its music notation
agrees with the real pitch of the equal tempered scale.

e Bandola’s Bb tuning: It is a transposing tuning in which musical notes on the
bandola produce one tone bellow of the real pitch in the equal tempered scale,
therefore, the musical notation is written one tone above the considered pitch.

¢ Estudiantina: It is a type of musical group common in the South American
Andean Region. Tt is formed only by strings instruments which usually are native
of the region, for instance, bandolas, tiples, requintos, among others.

e Mobility: . It is a measure of the dynamical response of a system. It is expressed
as the ratio between velocity and the applied force.

e Normal mode of vibration: It is an inherent property of a system in which
all the points moves with the same frequency and reaches their maximum or
minimum positions at the same time.

e Open strings: It refers to the sound generated by the string when it is plucked
without frets being pressed.

e Plucked String Instruments: These instruments are a subcategory of string
instruments. They are played by plucking or exciting the strings with either a
finger or a plectrum.

e Resonance: Is a state of a system in which all the energy is used to vibrate,
thus, even small periodic driving forces can produce large amplitude oscillations.

e Sound Register: It indicates the frequency range of the sound produced with
the musical notes of an instrument.



Introduction

International research in the field of acoustics is becoming and is playing an important
role in the great advances occurring in the scientific, commercial and cultural fields. This
increasing participation can be seen in many applications such as musical production,
noise reduction and Research and Development of musical instruments. However, this
scenario is not very common in Colombia, especially in the field of musical acoustics,
where the majority of instruments belonging to our culture are still empirically built [1].

The Colombian Andean Bandola is a musical instrument that experienced a parallel
development in many places and which currently presents different regionalized design
adaptations. Given these conditions, it is not possible to identify a standard Colombian
Andean Bandola, not even a single characteristic sound or tuning [1]. The differences
lie in the ways in which instruments are built by regional luthiers and this fact, together
with reforms recently proposed by musicians and luthiers from Bogota savannah, have
led to a discussion about the identity of the instrument with respect to its sonority and
national musical tradition [1].

Research on the acoustics of musical instruments has attempted to relate physical
parameters with the characteristic sound of an instrument [6-32]. For this purpose,
some phenomena, mainly in the sound production and propagation, are studied based
on the behavior of the instrument. The first important application of musical acous-
tics was done to violins and guitars [6-32]. The study of these instruments provided
useful information to luthiers about parameters that could modify the acoustical re-
sponse of the instrument. In this sense, this work studies, using the finite element
method, the normal modes of vibration for the Colombian Andean C-Bandola. Normal
modes are well known acoustic parameters which describe the vibrational response of
the instrument. The bandola could be understood as a complex mechanical system,
whose dynamic behavior depends largely on the interaction and coupling of each of its
constituent elements. Knowledge about the dynamic characteristics of resonance box
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elements can give an idea of how structural parameters influence the behavior of the
instrument as a whole. The analysis of modal coupling at the resonance box is thus
proposed and developed throughout the document.

The methodology and results were validated based on reported studies, primarily of
guitars. The analysis at low resonances is emphasized through two models consisting of
coupled oscillators, which could represent the vibrations of enclosed air, top and back
plates at their lowest resonances. The approach of a thesis on this topic is intended not
only contributions in academia, but also potential cultural impacts.
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Chapter 1

Project Statements

1.1

General Objective

Analyse using FEM the modal coupling at low frequencies of the Colombian Andean
C-Bandola’s constitutive elements

1.2

Specific Objectives

Know different reported numerical models for simulating string instruments sim-
ilar to the bandola.

Evaluate models and conditions that allow the dynamic behavior description of
Colombian Andean C-Bandola.

Define the numerical model that will be used, the constitutive elements to con-
sider, the material characteristics and boundary conditions.

Model using CAD software the instrument constitutive elements and the assem-
bled structure.

Simulate individual modal behavior of elements involved on model dynamic re-
sponse and also their modal coupling.

Analyse results and compare them qualitatively with experimental, analytical and
numerical reported results for string instruments similar to the bandola.

12



1.3 Justification

The Colombian Andean Bandola is a plucked string instrument whose origins date back
200 years and which nowadays presents different designs according to two main tun-
ings, Bb and C. Although the use of the C-Bandola is relatively new (established in
1961), its development in recent years has been thought to make up for some functional
shortcomings of the Bb-Bandola. Variations, primarily in size, type and number of
strings, are meant to expand interpretation possibilities. The C-Bandola has come to
be widely accepted and used by those estudiantina types of musical groups, and thus,
it have began to be of interest to players and luthiers. Moreover, musical acoustics has
led and increase in knowledge of the physical behavior of different musical instruments,
particularly in sound production, and it has identified some important parameters that
influence the characteristic sound of each instrument. A group of fundamental param-
eters turns out to be the modes of vibration of the instrument, which are related to
particular conditions of sound production since each of them excites the surrounding
air in a specific way.

