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CHAPTER ONE

INTRODUCTION

1

Since its beginnings in the work of Brouwer, Menger, and
Urysohn in the early twentieth century, the theory of dimension in

separable metric spaces has been richly developed. It is presented

in some detgil in Hurewicz and Wallman's work, Dimension Theory (7).

The purpose of this paper is to present some results in dimen-
sion theeory which apply to more general spaces than separable metric
speces. In (7), Hurewicz and Wallman give a definition generally known
as small inductive dimension (def. 2.7} for the dimension of a topologi-
cal space. They prove many propositions about the dimension of separ-
able metric spaces: for example the dimension of En is n, and the
dimension of a subspace of X is no greater than the dimension of X. In
the course of their development, they present several other properties
which are shown to characterize the dimension of separable metric spaces.

Since the inductive dimension and these other properties char-
acterize the dimension of Euclidean spaces, there is some justification
for using each of these properties to define the dimension of more gen-
eral spaces. It is natural to try to discover whether these definitions
are still equivalent, and what dimension type properties they retain in
more general spaces. Most of the results of this paper are concerned
with the former question, although a few facts are presented which re-

late to the latter.




In Chapter 1I, the several definitions of dimension are presented
and some theorems are proved which apply to arbitrary topological spaces.
There are some results which describe dimension-type prOpérties, and
some facts are proved which are designed to simplify the proofs of some
of the later theorems. One theorem is proved which gives a characteri-
zation of one of the dimension functions for arbitrary topological
spaces. In the second section of Chapter II, zero dimensional spaces
are considered. Most of the results of that section are facts which
have not been generalized to n-dimensicnal spaces for positive integers,
n.

Chapter III is devoted to the dimension of normal spaces. Follow-
ing a brief account of some needed facts about simplicial complexes,
there is a proof of the equivalence of three of the definitions of di-
mension for normal spaces. It is also shown that one of the properties
introduced earlier can be reformulated in simplier terms for normal
spaces, and one theorem about a typical dimension-type property is
proved.

Tychonoff spaces are taken up in Chapter IV. One of the dimen-
sion definitions introduced in Chépter IT is almost meaningless in non-
normal spaces, and is only briefly mentioned in Chapter IV. Ancther of
the definitions is modified in a way which is shown not to affect the
results for normal spaces, but to be more sultable to working in nen-
normal spaces. The principal results of the chapter are obtained by
comparing the dimension of a Tychonoff space with the dimension of its
Stone-Yech Compactification, which is a normal Hausdorff space. At the

end of the chapter, an example is presented which partially answers




questions about improving the results which have been proved.




CHAPTER I1I

PRELIMINARY RESULTS AND DIMENSION ZERO

The first section of this chapter is devoted to definitions and
preliminary results designed to simplify the proofs of some of the
theorems to be encountered in later chapters. There are also some
theorems at the end of the section which describe dimension properties
for arbitrary topological spaces. The second section gives a descrip-

tion of the properties of zero dimensional spaces.

l. Definitions and Preliminary Results

Definition 2.1 The n-cell, In, is the set of points in En with norm

less than or equal to one.

Definition 2.2 The n-1 sphere, Sn_l, is the set of polints in En with

norm equal to one.

Definition 2.3 If U 1s an open cover of a topological space, X, then

a refinement of U is a collection of open sets, V, such that V covers

X, and for each v in V there is a set u in U such that v is contained
in u.

The principal subject of this paper is the relationships between
the three definitions of dimension which follow. The definitions will -
be stated in a form applicable to arbitrary topological spaces. The
term mapping (or map) will mean continuous function. X will always

denote a topological space.




Definition 2.4 The covering dimension of X, cov X, is defined to be

minus one if and only if X is empty. If X is non-empty, and n is a
non-negative integer, then cov X < n means that every finite open cover
of X has a finite refinement of order £ n, where the order of a cover
is the maximum integer, k, so that some k+l sets in the cover have non-

empty intersection.

Definition 2.5 The stability dimension of X, St X, is defined to be

minus one if and only if X is empty. If X is non-empty, and n is a non-
negative integer, then St X < n means that for each map f on X into In+l,
for each point, v, in In+1, and for each € > 0, there is a map g on X
into In+1, such that ]|f~g,| <&, and y is not in the range of g, where
||£-g]|| = sup{)]f(x)—g(xll: x is in X}'.

Definition 2.6 The extension dimension of X, Ext X, is defined to be

minus one if and only if X is empty. If X is non-empty, and n is a non-
negative integer, then Ext X < n means that for each closed subset C of
X and for each mapping f on Cinto Sn, there is a mapping g on X inte s"
such that gIC = f, that is, f can be extended over zll of X.

For each of the definitions, the dimension of X is said to be
equal to n if it is true that dimension X € n, but false that dimension
X € n-1. Dimension X = e, means for each n, it is false that dimension
X € n. A word of caution is in.order. It is obvious that cov X < n
implies cov X £ n+l, however,the corresponding proposition about St X
and Ext X 1s not so evident. This point will be clarified in the
theorems of this chapter and the next.

In proving that St X < n, it is sufficient to show that for each

map f on X into In+l, and for each € > 0, there is a map g on X into




1" such that [,f-gl, < € and zero is not in the range of g. To see

this, suppose y is in AR [ly|] = 1, then g = (1-g)f is an &-
approximation to f which misses y. If lly]] <1, let h be a homeo-
morphism of In+l onto In+l which takes y onto zero. Then since h'~l is
uniformly continuous, by constructing some d-approximation to hf which
missed zero, one could obtain an £-approximation to f which missed vy.
The definition of extension dimension is stated in a form which
is apparently applicable to arbitrary topological spaces, however, that
appearance is somewhat misleading. The usefulness of the extension di-
mension concept is closely related to the hypothesis of normality.
Suppose C and D are disjeint closed subsets of X, and let n be a non-
negative integer. Let p and g be any two distinct points in s". De-
fine a function f on CUD by letting f{x) = p for all x in C, and
letting f(x) = g for all x in D. Then f is a continucus function on
C WD into s". If f could be extended over all of X, and if U and V
were disjoint neighborhoods of p and q, respectively, then f_¥{U} and
f_l{v} would be disjoint neighborhoods of C and D respectively., We

thus have the following:

Remark: If n is any non-negative integer, and Ext ¥ £ n, then X is

normal.

There is another standard definition of dimension which will be
mentioned here. It has been used by Hurewicz and Wallman (7) in their
study of the dimension of separable metric spaces. They show that this
latter definition is equivalent to the three stated previously for
separable metric spaces, and by using all four preperties, and others,

they obtain a much richer theory than can be proved under the hypotheses




to be employed in most of this paper.

Definition 2.7 The inductive dimension of X, dim X, is minus one if

and only if X is empty. If ¥ is non—empty, and n is a non-negative
integer, then assuming that dim X <€ k has been defined for -1 £ k < n-1,
dim X € n means that for each x in X, and for each neighborhood U of x,
there is a neighborhood V of x, such that dim{boundary V) £ n-1, and

VvV U.

The principal results of thils paper are directed towards showing
the equivalence of the definitions under weaker hypotheses than sep-
arable metric. Most of the results deal with with normal and Tychonoff
spaces, and can not be extended to include inductive dimension. C. H,
Dowker, (3) has presented an example of a normal Hausdorff space for
which dim X = 0, and cov X = 1. Dowker also refers to an example of 2
compact normal Hausdorff space, given by O. V. Lokucievskii, with cov X=1 and
dim X=2. Prabir Roy (9) has constructed an example of a metric space for
which dim X # cov X. There will, howeverﬂ be some results about induc—
tive dimension presented in the second section of this chapter, where
zero dimensional spaces are considered. The remainder of this section
is devoted to some dimension properties which apply to arbitrary topolo-

gical spaces.

Theorem 2.8 For arbitrary topological spaces, St X £ n implies St X £

ntl, and cov X < n implies cov X £ n+l.