Knowing some information about these modes, one could completely determine the
dynamics of a structure. This could be done based on the developed experimental
modal analysis techniques, which seek to obtain the modal parameters consisting of
frequency, damping and modal shapes. However, these techniques involve specialized
devices and assemblies that are complex and have high costs, and hence, are not always
available. Computational methods emerge as alternative techniques that provide a
predictive capability and can be used in vibration problems. This is why in recent
years it has become a powerful tool for modal analysis.

Considering the ideas above, this work seeks to analyse the normal modes of vibra-
tion of the body components of a C-Bandola: how they interact, how they are coupled
and how they change to conform to the instrument. The analysis is performed using the
finite element method (FEM), a known numerical method with wide applications. This
study will complement previous work done on the acoustic analysis of this instrument,
which since early 2010 has been developed under the courses Advanced Project I-IT of
the Engineering Physics program of the Universidad EAFIT. This thesis is intended
not only to contribute to academia, but also, to impact the future in bandola’s musical
performance: an useful tool could be provided to national luthiers in order to supply
some information about the instrument response and possibly propose modifications to
control sound parameters.

13



1.4 State of the Art

Previous analysis of the bandola’s acoustic properties

The acoustic study of Colombian Andine Bandola was proposed in early 2010 and
began within the courses Advanced Project I-IT of the Engineering Physics program.
The projects developed in those courses were Planteamiento de una metodologia de me-
dida acistica en la bandola andina colombiana (Approach to an acoustic measurement,
methodology in the Colombian Andean Bandola) and Caracterizacion acistica de la
afinacion y los modos normales de vibracion en bandolas colombianas (Acoustic char-
acterization of pitch and the normal modes of vibration in Colombian bandolas), whose
results led to the establishment of a measurement methodology for the characterization
of tuning and the visualization of normal modes of vibration by interferometric optical
techniques [2,3]. The review of measurement techniques and the foundations in the
acoustic field were the introduction to a wide discipline which is not very common in
the national panorama. The development of the projects was intended to measurements
that could be achieved with available resources and thus, without specialized devices
and /or spaces designed specifically for related purposes. However, this study prompted
the integration of different fields such as optics which facilitated the analysis.

As a complement to experimental studies that were fulfilled, the proposal for a
numerical approach to study the modal characteristics of the instrument was suggested.

Related works

The modal analysis as a technique for studying dynamic properties of structures began
to be developed experimentally in the 1960s, which David L. Brown and Randall J.
Allemang [4] called "The modern era of experimental modal analysis". This is due to
the confluence of several technologies that were developed earlier in the century and
became integrated in the 1960s. Furthermore, the theoretical support of this technique
was formulated and developed from the 1930s to 1950s and already well-established in
the literature of 1963. Thus, it can be said clearly that the onset of this new era was
framed in the mid-60s, when the theory was already developed and the hardware, in
terms of sensors and measuring equipment, was commercially available.

Although musical acoustics is supported by two treatises of the late nineteenth
century, "Tonempfindungen" of Helmholtz and "Theory of Sound" of Rayleigh, the
beginning of greater research and bibliographic production initiate in 1960s with authors
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such as A. Benade, C. Hutchins and J. C. Schelleng [5]. The latter two authors begin in
this decade with the study of the acoustics of the violin and by the end of it, the study
of the guitar is promoted. In the early 1970s the use of modal analysis techniques
on these instruments was then conducive. At this point, the modal problem in the
resonance box of the instruments —its resonances and the modal coupling present in
dynamic behavior— began to be treated in more detail, analytically and experimentally.

Authors such as M. Firth, Meyer, O. Christensen, B. Vistisen, G. Caldersmith, R.
Boullosa, T. Dickens, V. Jansson, D. Rossing, among others, present studies on these
aspects of vibrational behavior in guitars and violins [6-27]. For example on the issue
of modal coupling, the work of Meyer, Fletcher and Rossing [11,18| recognize the three
lowest modal frequencies of the classical guitar body as combination modes; the top and
back plates and the enclosed air in the cavity vibrate as one body, thereby producing
these first three resonances. Other studies about the frequencies of top plate modes
were carried out during this period by Jansson [15], Boullosa [20], Christensen [7] and
Rossing [12].