Proof: For covering dimension, the result is obvious from the defini-

2 2

tion. Let f map X into I"t2, let y be in I

+ + L +2 +
" 2 - Il x 1" l. let Py be the projection from " 2 into I" l, then

, and let € > O be given.




p2°f is a continuous function on X into In+l. Since S5t X < n, there

exists a mapping g on X into In+l, such that ||p2°f - g[[ <&, and

pz(y) is not in the range of g. Define a mapping h on X into "2 by
letting the first coordinate of h agree with the first coordinate of f,
and letting the 2nd through‘n+2nd coordinates of h be the coordinates

of g« Then h is continuous, vy is not in the range of h, and ||h - f([

= |lp,ot- gl <. u

Suppose that U is a finite open cover of X by n sets, Ups eeey

U that has a finite open refinement W. If the order of W is less than
or equal to m, then a refinement V = {vl, cery vn} can be obtained with
the order of V £ m, and V£::,ui for l‘g i<n. Forl< k<n let vk be

the union of all members of W which are subsets of Uy but not subsets

of uj for any j < k. Then V = {vl, coey vn} is an open cover of X and
the order of V is < m. Henceforth, a refinement of a cover U will al-
ways be assumed to have the same number of elements as U, except tﬁat
the empty set may be counted more than once in the refinement. The next

theorem is designed to simplify many of the proofs involving covering

dimension {or in Chapter IV, Z-covering dimension).

Theorem 2.9 If X is an arbitrary topological space, n and k are non-

negative integers, k > nt+2, and every open cover of X by k sets has a
refinement of order less than or equal to n, then every open cover of
X by k+l sets has a refinement of order less than or equal to n.

1,

Proof: Let 1f+l= {U§+l, ey Utii} be an open cover of X. Let?

_ k+1 k+1 k+1 k+1 k+1, .
= '{Ul s eeey U 1s U Uk+l}' U is an open cover of X by k

sets, and thus has a refinement of order < n. LetU= {Vl, ey Vk}




k+l

. be such a refinement, and suppose ViC: Ui for 1 £ 1 € k-1, and

’ k+1 . _ 1.k, . .
VkC:IJk+l. Define an open cover,‘Lf = {Ui.l < i< k+l} by letting
k _ . k _ k+1 k k+1
Uy =V, for 1 <1< k-1, U = an U ", and U, = an U4 - Because

k+l

order U < n, if a point is in n+2 members ofﬂJF, it must be in Vkr\ Uk

and also in ka\ Uiii. Assume a collection of finite open covers of X

have been defined as’U}, for 3 € i € k, such that‘ﬂ} refines ﬂf+1, each

qf is a cover of X by k+l open sets {Ui, crey Ui+l}’ and if any point is

. . k
commenr: to n+2 members of‘\f and also is in U;, then it is in N Vm. Let
m=i

o f . B . . . L1

J _fd J J I 3 J J
U {U y seey Uj—2’ Uj-lLJ Uj’ Uj+l’ vees Uk+l}' A0~ is an open cover of
X by k sets and thus has a refinement,ﬂjj, of order < n, assume®)’ =

b J ] J . J J . . s J
(Vs «eny Vips Vippe vees Vk+1} with Vi C U] for i #J, j-1, and vJ._(IZ

Y 3, 3=1_ AV 3=l _ 3 j
Uj_lU UJ. Let U3 v; for i #3, i-1, let U] vj_lﬁ Uj_l and

- > . - . ' -
U; L Vg_ln U%. Letald! ={UJi"l: 1< i < k], Then U "Lrefinesal .

Because the order of%) is < n, it is true that if a point is in n+2

1

members of‘Le—l, then it must be in U;:l and also in U;_l. Now, U;:lC:

1
Uj'IC: uk =y and U3t U, thus if a point is in n+2 members of
j-1 j=1 j-1? 3 i’

qi-l, then it is in the corresponding n+2 members of‘LH, and therefore
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ko :
in ) Vi' Thus the definition of the covers‘if can be extended induc-
i=j-1
tively for 1 £ 1 £ k if it is true that each refinement‘U}, has order
greater than n. If that were the case, then a cover“Lﬂ would be deter-
. . . +1 . . . .
mined which reflnes‘xf , with the property that if a point is in n+2
1 k
members of ), then it would be in [ Ve but k > n+2 and order A) < n.
i=1
This is a contradiction, hence for some j, 1 £ j € k, it must be true

that the order of‘lf is less than or equal to n. U

Theorem 2.10 If X is any topological space, then cov X < n if and only

if every open cover of X by nt2 sets has a refinement of order £ n.
Proof: Follows from the preceding. []

Theoxem 2.11 If X is an arbitrary topological space and C is a closed

subset of X, then Ext X £ n implies Ext C £ n, and cov X < n implies
cov C £ n. (The corresponding statement about stability dimension is
proved in the next chapter under the :hypothesis of normality.)

Proof: For extension dimension the proposition is obvious . Suppose
cov X £ n. Let“L1=n{Uisl <ig Ej be an open cover of C. For each U,

there is an open set in X, Vi’ so that Ui = Vi{\ C. The sets X-C, Vl,
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sery Vk form an open cover of X for which there is a refinement of order

<ne Let W., «oo, Wk be the sets in the refinement, with WO(: X-C, and

0’
W1<::V1 for 1 £ 1 € ke The sets Wifj C, 1 €£1 <k form an open cover of
C of order < n which refines?. [1

The definitions and theorem which come next give an alternative
characterization of stability dimension in arbitrary spaces. The term-
inology used here is the same as that used by Gillman and Jerison (4),
The property Pn described below is a generalization of another property
which is proved in Chapter III to be equivalent to cov X g n, Ext X € n,
and St X < n for normal spaces. {theorem 3.27, definition 3.26) The

property in Chapter III is shown by Hurewicz and Wallman t¢ character-

ize the dimension of separable metric spaces.

Definition 2.12 If A X, then A is a zerog set {of X) if and only if

there is a continuous real-valued function f defined on X, such that

A= £10].

Definition 2.13 Two subsets, Bl and B2 are said to be completely separ-

ated in X if and only if there is a continuous real-valued function f

mapping X into [0,1], with B, C f_l{O} and B, C:f_l{l}.

In the définition of a zero set, A = f-l{O} could be replaced by
A= f—l[C] for any closed interval C. In the definition of completely
separated sets, the numbers 0 and 1 could bhe réblaced by any two distinct

real numbers.

Lemma 2,14 Two sets, Bl and Bz, are completely separated if and only if

they are contained in disjoint zero sets.

Proof: Suppose f maps X into [0,1] with B, C f_l{O}and B, C f-l{l}.
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Let g(x) = 1-f(x), then B, C 1o, B, C gt o, and 1501 N g7 0}
= g.
Suppose B, - f—l{O}, B, C gﬂl{O}, and f-l{O} N g-l{O} = .
Let h(x) = £{x)/(|f{x)|+|g(x)]), and let k(x) = (1A h(x)WV {0). Then
k'l{l} -’ g'l{O} and f'l{o} < k'l{o}. - i
It is proved in Chapter I of (4) that a finite union of zero sets
is a zero set, and a countable intersection of zero sets is again a zero

set.

Definition 2.15 If X is a topological space, then X has property Pn, n
a non-negative integer, if and only if for any n+l pairs of completely
separated sets, Bi and Bi, 1 <1< ntl , there exist n+l zero sets Ci’
1 <1< ntl, such that B, and B; are separated in X-C., and ﬂ{ci:

1<i<ntl}=4g.

Theorem 2.16 If X is any non-empty topological space, then St X < n if

and only if X has property Pn.

Proof: Suppose St X € n. Let Bi’ B; be n+l pairs of completely separ-

ated sets. For each i, 1 € 1 € nt+l, there exist a mapping fi on X into

: -1 -1 +1
[-1,1] such that B C f; {-1} and B, C £ {I}. Let f:x—I""" be de-

fined by: f{x) = (f.(x), see, f , (x)). Since St X < n, there is a map-

1 n+l

1 with |[f-g|| < 1/4 and zero not in the range of

ping, g, on X into In+
g. Suppose g(x} = (gl(x), ...,.gn+l(x)), then each 9, is continuous.