With the advent of great computational advances and because of the inconvenient
fact that many of the issues addressed had no analytical solution, a new approach began
to be considered. Numerical analysis in musical acoustics was first seen in the mid-80s
and specifically the Finite Element Methods (FEM) received great acceptance in the
modal analysis of musical instruments [33]. Considering that experimental implemen-
tation of modal analysis was quite expensive, FEM became a powerful computational
tool to predict the modal behavior of structures. It is noteworthy that in the early
1960s there was already sufficient literature on the investigation of the FEM numer-
ical technique [34], so at the time of its use in musical acoustics, the technique was
sufficiently developed.

There are representative sources in numerical analysis of string instruments (es-
pecially guitars) that leads one to distinguish two types of analysis: transient (time-
domain) and stationary analysis. On these two issues the work of Elejabarrieta, Derveaux,
Bécache, among others [35-54], have established a representative source of reference for
the first decade of the 21st century.

Considering the development of modal analysis in musical instruments, especially
the numerical development, the study of modal coupling in a Colombian Andine Ban-
dola in C using the Finite Element Method is proposed. Similar results to those of the
guitar are expected because the building and physical conditions are nearly the same,
except for the geometry.

15



Chapter 2

Theoretical Framework

2.1 The Colombian Andean Bandola

In order to get familiar with the structure and operating mechanism of the musical
instrument of analysis, this section introduces Colombian Andean C-Bandola and its
main structural characteristics.

Colombian Andean Bandola is a plucked string instrument that comes from guitar
family. Its name comes from an old persian-arabic root, pandur, that comes through
different north african and european instruments and indicates a variety of melodic
instruments with high and medium pitch. This instrument presents several design
adaptations through history in different Colombian regions that differ essentially in
dimensions, process of building and tuning. Bandola in C (tuned in C) and bandola in
Bb (tuned in Bb) are the most representative prototypes.

The analysis proposed in this document is considered for bandola in C, which has
been accepted and markedly used in last years by estudiantinas (musical groups similar
to Tunas). Hence, following descriptions pertain to this instrument with C-tuning.

Bandola in C, specially found in Bogot4 savanna, presents twelve strings grouped
in unison pairs. Strings form six groups tuned in intervals of perfect fourths [1|. Figure
2.1 presents the bandola and the pitchs for each string. The frequency values that
correspond to the tuning of each open string are specified in Table 2.1.

Constitutive parts of bandola are shown in Figure 2.2. Definition of parts and their
structural function can be found in [1].

According to Figure 2.2, substructures are formed by grouping listed parts. This is:

16
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Figure 2.1: Upper image: Colombian Andean Bandola. Lower image: Pitch for each string. From
top to bottom in fingerboard strings are tuned in: G, D, A, E, B, Ff

Frequencies of tuning for the open strings

G4 Di | A3 | E3 B2 |Ff2
Hz | 783.99 | 587.33 | 440 | 329.63 | 246.94 | 185

Table 2.1: Frequency values that correspond to the tuning of open strings in the Bandola

e Mast: Formed by

1. Headstock

2. Handle or neck

3. Heel

4. Zoque or Heel brick.

e Resonance box: Formed by

5. Back plate
6. Reinforcement bars
7. Upper brick
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Figure 2.2: Bandola’s constitutive parts

Ribs

Lower brick

Top plate

Soundhole

Soundhole reinforcement
Harmonic bars

Fan bracing

e Fingerboard

e Bridge
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e String puller

2.2 Musical Acoustics and Stringed Musical Instru-
ments closer to the Bandola

Musical Acoustics is a branch of acoustics which studies how is produced, propagated
and perceived the sound with musical proposes. This concept immediately relates the
idea of physics in musical instruments, i.e., how wind, brass or any type of musical
instrument physically works [55].

Sources of sound in instruments could be of mechanical, acoustical or electrical
type. For instance, vibrations of strings, bars, membranes, plates, air in a tube and
synthesized sounds. Even sources could be collective coupled vibrators, in other words,
a complex system [11]. Related to this fact, instrument analysis is classified according
the type of source or sound production. This will indicate the phenomenon involved in
each case, and thus, the useful mathematical formulation useful.

String instruments are a particular case of classification, which commonly, not only
involve string vibration in an instrument, but also coupled plates, bars and air oscilla-
tions. Violins, guitars and bandola in C are examples in this category and many works
have been devoted, at least for violins and guitars, to study their behavior as complex
system [6-11].