. -1 . ' :
Let Ci =g; {0} for 1 £ i < ntl. Bi and Bi a?e separated in X_Ci’ and
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N{C:1<i<nh}=4.
. . n+l
Suppose X has property Pn. Let f be a mapping on X into I ’

let EO > 0 be given. An Eo-approximation to f will be constructed

€0

2(n+1)

- ‘—l n+l. 1
- Let B, = f {xel ix, 2 €}, B;

which misses zero. Let € =
-1 n+l ' :
= f {xEI Xy < -E}, then Bi and Bi are completely separated in X for
l'S i € ntle Since X has property Pn, there exist ntl zero sets of X,
' * . L]
Ci’ such that Bi and Bi are separated in X—Ci, and FL{Ci.l <1< n+l}

= g. There exist n+l pairs of disjoint open sets, Ui and U;, such that

n+l

B, C U, B, C U, and U, UU, =XC,. B U 31U( 102ci)1s a zero set

disjoint from C,, hence there exists a map h, on X into [0,e] with

1’
-1 , n+l -1
C, < h; {0} and B, U BU ( _nzc.l)c h]{e}. Define g :X->[-g,e] by

l__'

gl]U1 = hl[Ul, gl|U1=--hl|U1 and glICl=hl[Cl=O. Then g, 1s continuous
on X, for if pEUl’ or Ui, there is a neighborhood of p contained in U1

or U, respectively, and if peC then there is a neighborhood of p such

1

that inside of that neighborhood, {glf=hl is arbitrarily close to zero

is a zero set of X, B, and B, are

1 1

_ _ -l
= h,(p)=g,(p). Let E;=h1"{0}, then E,

n+l
separated in X-E,, and E, N N ¢ = ﬂ. Suppose that g,, -+., g, and
1 1 f=p & 1 k

E|s ess, E, have been defined for 1 < k < n with 9 mapping X into [-€,€],
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-1 . : -1 -1 k n+l
B, — g, (0,e], B, C g, [-€,0), E,=g; {0}, and NE, (I [ ¢C, =4.
3 j J J J 7] j=1 7 i=k+1 *

k n+l
Then Bk+ltJ Bk+llJ ( ;}lEj r] iia+20i ) is a zero set disjeint

from C,,.. There exists a map h on X into [0,e] with Cop1 hot O}

k+1 k+1 k+1
, k n+l -1
and B 41 U Bk+l U ( ;lej N ila+zci) s hk+l£5}' Define 94 OO

X by: h 0. Then

It W1 ™M Vir1? Fr 1Vka1™ “Miar Viqr 204 941 1€ 40

9t1 is continuous and has the properties listed above for each gj. Let
Esy f g;il{O} then Ek+l has the properties listed for each Ej' Assume

that g; and Ej have been defined inductively in this fashion for 1 < j <
. . . n+l . .th
ntl. Define g mapping X into I by letting the i component of g(x)
.. .th : .th
equal the i component of f{x) if the absolute value of the i compon-
. : .th .
ent of f{x) is > £, and letting the i ~component of g{x) equal gi(x) if
the absolute value of the ith component of f(x) is < €. Then g is con-

tinuous on X into In+l, ||f—glf < 2(nt+l)e = €4 and zero is not in the

ntl []
range of g, since () Ei = @,
i=1

2. Dimension Zero

Theorem 2.17 For an arbitrary topological space,X, the following four

properties are equivalent.

l. ExtX =20

"

2, cov X 0

|
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3. Any twe disjoint closed subsets are separated in X.

4. St X =0, and X is normal.

Proof: 1 implies 2, Suppose O; and 0, are 6pen and 0) U o, =X,

1 2

Let Cl = X-Ol, 02 = X-Oz, then Cl J 02 is closed and 1f h has value 1

everywhere: on Cl’ and value -1 everywhere on C,, then h is continuous

2,
on Cl U Cye If Ext X = 0, then h can be extended to a continuous

function on X into SO. Let the extension be f, then the pair of open
and closed sets, X - f_l{l}, and X - f"l{-l}, covers X and is a refine-
ment of order zerc. Thus cov X = Q.

2 implies 3. Let Cl and C2 be disjeint closed sets in X. X—Cl,

X—C2’ form an open cover of X. Let Vl X -C V2 C X -C,, be a

1’ 2?

refinement of order zero, then Cl - V2, and C2 c::Vl, S0 Cl and C2 are

separated.
3 implies 4. 1t is clear that 3 implies normality. Let f be a
R 1 . . £
map of X into I", let &€ > O be given. Let C, = {x in Xtf{x) > E-},

_ . . _E . ey
let C2 = {x in X:f(x) < 2}. Cl and 02 are disjoint closed subsets of

X, and hence can be separated. Suppose U and V are disjoint open sets
with C; U, and C, CCVand U U V= X. Let g(x) = £(x)V 5 if x is
in U, g(x) = f(x)A - %-if x is in V, then g is continuous, llf;gll < g,
and zero is not in the range of g.

4 implies l. Suppose C is a closed subset of X, and f maps C
into 8%, then D = f"l{-l}, and E = f‘l{l} are disjoint closed sets.
Since X is normal, there exists a continuous function, h, mapping X into
[-1,1] with D CC h“l{-l}, and E Ch'l{l}. Since St X = 0, there exists
a continuous function g mapping X into [-1,1] with |lh-g|] <-%, and

zero not in the range of g. Let F(x) = -1, if g(x) < 0, and F{x) =1
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if g(x) > 0. Then F is a continuous extension of f over X into SO. []

Theorem 2.18 If X is Tl’ and satisfies any of the conditions of

theorem 2.17, then dim X = O.

Proof: 1If X satisfies any of the conditions of theorem 2.17, then

cov X = 0. Let x be aﬁy point in X, and let U be a neighborhood of x.
Then U and X - {x} form an open cover of X. Let V, W be a refinement

of order zero, with V. CC U, and W <ZX - {x}. Then V is both open and
closed, thus V has empty boundary, dim(boundary V) = -1, and x is in

U

Ve

Definition 2.19 A topological space 1s said to be a Lindeldf space

if every open cover has a countable subcover.

Theorem 2.20 If X is a Lindelof space, and dim X = O, then X satisfies

all the properties in theorem 2.17.

Proof: It is convenient to show that cov X = 0. Let U and V be open
sets which cover X. Since dim X = 0, for each x in X there is a neigh-
borhood of x with empty boundary contained in one of the sets U or V.
Since X is a Lindelof space, a countable subcollection of these neigh-
borhoods cover X. Suppose {0i=i=l, 2, ...} covers X, each Oi is con-

tained in either U or V, and each O.1 has empty boundary, hence is both
open and closed. Let W, = 01, and for n > 1, let W o= On - () O.,
then each Wn is both open and closed, and the sets wn are pairwise

disjoint. Let U' = U W, U}, and let V' = U {wnzwn C—V and

Wn & U}. U'and V' form a refinement of order zero of the cover by
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U and V, hence cov X = O, []

Definition 2.21 A topological space, X, is said to be completely regqu-

lar if for each x in X, and for each neighborhood U of x there is a
continuous function f: on X into [0,1] such that f(x) = 0, and f has

value 1 everywhere on the complement of U,
Theorem 2,22 If X is completely regular, and St X = O, then dim X = 0.

Proof: Let x be any point of X, and let U be a neighborhood of x. Since
X 1is completely regular, there exists a continuous function. f tapping
X into [0,17 such that f(x) = 0, and f has value one on the complement

of Us Since 5t X = 0, there exists a continuous function g on X into
[-1,1] such that llf-g]l <-%, and % is not in the range of g. Let V =
gul[—l;%], then V has empty boundary and is a neighborhood of x con-

tained in U. [1

Theorem 2.23 If X is a topolegical space with only a countable number

of points, then St X = 0.

Proof: Let f be a mapping of X into [-1,1]. Let € > O be given and
suppose y is in [-1,1]. The range of f is countable, so there is a point,
¢, in 1! such that |y~-c| < &, and ¢ is not in the range of f. Define g,

mapping X into Il as follows:

if -1 < f(x) <y ~¢g, le£ g(x) = f(x);
(y=e)V (-1) if ¢ > f(x),
(yre YA (1) if ¢ < £(x)3

ify-¢e¢g f(x) < yte, let g(x)

let g(x)
if y+e< f(x) <1, let g{x) = f(x). Then g is continuous,

,[f—g]l < 2€, and y is not in the range of g. []
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The corresponding statement about covering dimensien, inductive
dimension, and extension dimension is false, as is seen in the follow-—

ing example.