For simplicity, complex systems are divided in subsystems. Thus, the phenomena
involved in guitars sound production will be presented, as an exponent, by distinguish-
ing two main subsystems: the first composed by strings, bridge and top plate and the
second composed by guitar body parts. Due to the great similarity of guitar and ban-
dola, this example constitutes an excellent description to illustrate physical behavior of

bandola in C.

In Figure 2.3, a scheme similar to one presented in [11] shows the frequency range
in which each subsystem play significant role. From this figure, guitar behavior can be
described as follows: At low frequency, guitar transmits vibrations through the bridge
to the top plate, which displaces fluid inside the cavity and induces pressure changes
that cause soundhole radiation. Vibrational energy is also transmitted to back plate
via both the ribs and air cavity pressure changes. At high frequency, most of the sound
is radiated by top plate and the role of the bridge becomes more relevant.

A detailed individual subsystem behavior could be described, but such specific task

19



Bridge + Top plate (High Frequency Response)

Strings E> Air cavity |—H Soundhole |

— Top plate Iﬁ (Low Frequency Response)

Ribs —H Back plate |

Figure 2.3: Scheme of guitar subsystems according to frequency response

is not of interest in this document except for the analysis of modal coupling at low res-
onances in instrument body. This subject will be developed throughout the document.
For more detail, the document bibliography covers different related topics and [11]
presents a good summary of them.

2.3 Wood: Considerations for musical instruments

Wood is an elastic anisotropic material which elastic behavior depends on observation
scale. The effective properties of this material depends on the length scale of the exci-
tation, i.e., the response is not the same for different length scales |56]. For wavelengths
bigger than microstructural dimensions, the anisotropy is assumed to have elastic sym-
metry in three planes that are perpendicular to each other (taking in mind tree growing).
This anisotropy is called orthotropy and is characterized by nine independent constants
in stiffness tensor. Figure 2.4 shows trees orthotropy.

As Figure 2.4 shows, independent mechanical properties contained in the stiffness
tensor, are oriented in the three mutually perpendicular axes: longitudinal L, tangential
T and radial R. The mechanical properties of interest are:

e Young’s modulus: A measure of stiffness of an elastic material, i.e., the ratio of
uniaxial stress o; over uniaxial strain ¢; for elastic deformations. Thus, Young’s
Modulus in the ith direction is defined:

E =2 wherei=1,23
g

20



Stem L Lilongitudinal

R: radial
T:tangential
R g

roots

Figure 2.4: Trees orthotropy. Due to tree growth, wood structure can be described using the three
mutually perpendicular axes: longitudinal L, tangential T and radial R

e Poisson’s ratio: Ratio of transverse strain €; in jth direction, over axial strain ¢;
in ith direction when axial stress is applied. Thus,
_5

Vi =
J £;

e Shear modulus: Ratio of shear stress o;; over the shear strain ¢;;. Thus, Shear
Modulus in 75 planes is defined:

Uij
Gij = -
5z’j

Luthiers have established the most appropriate wood species and cuts for musical
instruments. For instance, spruce is generally admitted for guitars top plate under the
term resonance wood; curly maple for back plate, ribs, and neck again is a resonance
wood [56].

A resonance wood has remarkably regular anatomical structure. Thus, a narrow
grain spruce is preferred for guitars although cedar is also used. Curly maple has
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a aesthetic criterion of selection, but for guitar back and sides, hardwoods of high
densities and low damping are used.

As mentioned, also wood cuts represent an important parameter in order to control
acoustic properties of wood. There are three possible wood cuts to use for string
instrument parts as Figure 2.5 shows, i.e., Quarter sawn, rift sawn and flat sawn.

Rift sawn

Quarter sawn

Flat sawn

Figure 2.5: Possible wood cuts for string instrument building

Wood is considered quarter sawn when its growth rings are 60 to 90 degrees to the
face of the board. Rift sawn wood is where the growth rings are between 45 and 60
degrees to the face of the board. Flat sawn wood has its growth rings 30 degrees or less
with the face.

Quarter swan presents the most regular anatomical structure, thus, this cut is ideal
for top plates. Figure 2.6 presents an stem with several possible quarter sawn.

Even with these presented wood complex considerations for musical instruments,
there is another important feature that has to be considered in order to build a good
instrument: moisture. Instrument stiffness depends on wood moisture and hence, the
restoring forces determined by elastic properties also depend on it.