Example 2.24 A countable Hausdorff space with cov X = dim X =1, Ext X

= oo,
1 1 -

Let T ={1, 3, eeey =, oon, 0}. Let X =1 x I. Let X -{(0,0)}
have the relativized topology of the piane. Let a base for the neigh-
borhood system of (0,0) be the family of sets of the form {(0,0)}{J Vn,m’
where V__ = X r\( (0,1/n] x [O,l/ﬁ]). X is then a Hausdorff, non-regular
space. To see that X is not regular, note that every closed neighbor-
hood of (0,0) contains points of the form {0,1/p), which can not be in
any of the sets which form the base for the neighborhood system of (0,0).
Each point in X different from (0,0) has "arbitrarily small" neighbor-
hoods with empty boundary. If U is & neighborhood of (0,0), there is
a neighborhood of (0,0), V, of the form {(0,0X}[J Vn,m contained in U.
Then the boundary of V is the set of points {(O, ﬁj:p 2 m} . Relative
to the boundary of V, each point in boundary of V has arbitrarily small
neighborhoods with empty boundary, thus dim(boundary V) = 0, and hence
dim X = 1,

To see that cov X =1, let {Ul, U UB}’ be a finite open cover

2,
of X. Assume (0,0) EUl, then there is a set V, as described above,

with (0,0) eV CU,, and V=X r\([O,-%] X [O,'ﬁ]) is both open and closed

in X. Suppose x€X is a point of the form (O iﬁ or ( ﬁgO), for each

? k
. . . 1 1
such point, there is an "interval," Ix’ of the form{;, seey O} x{-};}
. 1 1 . X :
with p > n or else of the form{-k-} x{;, ey O} with p > m. which is

an open neighborhood of x, and can be chosen to lie inside of any
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given neighborhood of x.

Let W, =V U (U{Ixzx is U, IXCUJ)

let W, = |J{I #x is in U, - U, I U}

5= U{rex isinuy - (U, U u,), v,

Then W,CC U, for i =1, 2, 3, and W, (| W, = #, so the order of

i

let W

@H, W, WS} is less than or equal to one. X - (Wl | W, U WS) is
finite, and for each x not in W, U W, U WS’ {x} is both open and

closed. Let those singletons be labled W4, eeoy W Then the refine-

k‘
ment {Wl, ey Wk} covers X and has order less than or equal to one.
Thus cov X < 1.

Since X is Hausdorff, but not regular, it follows that X is not

normal, hence Ext X = o, and it is false that cov X < 0, so covX = 1.
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CHAPTER TIII

NORMAL SPACES

l. Preliminary Definitions and Theorems

Definition 3.1 A subset of X is a cozero set in X if and only if its

complement is a zero set.

Theorem 3.2 If X is normal and A = {Ul, veny Uh} is a finite open
cover of X, then there is a refinement of AL, U ={ﬁﬂ) eey Vo, such
that Vi(:f Ui for 1. <1< n.

n

Proof: Let W1 =X - 52291, Wl =¥ -U

|» then W, and wi are disjoint

closed sets. Since X is normal, there exist disjoint open sets, Ol and

1 . ' N _ - = _ '
0, with W, CZ0,, and W, C_0,. Let V, =0, then V, COlC: X -0,CX

-w = Ul’ and X - V

1

n
,=X-0, CX-w = i&gui, so {V), Uy wens Un}

covers X.

Assume Vl, «ssy V. have defined with vi (- Ui and so that

k

{Vl, cees Vs Upprs oees Un} is an open cover of X. Let W , =

k n
X - [(J:Lvi) U ¢ kLzUi)]’ W =X = U, then W, and W, are

i=
disjoint closed sets, thus there exist disjoint open sets Ok+l and

1 . . 1 ! -
Ok+l with wk+lCZ: Ok+1 and Wk+lc:: Ok+l° Let Vk+1 = Ok+1’ then
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V1 & X = Oy X - Wy = Uy 3nd X =V =X = 0 & X =Wy,

Vier? Viapr o0 Y

k
=[C Uv,) U

k
LJ U,)], so the sets Vis oeey
i=1 i=k+2 *

cover X. If this process is continued for 1 £ k £ n-1, the desired
refinement is obtained. []
Theorem 3.3 The sets V.l in the preceding theorem can be taken as co-
ZETO Ssets.

Proof: Let {Ul, eee, Ué} be an open cover of X, suppose the cover
{Wl, ceey Wn} refines the first cover, and the cover {0l, ..., On} Te-
fines {wl, ceey wn} with 0,CC W, and #.CZU, for 1< i< n. O, and

X - Wi are disjoint closed subsets of X so by Urysohn's Lemma, there is
. s = -1 -1
a map, fi’ on X into [0,17 with 0, C £, {l}, and X - W, CCf, {0}, Let
-1 n n
v, =X - fi {0}. Then X = L_J 0, CL__] V., 50 Viy...y V. is a cover by
i=1 i=1
cozero sets, and Vi C::iﬁiC:: Ui' []

Theorem 3.4 (Tietze) If X is a normal space, C is a closed subset of
X, and f is a continuous function on C into [-1,1], then there exists a

continuous function g on X inte [-1,1] so that g|C=f.

The proof is omitted. Hurewicz and Wallman (7}, Chapter VI, give a "
proof of this theorem for separable metric spaces which can be modified

using Urysohn's lemma, to apply to normal spaces, (see also (5) or (8)).
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Theorem 3.5 If X is a normal space, C is a closed subset of X, and f is

. oo . n . .
a continuous function on C into I, then there exists a continuous func-

tion g on X into 1" so that g|C=f.

A proof is obtained by applying theorem 3.4 to each component of f,

Theorem 3.6 If X is a normal space, C is a closed subset of X, and f

is a continuous function on C into Sn, then there exists a closed neigh-
borhood D of C, and a continuous function g on D into Sn, so that ng=f.

e +1
Proof: S" i5'a subset of I l, 50 by the preceding theorem, there is a

. . . . +l .
continuous extension h of f, mapping X into " 1 with h|C=f. Let D =

n+l’l]Y|, Z'%]; then D is a closed neighborhood of C. Define g

{r in I
on D by: g{x)=h(x)/||h{x}||, then g maps D into S". For all x in C,

h(x)=f(x)€8n, and l‘h(x)‘l=l, hence, for all x in C, g(x)=f(x). []

2. Simplexes and Simplicial Complexes

In the theorems on the dimension ¢f normal spaces, it is some-
times convenient to employ arguments involving simplexes and simplicial
complexes. Only a brief description of the facts to be used in this
paper will be offered here. The reader is referred to Eilenberg and
Steenrod (4), Chapter II, or Aleksandroff (1) for a detailed explana-

tion of these topics.

Definition 3.7 A set of k+1 points in En,{xo, sy XQ’ 1 <k<n, is

sald to be in general position if the k vectors, X, - xO:l £1<k

are linearly independent.

Definition 3.8 A k-simplex, ok, is the convex hull of a set of kt+l

points in En which are in general position, that is, the intersection
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of all convex sets containing those k+l points. The points Xy emes X

which determine dk are the vertices of dk.
Remarks: Any subset of a set in general position is also in general

positions If dk is a k-simplex with vertices Xy vees Xy then each

point in dk has a unigue representation of the form
k k
X = th_x. with t, > 0, and E:t, = 1,
i'= 11 1 1
i=0

Definition 3.9 If dk is a k-simplex, then a face of ck is any simplex

. . k
whose vertices are a subset of the vertices of o »

Definition 3.10 A simplicial complex in En is a finite collection of

simplexes, K, such that each face of a simplex in K is also in K, and

the intersection of any two simplexes in K 1s either empty or is a face

of both of them.

Definition 3.11 If K is a simplicial complex, then the polvhedron of K,

|K|, is the union of all the simplexes in K.

Definition 3.12 If K is a simplicial complex, and x is a point in IK,,

then the carrier of X is the intersection of all simplexes in K which

contain x.

Definition 3.13 If K is a simplicial complex, and p 1s a vertex of a

simplex in K, then the star of p, St(p), is the union of all{x}in [K|

such that p is a vertex of the carrier of x.

Remarks: If K is a complex in En’ then IKI is a compact subset of En’
and for each vertex of K, St(p) is an open subset of lKl. If s is a

simplex in K with vertices Pys «=+s Pos and x is a point in s, with




24

n n

i=0 i=0

representation x = E:tipi’ where each ti > 0, and Z: ti=1, then x is
in St(pj) if and only If tj # 0. The collection consisting of a sim-
plex and all of its faces is a simplicial complex. It will be impor-
tant in the proof 6f theorem 3.25 to séé that if Pys +++s P are

vertices in K, then there is a simplex in K with Pos =o+s P @s its

m
vertices if and only if St(pi) #d.
i=0

Definition 3.14 Let dk be a k-simplex with vertices Xogs woey Ko

K
The barycenter of s* is the point in o5, < = E:xi/k+l.
: 1=0

Notation: If oK is a simplex, and s and s, are faces of dk, then

§. < s, means that s

1 5 is a proper face of s

1 2°

Definition 3,15 If K is a simplicial complex in En, then the first

barycentric subdivision of K,Sdl(K), is the simplicial complex defined

as follows: let a simplex, t, be in Sdl(K) if and only if there exist

S 5 evey 5 In Kwith s < s, < ... < s, such that the vertices of t
0 q o 1 q

Pl A
are SO ’ - 8w ’ s q’l
Remark: Sdl(K) is a simplicial complex, and del(K)l = [Kk|.

Definition 3,16 If ck is a simplex in En’ then the diameter of dk=

sup { | |x-y || ex,yes 3. ¥

Definition 3.17 If K is a simplicial complex in En’ then the mesh of l

K, mesh(K)=max{diameter of s:s is a simplex in K}. |
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Definition 3.18 If K is a simplicial complex in En’ with Sdl(K) as de-

fined above, inductively define sd™(K)=sd*(sd™ 1 (k)) for integers m > l..

Remark: If K is a simplicial complex, and € > O is given, there exists
a positive integer, n, such that mesh (Sd"(K)) < e.

Let K" represent a simplicial complex which consists of an n-
simplex and its faces. Let Bn_l be the union of all m-simplexes in K"

with m < n. There exists a homeomorphism from i onto]Kn| which carries

n-1 1

s" “onto B~ , and the definitions of extension dimension and stability

dimension can be restated in terms of mapping into Bn, or Kn+l.

Definition 3.19 A basic cover is a cover consisting of cozero sets.

Theorem 3.20 If X is a normal space, ”LL = {_Uo, cvey Un} is a basic
cover of X, and ¢" is an n-simplex with vertices Pys sees Ppos then there
is a continuous function f on X into ¢ with the property that x is in

U, if and only if f(x) is in St(pi).

Proof: Since each Ui is a cozero set, there is a continuous function hi

on X into [0,1] so that h;l{O}=X-Ui. For each x in X at least one

n
hi(x) # 0, thus E:hi(x) # 0. ‘Define f on X into " by:

i=0
n
Ejhi(x)pi
i=0 )

f(x) = ln ;

Zhi(x)
i=0

i
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then f is continuous, and f(x) is in St(pi) if and only if hi(x) # 0,

which is the case if and only if x is in Ui' []

3. Equivayence of Dimension Concepts in Normal Spaces

Theorem 3.21 If X is normal and Ext X € n, then cov X £ n.

Proof: Let 9\ = {UO, seey Un+L} be an open cover of X. By theorem 2.10,
it suffices to consider a cover with just n+2 sets. By theorem 3.3, it
suffices to assume that the members of Ul are cozero sets. Let K be an
ntl simplex, and let B be the union of the proper faces of K. Let

Py ***» Potl be the vertices of K. By theorem 3.20, there is a contin-

uous function f on X into K, such that a peint x in X, is in U.l if and

n+l
only if f(x) is in the star of p;» Let W= r\Ui, then X-W is a closed
i=0

subset of X, and f[(X—W) is a continuous function on X-W into B. Because
Ext X € n, there is a continuous function F on X into B such that

Fi(X-W)=f|(X-W). Let vi=F"1(3t(pi)) for 0 € i € ntl. Then {vo, cey

Vn+l} is a finite open cover of X. Suppose x is in Vi’ then if x is in

W, x must be in U, if x is not in W, then E(x)=f(x)est(p,), and so x

is in Ui because of the way f was constructed, thus Vi [ U.l for 0 €1

n+l ntl _ n+l
<ntl. F( N Vi) B} (N St(pi))=ﬁf, hence n Vi‘—"ﬂ, so the order of
i=0 i=0 i=0
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the refinement is < n. D

Theorem 3,22 If X is normal and 5t X € n, then Ext X £ n.

Proof: Let C be a closed subset of X, and let f be a continuous func-

tion on C into §". §" C::In+l

so by theorem 3.5, there is a continu-—
ous function.h on X into In+l so that h|C=f, Because St X < n, there
is a coentinuous function g on X into In+l so that ||h—g|| <'% and zero
. . -1 n+l 3

is not in the range of g. Let Cl =g { yel :,Iy]l Z-Z}, C2 =

g-l{ysln+l:|]y|| g-%} » then C, and C, are disjoint closed sets, and

2
C C:’Cl. Since X is normal, there is a continuous function k on X in-
to [0,1] such that k{x)=1 for all x in C,, and k(x)=0 for all x in C,.
Let £' be defined on X into T by £'(x)=k(x)h(x)+(1-k{x))g(x). Then
f' is continuous, f'|C=f, and zero is not in the range of f'. If x is
in X, let £'(x)=f'(x)/||£ (x)}|]|, then fh i{s continuous on X into S,
and for each x in C, f"(x)=f(x). []
For the definition of stability dimension in terms of mappings
inte an nt+l simplex K, one would say that for each map f, for each
£ > 0, and for each point y in K, there was an £-approximation of f
which missed y. The proof of the next theorem can be simplifigd by
observing that it is sufficient to take v as the barycenter of K, in-
deed, if y were in some proper face of K then the approximation could
be accomplished by simply shrinking K into itself, and iIf y were an
interior point of K, then K could be mapped homeomerphically onto a
smaller simplex, K', contained in K, with y as the barycenter of K'.
The homeomorphism, and its inverse would be uniformly continuous. If
the homeomorphism were h, then by constructing some d-approximation to

hf which missed y, one could obtain an g£-approximation to f which

missed y.
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The two lemmas which follow are used in the next theorem. The

proofs are easy, and will be omitted.

Lemma 3.23 If K is an ntl simplex, r is a positive number less than
one, and gq is the barycenter of K, then the mapping hl defined on K by

hl(x)=q+r(x—q), is a homeomorphism, h, shrinks K onto an n+l simplex

1
L which is in the interior of K, hl(q)=q, h, maps the vertices of K onto
the vertices of L, and gq is the barycenter of L. The distance from L

to the union of the proper faces of K is positive.

Lemma 3.24 If L is an n+l simplex, q is the barycenter of L, and r

is a positive number, then the translation h, defined on L by hz(x) =

2

xtrv, where v is any vector in E_, ., is a homeomorphism, h2 maps L onto

ntl
an n+l simplex L', and takes the vertices of L onto the vertices of L',
and the barycenter of L onto the barycenter of L'. For any positive
integer m, h, takes the simplexes in sd™(L ) onto the simplexes in

Sd™(L'), and the interiors of the former onto the corresponding inter-

iors of the latter.

Theorem 3.25 If X is normal and cov X £ n, then St X < n.

Proof: Let f be a continuous function on X into an n+l simplex, K.
let € > O be given, and let g be the barycenter of K. An €-approxima-
tien to f will be constructed which misses gq. Let B be the union of
the proper faces of K, and let d be the diameter of K. Assume d > €.
Let hl be a mapping as described in Lemma 3.23, with r=l-g/3d. Let L
be the range of hl. Choose a positive integer m such that mesh
(sd™(L)) < €/3. Choose an nt+l simplexs in Sd™(L) which has g as one

of its vertices (it is easy to prove by induction that there exists
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such a simplex), let p be the barycenter of s. Construct a translation

h2 on L as in Lemma 3.24 with v = ]T:E_TT , and r=min{l|q—p||, distance
‘ q-p

from L to B}, then L', the range of h2 is a subset of K, and for each
pdint x in K, |Ih2hl(x)—x]| is less than 2¢/3. Let s' denote the image
of s under h2, then q is in the interior of s', thus g is not in any n-
simplex of sd™.". Let {pi:O <1ig k} be the vertices of the simplexes

in 5d™(L'). For 0< i<k, letV, = f'lohzloh;l(St(pi)), then A) =

{VO, coay Vk} is a finite open cover of X, and thus has a refinement

of order £ n. Let W.y o, Wk be the sets in the refinement with

O',

Wi C::Vi. By theorem 3.3, it may be assumed that the sets WO’ ceay Wk

are cozero sets. For 0 £ i € k let 95 be a continuous function on X

into [0,1] such that g;;{Q} = X-W,.
Define g on X into L' by:
k k
9(x) = ) g, (x)p,/ ) g,(x).
i=0 i=0

then g is continuous, and since the order of {WO, ...,1%} is less than

ar equal to n, for each x in X, gi(x)%ﬁ for at most n+l of the indexes i.
t
If gij(x)fo for j=1, ..., t, then r\St(pj)ﬁﬁ (see remarks following
j=1

def. 3.13), so g takes each point of X into an n-simplex of Sdm(L'), thus
g is not in the range of g. 1If for any point x in X, g(x) is in the
star of P s then gi(x)%O, which implies x is in Wi C::Vi’ and thus h2oh o

1

£(x) is in the star of p,. That implies that ||g-h2ohlof|| < mesh(sd™.")
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= mesh(Sd"L) < £/3. But, as noted above, for each x in K, ],hzhl(x)
-x|| < %E, thus ||g(x)=f(x)!| < €.