A young wood would have high moisture that yields poor stiffness. Old woods with
poor moisture are excessively rigid. Thus, only a balanced moisture in wood that means
a mature wood, is suitable for musical instruments.
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Flat sawn

Tangential grain

Figure 2.6: Stem with quarter swan

2.4 Structural Dynamics: Theory of Plates

The study of structures behavior has been important specially for aeronautical, civil and
mechanical engineering and many efforts have been made in order to develop theories
that describes how beams, shells and plates work, as integral parts of structures. With
a wide range of applications, plate theory is an old topic that has been assisted by
numerical procedures and has become an useful tool to analyse in detail simple or
complex dynamic problems.

This section contains the main aspects of classical plate theory for transverse vibra-
tions which is valid for low modes. This theory neglects transverse shear effects as well
as rotatory inertia effect that are important when the plate is relatively thick or when
higher-mode vibration characteristics are needed [57].

Thus, classical plate theory or Kirchhoff plate theory is based on the following
assumptions:

1. Thickness of the plate is small when compared with other dimensions.

2. Normal stresses in the direction transverse to the plate are taken to be negligibly
small.

3. Effect of rotatory inertia is negligible.
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4. Normal to the undeformed middle surface remains straight and normal to the
deformed middle surface and unstretched in length.

These assumptions are illustrated in Figure.2.7

Figure 2.7: Deformation in a Kirchhoff plate.

Plate equations for Isotropic and Orthotropic (with a plane of isotropy) material

are introduced now.

2.4.1 Isotropic plates

Using generalized Hooke’s law in in Voigt notation [58| to relates stresses and strains

of an isotropic material yields

( o1 ) -011 Ci2 Ci12 0 0 0 1 ( €1 )
09 Ci2 C11 Ci12 0 0 0 €2
03 \ _ [C12 G2 C11 0 0 0 €3 (2 1)
093 0 0 0 (011 — 012)/2 0 0 €93 ' ’
031 0 0 0 0 (Cll — 612)/2 0 £31

(012 ) _O 0 0 0 0 (CH—Clg)/Q_ L €12
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Here o; and ¢; are stresses and strains in ith direction (where i = 1,2,3) in a plane
with normal in the ith direction; o;; and ¢;; are the shear stresses and shear strains
perpendicular to ¢ axis and parallel to j axis; and ¢;; is an element of the stiffness matrix
C. For isotropic materials there are only two independent constants in C' as it can be
observed in Eq.2.1, i.e., ¢;; and cjo. Stiffness matrix C' contains common engineering
constants that include Young’s Modulus Ej;, Poisson’s ratio v;; and the shear modulus
G,j. Assuming a lamina in a plane 1-2 (say xy plane) and thus, a plane stress defined
by 0, =0, 0., =0, 0.4, i.e., 03 =0, 093 = 0, 031 = 0; the stress-strain relation in terms
of stiffness matrix is

E vE 0
o1 1_52 l_EV2 &1
v
02 = |12 12 0 €2 ’
E
012 0 0 2(1+v) €12

where By = Fy = E3 = FE, Gog = G31 = G12 = E/2(1 + v) and ve3 = v31 = v = V.

Isotropy allows considerable simplification in dynamic plate equation for transverse
vibrations. The procedure to obtain the equation can be followed in references [57]
and [59]. Thus, the dynamic equation of plates yields

A 0w
DV w + ph 7z 0 (2.2)

where w is the plate transverse displacement; p is the density of the plate material; h
is the plate thickness; D is the flexural rigidity; and V* the biharmonic operator. D
and V* (in Cartesian coordinates) are defined as follows:

3
p - B
12(1 - 12)
o*w o*'w *'w
4
= 2
Vi ox* + 0x20y? + oy*

For thin plate theory, boundary conditions which are parallel to the z-direction are

either w=0 or V,=0

0
either 8_135 =0 or M, =0;

and those parallel to y-direction are

eitherwwv=0 or V,=0

either a_w =0 or M,=0.
ox
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Here, M, and M, are bending moments in x and y directions; V, and V, are combi-
nations of transverse shear force and the rate change of bending moment in direction
tangent to the edge. They are defined as

w, = -p[2u ]
V, = —D_%Jr(z—u)g—g;]
v, - —D:%Jr@—y)%}

For instance, possible combinations (physically consistent) of boundary conditions along
an edge in z-direction are:

e Clamped edge: w = % =0.
e Simply supported or fixed edge: w = M, = 0.
o Free edge: M, =V, =0
Going back to Eq.2.2, the solution w(x,y,t) for free vibrations can be expressed as
w(x,y,t) = W(x,y)e™" (2.3)
By substituting Eq.2.3 in Eq.2.2 yields
(VE=BYW(z,y) =0,

where 8* = phw/D.
Differential operator can be factored into

(V24 8*)(V? = )W =0,
whose solution is a sum of solutions that arise from

(V24 55W; = 0
(V2 =W, = 0.
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Thus, the original solution of Eq.2.2 must have the form

W:W1+W2.