Theorems 3.21, 3.22, 3.253 prove that for normal spaces, cov X
=n, Ext X = n, and 5t X = n are equivalent statements. In Chapter II,
it was observed that any space with finite extension dimension is nor=-
mal, combining this with the results of this chapter, we have, for any
space with finite extension dimension the covering dimension and sta-

bility dimension are the same as the extension dimension; furthermore,

in light of theorem 2.8, for any space, X, Ext X £ n implies Ext X £ n+l.

The example of C. H. Dowker referred to in Chapter II indicaies that in-
ductive dimension can not be included in these equivalences.

In theorem 2.16, an alternative characterization of stability
dimension was proved: for arbitrary spaces, St X < n If and only if X
satisfied property Pﬁ. It follows that for normal spaces property Pn
also characterizes cov X and Ext X. There is another property which is
similar to Pn that can be used to describe the dimension of normal
spaces. It is used by Hurewicz and Wallman (7) in characterizing the

dimension of separable metric spaces.

Definition 3.26 A topological space is said toe have property P; if and

only if for any n+l pairs of disjoint closed sets, Bi and Bi, l\g 1<
: n+l
ntl, there exist ntl closed sets C., 1 < i < ntl, such that r]Ci=¢,
i=1

and Bi and Bi are separated in X - Ci'
Theorem 3.27 If X is normal, then X has property Pn if and only if X

has property Pé, n a nen-negative integer.
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Proof: Suppose X satisfies property P . Let B, Bi, 1<1i<ntl be
pairs of disjoint closed sets. By Urysohn's Lemma, in a normal space
disjoint closed sets are completely separated, thus since X satisfies

property Pn’ there are ntl zero sets Ci’ 1 €1 < ntl, such that

nt+l
[w Ci=¢ and for each i, Bi and B; are separated in X—Cio Zero sets
i=1

are always closed, hence X satisfies P%,

Suppose X satisfies P;. Let Bi’ Bi, 1 £ 1 < ntl be pairs of
completely separated subsets of X. By Lemma 2,14, there exist n+l pairs
of disjoint zero sets (hence disjoint closed sets) Vi’ V{, 1 <1< ntl,

such that B, V., and Bi (- vl Since X satisfies property Pr'l, there

n+l
exist n+l closed sets E., 1 < i < n+l, such that N Ei=¢, and V., V;
i=1

are separated in X_Ei' Let Ui’ U; be disjoint open sets for 1 £ i € ntl,

ntl
. t 1 l= - = ]
with V, CC U, V; & U], and U, U u;= x-E,. Let D=V, U v U [ifz]in],

then Dl and El are disjoint closed sets, and hence, by Urysohn's Lemma,

are contained in disjoint zero sets. Let Cl be a zero set disjeint

from D. which centains E

. 1> then B, C v <= U [} (x-C)), and

Bi(::\q_c::1Ji f] (X-Cl), so B, and Bi are separated in X-C., and

1 1

n+l
c f] ([] E.)=fl. Suppose C., ., C. have been chosen so that each C,
1 fap 1 k i
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i

k n+l
is a zero set, B, and B, are separated in X-C,, and ([w c.) (] (f\ E.)
i i i 1 ST
i=1 i=k+1
i k [‘ n+l
=g Let DV U Vi [(inCi) (i=Q+2E:LH' Drey a0 By

are disjoint closed sets, so by Urysohn's Lemma, there is a zero set

k+1 k+1

n+i

( [\ Ei)zﬁ, and B, |, Vk+lC:: Ukl fl (X—Ck+l), If this process is
i=k+2

k+l
C which contains E and is disjoint from D, ,, then ([w Ci)[W'
i=1

continued, each Ei can be replaced by a zero set Ci so that the condi-
tions of property Pn are satisfied. []

Theorem 3.28 If X is normal, and {Ci} is a countable collection of

=)
closed subsets of X such that LJCi=X, and for each 1, Ext Ci < n, then
i=1

Ext X < n.

Proof: Let C be a closed subset of X, and let f be a continuous func-
tion on C into S". By theorem 3.6, there is a closed neighborhood DO
;f C and a continuous extension 9, of f mapping Do into Sn° Let fl

= gOJ(DO f] Cl)’ then fl is a continuous function on a closed subset

t

1 mapping C

of C. into S". Since Ext Cl < n, there is a continuous f

1 1

. n t _ . . n s
into S so that fl|(Do N Cl)—fl. Define a mapping f, on D U C, in

tt

to Sn by letting f;(x)=fi(x) if x 1s in Cl’ and let fl(x)=go(x) if x

1

is in Do' Since C, and DO are closed, and fl

1 agrees with g on DO[] C.»
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fI is then continucus on Cl kJ Do° By theorem 3.6, there is a clesed

neighborhood D, of Cl LJ Do and a continuous 9 mapping D, into 5"

1 1

sUcC a g = ° e continue Y INAQUCTL1OMNa ssume a
h that g (cl D f; W t1 by inducti A that f

has been extended continuously over D which is a closed neighborhood

k
k ‘ : ;

of C LJ { LJCi), the extension is gk, for each 1 € k, Di is a closed
i=1

neighborhood of Di~l’ and giIDi~l=gi-l' Let fk+l gk| (} Ck+l then

because Ext C < n, there is a continuous function f

k+1 k1 Mapping C

k+1
. . n R 4 N o
into 8", so that £/ [(D (] G, )=% . . Define £, on C . |J D, by

letting f (x} for all x in C4p» and letting f )=gk(x) for

K+l( x)=f k+l k+l(

all x in Dy - Because Dk and Cptp aT® closed and fk+l and g, agree on

their intersection, f£+l will be centinuous on the union. By theorem

3.6, there is a closed neighborhood D of Ck+l LJ Dk and a continuous

k+l

. . . n .
extension =1 of f£+l mapping Dk+l into 5« Then Dk+l is a closed

neighborhood of Dk’ and gk+lle=gko Let a sequence of functlons,.{gg},

be so defined.

For each x in X, let n(x)=minfk:x is in Ck}. Let F(x)=g (x),

then F is a function on X into Sn, and F|C=f. It remains to show that

n(x)

F is continuous. Let x be any point in X, and let V be a neighborhood

of F(x). By the construction of the sequence {gg}, F|Dn(x)=gn(x)’ and
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¥ 1s in the interior of Dn(x)’ Since gn(x) is continuous on Dn(x)’ there

is a neighborhood U of x in Dn(x) so that gn(x)[U] C V. Since Dn(x)

is a neighborhsod of Cn(x)’ U must also be a neighborhood of x in X,

and F[U] C”V, so F is continuous. | D
This theorem was proved by A. D. Wallace in (11}, using a similar

proof.
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CHAPTER IV

TYCHONOFF SPACES

l. Equivalence of Dimension Concepts

Definition4.l Atopolecgical space is completely regular 1f and only if

for each point x iIn the space, and for each open set U containing
x, there is a continuous function f mapping the space into [0,1] such

that f(x)=0 and f has value 1 everywhere on the complement of U,

Definition 4.2 A topological space is a Tychonoff space if and only

if it is Tl and completely regular.

In discussing the dimension of Tychonoff spaces, it is convenient
to work with an associated compact Hausdorff space, the Stone-Gech Com-
pactification. The construction of the Spaée and proof of the properties
of the space can be described in terms of zero sets and the convergence
of ultra-filters. The compactification theorem will be stated below
without proof. The reader is referred to (5), (Chapter VI) for a de-

tailed development of the topic.

Definition_403; A topoleogical space is said to be compact if for every

open cover of the space there is a finite subcover.

Definition 4.4 A compactification of a topological space ¥ is a com-

pact topological space Y such that X is a dense subspace of Y.

Theorem 4.5 (Stoneiéech Compactification Theorem) Every Tychonoff

space X has a compactification BX with the following properties:
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(1) Every continuous function on X into any compact Hausdorff
space Y has a continuous extension on X into Y.

(2) Every bounded continuous real valued function on X has an
extension t¢ a continuous real-valued function on BX.

(3) Any two disjoint zero sets in X have disjoint closures in
BX.

(4) For any two zero sets, Z

1
= clﬁle f} clﬁxzz. (where ClBXA is the closure in BX of A)

and Z,, of X, cle(Zl N Z,)

Furthermore, BX is essentially unique, in the sense that if a compacti-
fication T of X satisfies any one of the listed properties, then it
satisfied all of them, and there exists a homeomorphism from PX onto T
which leaves X pointwise fixed.

At the end of this chapter, an exémple is given of a Tychenoff
space for which 5t X=0, cov X=1, Ext ¥X= o, so for norn~normal spaces,
the three dimension functions with which we have been working need not
agree, It has also been observed that for arbitrary spaces, cov X=0
implies that X is normal. These facts suggest that the previously con-
sidered dimension functions might not be very well suited to working in
non-normal spaces. For our work in Tychonoff spaces, the definition of
covering dimension will be restated in terms of cozero sets. This will
yield a definition of dimension in terms of coverings which will be
shown to agree with stébility dimension for Tychonoff spaces. It will
also be shown that the new statement of the covering dimension defini-
tion agrees with the original in normal spaces. The definition of

cov,_X (below) is found in (5), where it is called dim X.

Definition 4.6 If X 1s a nonempty topological space, and n is a non-
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negative integer, then the Z-covering dimension of X is less than or

equal to n, cov,_ X <€ n, if and only if every finite basic cover of X
has a finite basic refinement of order less than or equal to n. (see
definition 2.19)

In theorem 2.10 it was proved that for arbitrary spaces, X, the
covering dimension is less than or equal to n if and only if every
open cover by nt2 sets has a refinement of order less than or equal to
n. It may be seen that the proof of theorem 2.9 is almost entirely
set-theoretic in nature. The only facts of a topological nature involved
are that the intersection or union of two open sets is open and, as
these statements apply also to cozero sets, the proof of theorem 2.10
could be modified to yieid the corresponding theorem about Z-covering
dimension:
Theorem 4.7 If X is any topological space, then cov,, X £ n if and only
if every basic cover by nt2 sets has a finite basic refinement of order

< ne

Theorem 4.8 If X is normal, then cov X < n if and only if cov, X < n.

Proof: Suppose cov, X <n., Letq] be a finite open cover of X. By
theorem 3.3 A4 has a finite basic refinement,”™) . Since cov_ X< n,ﬂ) has
a firite basic refinement of order £ n. Since cozero sets are open, this

vields a finite open refinement of 4| of order < n. Thus cov X < n.

Suppose cov X < n. Let AU be a finite basic cover of X. Then U is also
an open cover and thus has a finite open refinement of order € n. By
theorem 3.3 this open refinement has a finite basic refinement of order

< n, hence 1| has a finite basic refinement of order < n. Thus cov, X < n.
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The Stone-Cech compactification of any Tychonoff space is a
compact Hausdorff space (hence normal), and therefore, if X is Tychonoff,

cov BX=coszX°

Lemma 4.9 If4l is a finite basic cover of X, then
B - ray - _ uyste U}
U §8% - ¢l (X - U)aUe U
pX
is an open cover of BX of the same order as “U .

‘Proof: Suppose U = {Ul, csoy Uk}’ then for each i, Zi=x_Ui is a zero

k
set of X. Since W is a cover of X, [\ Zi=¢, and by statement (4) in
i=1
s B
theorem 4.5, this implies that [w (clBXZi)=ﬁ. Thus A4 " covers BX.
i=l

Since there are anly a finite number of the Zi’ for any subcollection,
t Z.oa)= ' i
{Zi 1, LJ(cle i ) cle(IJ z, ), and it follows that
(] (px - clBX{X—Uiu)) = BX - clﬁx(x— NU; s
and thus, the orders of 9} and ﬂiﬁ are the same.

Theorem 4.10 If X is a Tychonoff space, then cov,, X <€ n if and only if

cov, BX < n, or cov BX £ n.

Proof: Suppose cov BX < n. Let Q) be a finite basic cover of X. By

Lemma 4.9, ﬂ*ﬁ covers BX. By theorem 3.3, ﬂlﬁ has a finite basic re-
finement, and since cov, BX € n, the refinement can be assumed of order
< n. The intersection of the members of this refinement with X gives a

finite basic refinement of ‘U of order £ n. Hence cov,, X <n.
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Suppose cov, X<n. Let ) = {Ul, ceny Uk} be an open cover of
pX. By theorem 3.3, 9| has a finite basic refinement, W= [Wl,oo,,wk}
such that for 1 < i < k, _WiCUi, Then oy ' ={wi N X:1<1i¢g k}‘is
a finite basic cover of X. Since cov_ X < n, 9y has a finite basic re-
finement ¥V of order < n. By the lemma ﬂ)ﬁ is an open cover of BX and

has order £ n. Since W is a closure refinement of A Y 8 will be a

refinement of Y . Thus cov PX < n. Since BX iIs normal, cov BX = covZBX.

Theorem 4.11 If X is a Tychonoff space, and 5t X £ n, then St X < n.

+ . .
Prcof: Suppose f is ccntinuous on BX into " l, and let £ > O be given.

It is sufficient to construct an g-approximation to f which misses zero
(see remarks following theorem 3.22). Assume € < 1. Let f = flX.
Since St X < n, there is a continuous function g' on X into In+l such

that ][f'-gaf] < g/2, and zero is not in the range of g'. Let Vl =

{xex:|[g"(x)]] < e/2}, and V2={xex:‘|g'(x)|l > 5/2}. Let hl(X)=
(E/Q)g‘(x)/||g'{x)ll for all x in Vl’ then hl is continuous on Vl' Let

h2=g'|V2, then h2 is continuous on V2, and hl and h2 agree on Vl f\ V2.
Let h map X into {yeI" '+{|y|| > ¢/2}, with nfv,=h , and h|v,=h,, then h
is continuous on X, and ||f'-h|| < €. By part {1) of theorem 4.5, there
is a continuous extension g of h mapping BX into {yeIn+l:l|yJ| 2 5/2}.

Zero 1s not in the range of g, and since X is dense in fX and ng=h,

it follows that ||f-g|| < e.

Theorem 4.12 1If X is a Tychonoff space and St BX € n, then St X £ n.

Proof: Let f map X inteo In+l, let € > 0 be given, and let y be a point

+ 1
in 171, By part (1) of theorem 4.5, there is a continuous function f ',
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1

on pX into In+ , such that f'|X=f. Since St BX < n, there is a contin-

uous function g' on BX into In+l, so that ]lf'—glll <g, and y is not
the range of g'. Let g=g'lX, then ‘lf—g|[ < g, and ¥y is not in the range
of g, hence St X < n.

We have proved that for Tychonoff spaces Z-covering dimension
and stability dimension are equiValeﬁt concepts. As a consequence of
the preceding and earlier theorems, we also have that if X is a Tychonoff

space and for some integer, n, Ext < n, then X is normal, and Ext X=cov X

=5t X=cov BX=5t PX=Ext BX.

2. The Tychonoff Plank

The remainder of this chapter is devoted to a look at the dimen-
sion characteristics of tﬁe well-known Tychonoff Plank. There are
several reasons for considering this space. It provides concrete ex-
amples of a few phenomena which have been referred to but not verified
in the preceding discussion. The proofs of some of the dimension pro-
perties of this space point out the usefulness of theorems on equivalence
of the several definitions. It provides answers to some of the ques—
tions which might be raised concerning whether or not the previous re-
sults can be sharpened, to wit:
question 1: Can it be proved for Tychonoff spaces that Ext X =
Ext BX ? The answer is no.

question 2: Can it be proved for arbitrary subsets A of a normal
space X that cov A < cov X (St A € St X, Ext A <
Ext X)?  The answer to all three is no.

question 3 Can it be proved for Tychonoff spaces that cov X=

covZX? The answer is no.




41

There are many other questions of similar nature which might be asked,

and an interesting subset of them are answered here.

Example: The Tychonoff Plank {(c.f. {5) or (7))
Let @ be the first uncountable ordinal, and let [0,Q] be the set
of ordinals less than or equal to Q. Define "intervals™ in [0,R] by

letting

etc.,

for any two ordinals, o, and a less than or equal to &. A topology

1 2’
is given for [0,&] by letting the collection of intervals of the form

[0,a), (ul,u ),0T (az,Q] be a base for the open sets. This topology

2
determines a Hausdorff space. If a=0, or if o has an immediate prede-

cessor in [0,R], then {a} is an open set. It is important to note that

any countable set in [0,R) has a supremum which is less than £.
Proposition 1: [0,R] is compact.