2.4.2 Orthotropic plates with a plane of isotropy

As isotropic plates, generalized Hooke’s law of an orthotropic material under plane
stress can be expressed in terms of engineering constants. Thus,

£y vig2Eo
01 1—1/1%1/21 1-vi2v91 €1
_ vo1 Iy 2
02 T | 1—viovar 1-vioven 0 €2 ’
012 O O 2G12 €12
where
Vig Va1
Ey  FEy

With four independent variables, this relation generalize the DV*w term in Eq.2.2 and
yields, , , ,

J*w J*w 0*w

ox?t D 0x20y? D oy*

Variational methods are a different way to deal the problem in order to find a solution
to this new equation. These methods find functions that minimize or maximize the
value of a quantity. In this way, orthotropic plate vibration is approximated trough
strain energy functional (the quantity) which is commonly minimized. Thus, the strain

energy functional for an orthotropic laminated plate is

1 0211}0 2 82'11}0 2 82'11}0 2 82'11}0 8211)0
v §/A[D11< x? ) +D22< dy? ) +4D66<8$0y) +2Dn( Ox? ) ( 0y* )}dA

where Uy is the strain energy, A the outer boundary and

Dy

E\h3
Dll = 1—
12(1 — V121/21>
Eyh3
D22 = 2—
12(1 — 1/211/12)
Dy = Divy
Goh?
Do —
66 12
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2.5 Acoustic Waves

An acoustic wave is a particular example of pressure fluctuation in compressible fluid.
This type of wave describes the phenomenon for inviscid fluids with small amplitude
of vibration, small amount of density variation and small fluid velocity (that neglects
convective effects).

For inviscid fluids, wave propagation occurs when the fluid is compressed or ex-
panded and produces pressure changes that act as restoring forces. Individual fluid
elements oscillates about an equilibrium position and generate regions of compression
and rarefaction that propagate a longitudinal wave.

Linear Fuler’s equation is valid to describe dynamic fluid behavior about the hy-
drostatic state in processes of small amplitude, this is

where v is fluid velocity; po is the fluid density in the hydrostatic state; and p the
pressure. This expression also considers py as a constant, neglects convective effects
and viscous effect.

Using continuity equation for fluids

dp
V. .y=——t
pov v ot
where
9, po Op
ot K, ot’
by taking its time derivative, yields
v\ po0°p
Y i RVl 2.5
v (5) = o (25
where K the bulk modulus. If it is applied divergence in FEq.2.4
v
poV- <a) =-V-(Vp) (2.6)
where V - (Vp) = V2p, substituting Eq.2.5 in Eq.2.6 yields
1 0%p
p= - ——= 2.7
VP c? 0t? (2.7)
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where the speed of sound is defined by

c= . (2.8)

Expression in Eq.2.7 is the known acoustic wave equation.

2.6 Fluid-Structure Coupling

While studying physical behavior of systems, one can find frequently a system linked
to others (one or more) where its description depends on the simultaneous description
of the others. Therefore, an independent solution is impossible without the parallel
solutions of the rest. Such systems are called coupled and the way they interact will
determine the coupled system behavior.

Examples of coupled systems are those which involve (not always) different physical
phenomena, i.e., thermal-structural, thermal-electromagnetic, electrostatic-structural
and fluid-structural couplings to mention a few. This section describes a known for-
mulation of a fluid-structure coupling that concerns us for understanding the problem
proposed in this document.

Dynamic fluid-structure interaction can be followed when the motion of the struc-
ture induces pressure changes on the fluid (which doesn’t penetrate the structure) and
produces fluctuating motions. As the fluid moves, the varying pressure field loads the
structure and its motion is modified. Thus, the process starts again.

Since dynamical considerations of linear motion are made on each system: fluid
and structure, it will be developed the case of small vibrations while interaction is
substantial. Moreover, it is assumed the particular case of interaction via a domain
interface!. It is worthwhile to clear that a static case doesn’t imply the coupling and it
is the dynamic problem that is found to be coupled.

With this background and considering dynamic equations for structures and fluids
presented in the last two section, it will be expressed the equations for a fluid structure
coupling through Galerkin’s variational method ("The weak form") which is useful in
finite element method formulation. Once the weak form of coupled system is reached,
the discrete form will be presented.