Proof: Let W = {UazagA} be an open cover of [0,Q]. Suppose QeU g
then there is an ordinal o < 2 such that the interval (q,Q] is contained

in UO' The set [0,a] is countable, thus there is a countable subcollec-

tion {Ui:i=1, 2, «..} of WU which covers [0,2]. Assume there is no

finite subcover. For each k=1, 2,...; let x = inf { x < :[0,x] is not

k
covered by LJUi}, then the sequence{xg}is an increasing sequence in
i=1

[0,2] and has a limit point x < R. Suppose stn, then there is an integer
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m > n, such that meUn. By the definition of the sequence {xk}, this

m
implies that [O,xm] is contained in |JUk. This is a contradiction.
k=1

Hence [0,8] is compact.

The space [0,R] is then normal. Let w be the first infinite
ordinal, then [O,u] is a cldséd (hence compact Hausdorff) subspace of
[0,2]. Let X = [O,w] x [0,2], then X is a compact Hausdorff space.
The space X is commeonly called the Typhonoff Plank. For o <, let

a' denote the successor of q.
Proposition 2: dim X = GC.

Proof: Suppose (n,a) is a point in X with 0 <n <w, 0 <a < Q. Let
U be an open set containing {(n, a)}, then there are ordinals ns
n, <w, and a), a, <&, such that (nya)e (nl, n2) X (al, a2) C U, If
N, has an immediate predecessor, let m=n,, if n, does not have an immedi-

ate predecessor, choose me{n, n

2

Yo If a, has an immediate predecessor,

let B=0,s if oy does not have an immediate predecessor, choose HE(U,G2)0
Then [ni, m] x [ui, i1 is an open and closed subset of U,so its bound-
ary is empty, and it contains{(n,qﬂ; A similar proof can be given if
n=w,a=%& n=90, orag=20.

Let T=X—{ﬁw,9)}; T is a Tychonoff space, by virtue of being a

subspace of a compact Hausdorff space.
Proposition 3t X is the Stone-Cech Compactification of T.

Proof: Every neighborhood of (w, Q) meets T, hence T is dense in X.
Then X is a compactification of T. Property (2) of theorem 4.5 may be
used to prove that X=pT. If every bounded, continuous, real-valued

function defined on T can be extended continuously over X, then X=pT.
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Let f be a bounded, continuous, real valued function defined on

T. Let r,=lim inf f((n,R)), and let r.=lim sup f{(n,Q)), n < w. There

1 2
are two sequences of integers, {nj}, and {mi}, such that lim f((nj,Q))=rl,
and lim f((mi, Q))=r2, and both sequences increase to w. Since f is
continuous, for each n < w, there exists an a <&, so that a > a im-

plies ]f((n,a))-f((n,Q))f < 1l/n. Let h=sup{an:ne{nj}tj {mi}} , then

A <, and

) = Limf{(ng, M) = £((w,2)) = Lim £((m;, X)) =1

l 2!

therefore the limit as n-—»w exists. Let f({w,R))=lim f((n,Q)). By
the above process, it is clear that for each m <w, n >mand a > A
implies [f{(n,a))~-f((w,Q))] <1/m+ |[f ((n,0))- £({w,2))], so the

extension of f is continuous, which implies X=3T.

Propesition 4. T is not normal, hence for each n < w, it is false that

Ext T € n.

Proof: Let L ={w} x [0,@). Let M=[0,u) x{Q}. L and M are disjoint
closed subsets of T. Suppose V and W were disjoint open sets with
LV, and MC_ W. Choose ay 2 0, with (0, w

choose o >u_ ,, with a <@, such that (n, an)ew. Let h=sup{un:n=

O)EW, and inductively,
0, 1, +..}, then the sequence (n, an) converges to (w, A)eV, but each
point of the sequence is in T-V. This is a contradiction since T-V
is closed.

By the results in chapter one for zero dimensional spaces, since
X is Lindeldf, and dim X=0, it follows thaé cov X=Ext X=5t X=Q. By the

results of this chapter, since X=pT, it follows that covZT=St T=0.
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Since T is not normal, it must be true that cov T > O.
Proposition 5. cov T = 1.

Proof: We already have cov T > 0., Tt remains to show that cov T < 1.
Let{UO, Ul’ Uéh be an open cover of T. The proof will proceed by sev-

eral parts.

Part (a) For some i = O, 1, or 2, there exists an ordinal A < R so
that for all a > X, (w,a)eUi
Proof: Assume false. Let L be as in propcsition 4, and
choose x EL—UO, choose Xp > X with x EL—Ul, choose X4 > X5

1 2

sc that X3EL_U2- Continue this process inductiviy to obtair
an increasing sequence in L, {xi}, s0 that there is a cofinal

subsequence in each of L-U,, L-U,, and L-U Let x*:sup{xi},

Q’ 2°
then x* is in L, and must be in one of the Ui' Suppose

xFel then the sequence {xi} converges to x¥, and there must

O!
be a final segment of the sequence in UO. This contradicts
the construction of the sequence, so the assertion of part
(a) is true.

Part (b) Let A be as in part (a), so a > X implies (u,u)an. For some
integer, N < u, the‘open set, K=[N,w] x [A', 2) is contained
in Uo’

Proof: Suppose not. Then, for each integer n < w, there is
an ordinal a_ > A', with a <&, such that (n, a )eT-U . For
0 <n<uw, letp =supfa, k2 n} and let p=inf{}xn}, then (w,p )
is in U_and is a limit point of the set {(n,un):r12 0}, but

this is a contradiction, since T-UO Is closed.
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] . q
Part (¢) Let K'=x U ([N,w) x{@}). For 1=0, 1, 2, let V,=U, N k.

. ¥ .
V., which covers K, and is

There is a refinement of VO, Vl’ o

of order less than or equal to one,

Proof: For each integer n > N, let i{n) be the first index

i for which the point (n,Q) is in V.. For each such n, there
is an ordinal, s for which the open set, In={n} X (un,Q]

Uy et W=V () { T i(n)=0§. For 3=l or 2, let W,=
y { In:i{n)=j}, Then W, W, W, are open (in T) subsets of
', WU WY w2=f<‘, W, v, for i=0, 1, 2, and W, N Wy =

# so the order of {Wo, W

1’ WQ} is less than or egual to one.

1 U2 of order less than or equal

10 one.

Proof: T-K 1is an open and closed subset of T and of X.

Since cov X=0, by theorem 2.li, cov(T-K')=0, hence there is an
open refinement of (T-kK'){) { UO,Ul,UQ}-which covers T-K',

is of order zero, and the sets of that refinement will also

be open in T. The sets in that last refinement, together with

U U. of order less

WO, Wl, W2 give an open refinement of UO’ 10 Uy

than or equal to one.

This completes the proof of proposition 5, as theorem 2,10 shows it

sufficient to consider a three element cover.




lOo

11.

46

REFERENCES

P. 5. Aleksandroff, Combinatorial Topolegy, Vol. I, Graylock
Press, Rochester, New York, 195é.

P. S. Aleksandroff, The Present Status of the Theory of
Dimension, American Mathematical Society Translations, (2)
1 {19%6) 1-25

C. H. Dowker, local Dimension of Normal Spaces, Quarterly
Journal of Mathematics (Oxford) (2) 6 (1955) 101-120

S. Eilenberg and Steenrod, H., Foundations of Algebraic
Topelogy, Princeten University Press, Princeton, New Jersey,
1952

L. Gillman and Jerison, M., Rings of Continuous Functions,
D. Van Nostrand Co., Inc.,; Princeton, New Jersey, 1960

E. Hemmingsen, Some Theorems in Dimension Theory for Normal
Hausdorff Spaces, Duke Mathematical Journal {(13) 1945
pp. 495-504

W. Hurewicz and Wallman, H., Dimeénsion Theory, Princeton
University Press, Princeton, New Jersey, 1948.

Js L. Kelly, General Topology, D. Van Nostrand Co., Inc.,
Princeton, New Jersey, 1955

P. Roy, Failure of Equivalence of Dimension Concepts in Metric
Spaces, Bulletin of the American Mathematical Soclety 68
(1962) 609-613

Y. M. Smirnov, Dimensiqn of Proximity Spaces, American Mathe-
matical Society Translations {2) 21 (19%6)

A. D. Wallace, Dimension Types, Bull. Amer. Math. Scc. 51,
679-81, 1945