IMany works have been devoted to this interaction when the fluid is contained, which is of consid-
erable engineering interest. A good reference in the subject of coupled systems is [60]

29



2.6.1 Weak form of Coupled system

The Helmholtz equation for acoustic problems in Eq.2.7

1 0%p

V=
b= o

can be expressed according to variational method as

2
mf_/ 5;{1 8p—v2p]d9_o.
Qf

2 o2

After integrations by parts using Green’s first identity yields

1 9
/ [5}9—28—5 + (V(Sp)T(Vp)] dQ + / Ip(Vp-n)dl' =0,
oL c ot r

where ()¢ is the fluid domain and I' is the boundary part where boundary conditions
must be specified. Since the fluid is coupled with the motion of the structure, thus, the
condition here is:

. e . T ..

Up = Ui, = 1" 1. (2.9)

where n is the direction cosine vector for an outward pointing normal to the fluid region
and v is prescribed.
Using E.q.2.4, this boundary condition yields

1 2
/ [5]9—@ + (V(Sp)T(Vp)] dQ+ [ SpponTidl = 0, (2.10)
2

c ot? r

Also, the weak form for solids can be presented as

/ su” (pyii + g1+ STDSu — b)dQ) — / suTtdl =0, (2.11)
0

It

where p, is the density of the solid, © a damping constant, S a linear differential
operator, D the elasticity matrix containing the material properties and t is the surface
traction defined as

t = —png = pn.
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Above equation takes a positive pressure in compression and the outward normal to
the solid ny = —n. The traction integral in Eq. 2.11 is now expressed as

/(5uTtdF:/ suTnpdl.
Ft Ft

It can be observed that both weak forms for fluid and solid depend on a variable
defined in the other coupled phenomenon. This indicates the mutual dependence, i.e.,
the coupling.

2.6.2 Discretized coupled system

In Eq.2.10 and Eq.2.11, pressure and displacement vectors p and u will be approximated
to discretize the system. For this, a shape function is proposed in order to fix pressure
and displacement values in a specific domain. This can be expressed as

p = ﬁ:Npﬁ
u ~ u=N,u

where p and u are the values for pressure and displacement at every point defined in
the domain and N, and N, are appropriate shape functions that fix the values at the
points in the domain.

Thus, discretization applied to fluid equation in Eq.2.10 yields
Sp+ Hp+ poQ"u+q =0, (2.12)

where ¢ is an included source term and

1
T
S:/QNP ngdQ
H:/Wmﬂvmm (2.13)
Q
Q= [ NI'nN,dr
Iy 7

Similarly, the discrete structural problem becomes

Mi+Cu+Ka—Qp+ f =0, (2.14)
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where
M = / NI p,N,dS
Q
C = / NI uN,dQ
Q

K = / BT DB
Q

q = —/NubdQ.
Q

B = SN, and Q is identical to Eq. 2.13.
If free vibrations are considered and all forces and damping terms are omitted,
Eq.2.12 and Eq.2.14 can be written as

M 0] (a N K —Ql ful _
pQT SIS0 H |5
For an eigenvalue problem, it is observed immediately that the system is not symmetric
nor positive definite and standard eigenvalue extraction methods are not direct appli-
cable. However, it is physically clear that eigenvalues are real and free vibration modes
exist.

In [60] is presented a simple method to achieve symmetrization introducing a new
variable p = w?G. This yields in the generalized eigenvalue problem:

K 0 0 M 0 Q
( 0 XS 0| —w?|0 0 L8 >
PO 0

0 0 0 Q" ST ——-H

)

Qe
Il
(@]

2.7 Modal Analysis

Most of practical noise and vibration problems are related to resonance phenomenon:
forces applied to a system excite one or more modes of vibration and they, as a discrete
set, define the forced or free response. Modal analysis studies dynamic properties in
an elastic structure via the identification of modes of vibration. This field describes
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dynamic response of a system through the modal parameters: resonance natural fre-
quencies, damping factor and mode shape vectors. These parameters constitute a com-
plete dynamic description of the structure and thus, elastic behavior could be predicted,
corrected or even "controlled" if they are known [62].

It is very important to clear that free and forced vibrations are two successive stages
in a full vibration analysis. A free vibration analysis yields the information about modal
parameters using mechanical properties, whereas a particular type of forced analysis
leads to the definition of a frequency response function such as mobility, the ratio of
velocity response to force input [61].

Measure and analysis of structure dynamic response, when excited by an input,
can be done by simultaneously collecting the input and output signals in time domain.
Such signals are transformed to frequency domain and the ratio of input spectrum over
the output spectrum yields the system function. The inverse of this system function is
defined as the transfer function or Frequency Response Function (FRF), which contains
the information about system dynamic properties independently of signal input type
(either harmonic, transitory or random excitations).

The general structural problem is
Miu+Ci+ Ku=f (2.15)

where M, C' and K are mass, damping and stiffness matrices respectively; v and f
are displacement and applied force vectors. By applying Laplace transform in Eq.2.15
yields

B(s)X(s) = F(s), (2.16)

where
B(s) = Ms* + Cs + K; (2.17)

and s is the Laplace variable.

B(s) is the system function and thus, H(s) = B(s)™!, is the FRF. Eq.2.16 could be
written as

X(s) = H(s)F(s)

After these basic considerations of modal analysis, it is worthwhile to clear what
normal modes mean. A normal mode of vibration is an inherent movement configuration
of a structure which is determined by geometry, material properties and boundary
conditions characteristics. In a normal mode, every point of the structure moves at
the same frequency with a fixed relative phase, i.e., all points reach their maximum
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or minimum displacement at the same time. Figure2.8 shows five normal modes of
vibration of a classical guitar top plate reported in [15].

Figure 2.8: Vibration modes (with holographic interferometry) of a classical guitar top plate glued
to fixed ribs but without the back [15].

In order to find normal modes in a structure, the eigenvalue problem is solved for
system matrix B(s) where the roots of polynomial in Eq.2.17 are the eigenvalues or
poles as it will be shown.

If the elements of system matrix B(s) are quadratic functions of s, transfer function
H(s) and its elements h;; can be written as follows

HE) = o B
g(s)
hiy = det(B(s))

where det(B(s)) is the known characteristic polynomial and the values when det(B(s)) =
0 are the poles of transfer function. Physically, the poles are the frequency values in
which the structure presents the lowest resistance to vibrate. This values make transfer
function go to infinite, and this is interpreted as a state of resonance of the system.

Each pole pair is said to be a mode of vibration, this is expressed as follows

pr = & £ iwg
where
pr = system modal pole
& = damping modal coefficient
wr = the damped angular frequency.
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Thus, the resonance angular frequency is given by

Qp = \/fz-i-wz

_ S
= o

When (, = 1, mode k is critically damped, when (, < 1, mode k is under-damped
and when (, > 1, mode k is over-damped. When the system is under-damped, poles
are complex and occur in conjugated pairs; when the system is critically damped or
over-damped, poles are real values and are along the real axis in the complex domain
of s.

and the damping ratio

¢

It is worthwhile to mention that for under-damped situation, the system will oscillate
at the natural damped frequency wy, which is a function of the natural frequency w,

and the damping ratio. Thus,
Wi = wpy/ 1 — (2

Modal vectors uy are defined as solutions of the following homogeneous equation

B(pk)ur = 0,

where uy is a complex vector. Considering this, transfer matrix is written as a sum of

complex pairs
n

H(s)=)

k=1

T *, xT
+

S—Dpk  S—DPp

where % denotes complex conjugate and 7" denotes transposed. Each term in the sum is
a n X n matrix that represents the contribution of mode k in transfer function. Modal
vectors and pole localization can be identified from any row or column of transfer
matrix, except for those corresponding to zero modal vectors (nodal points). This fact
makes possible the most significant conclusions in modal analysis.

2.8 Finite Element Method

Finite Element Method (FEM) is a numerical technique suitable for analysis of com-
plex structures with irregular geometries. This technique has many applications for
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engineering processes, specially when behavior prediction is needed but experimental
analysis implies high costs compared with benefits.

FEM is used as an approximation to continuum problems. The continuum is divided
in finite sub-domains called elements and the solution of the problem is given by the
elements assembly. The problems treated are boundary value problems and it is possible
to define them as standard discrete systems [60]. Figure2.9 shows the generic discrete
structural problem defined for an element from a discretized domain, where M is the
element mass matrix, C' is the element damping matrix, K is the element stiffness
matrix and F' is the load vector over the element.

(€)oo (e) « (e © (e (e)
Mgu(gll_cuu@_)"_KuliL):Fg F

Figure 2.9: Element from a discrete domain in which generic discrete structural equation is defined

Boundary value problems are defined by differential equations that depend on the
analysed phenomenon. Although some problems have exact analytical solutions that
may be identified, for others a closed solution doesn’t exist and different methods are
used to approximate them. Variational methods are used with this purpose and as
mentioned before, they find functions to minimize or maximize system quantities. Par-
ticularly, Galerkin’s method uses a variational principle <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>