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CHAPTER I
INTRODUCTICN

In this thesis, we will be dealing with functions whose domains

are subsets of Rn, the set of n-tuples {(x .,xn)T} whose com-

12%g0 e
ponents are real numbers, and whose ranges are also finite dimensional.
Although much of what we consider can be extended to more abstract

spaces, the algorithms to be discussed are placed in finite dimensional

settings for simplicity. A vector in R” will be denoted with a bar, x,

to differentiate it from a real number. Also the uniform norm will be

used throughout, i.e. ||x| = max {|x,|}. If A is anm x n matrix with
l<isnn *
components a; ., then |A] = max { ] |aij|}' Chapter I is a review of

1<i<m =1
notation, terminoleogy, and theorems useful in dealing with functions

defined on finite dimensional spaces.

Whenever f is a linear function, there are many methods for
solving f(x) = 0 using comput ing machinery. However, when f is non-
linear, the number of algorithms dwindles while their complexity
generally increases. One such method, Newton's method, has gained a
wide following because it 1s simple, easy to use and understand,
and its results are usually quite satisfactory. Newton's method is
described and a convergence proof is presented in Chapter II.

It should be pointed out that there are major drawbacks to tnls
method. One is the necessity of caleulating an inverse of £' at each

iteration, a time-consuming if not impossible task especially for a



large or complicated system. Another difficulty is the necessity of
choosing an initial approximation within a suitable neighborhood of
the true sclution. Variations on Newteon's method which deal with these

difficulties are discussed in Chapter III.

Let §I be an open set in R", and f a mapping such that f: Q+R™

Then for x e §,

— — I
fl(xl,x2,...,xn) vy
f(x) = f2(xl,x2,...,xn) = |y, = V-
_fm(xl’XQ""’xnz_ ¥m
The functions vy = fi(i), i=1,2,...,m, are called coordinate

functions associated with f.

Definition 1.1 A function f: Q+Rm is said to be differentiable at the

point x £ @ if and only if there exists a linear mapping A: ROESR™

such that

1im = IEGeth) - £(x) - AR| _ 0.

£ I

The linear mapping A is said to be the derivative of f at x, and one
writes f'(x) = A. If f is differventiable at each x € § then f is sa.rd

to be differentiable on Q.
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Theorem 1.1 If Q is an open set in R and f: 9+R  is differentiable at

X & 2, then f'(x) is unique.

Proof: Suppose f'(x) = Al and £'(x) = A,, then we have

| £(x+h) - £(x) - a5 |£(x+0) - £(x) - AQEH
lim - = lim - = 0.
£s3 (3 Fsg I

The inequality
H(Al-AQ)EH < | f(x+h) - £(x) - AlEH + | f(x+h) - £(x) - AQEH
shows that

I cay-a, )] _

res 0]

0.

Therefore, for an arbitrary fixed h # o, we have

I ¢4, -8, ekl -
e

1im -
tvo | thj)

implying that (Al—AQ)E = o for all & ¢ R'.

We shall now develop a relationship between the derivative of f

at x and the partial derivatives of f at x. Let Q be an open subset of



R and f: Q+Rm be a differentiable function at x € 2. Then there exists

. . n ,m . . .
a linear transformation A: R™»R, which has a matrix representation

r_- L N ) _T
41 %12 %1n
R )
A: . . L]
| ml “m2 o ang
such that
| £(x+h) - £(x) - An]
1im - = Q.
Fog &

If h = [t,o,...,o}T and 31 = [l,o,...,o]T, then

o fl(xl+t,x2,...,xn)—fl(x)
| £(x+h)-£ (x)-AR| _
1im - = 1im %-fQ(Xl+t’x2:' .,xn)—f2(x) ~ - 0.
tio & t4o : i
_fm(xl+t’x2""’Xn)—fm(xz_
Likewise

lim ”
tto

f(x+h) - £(x .
) = 10, a3

implying that the partial derivatives with respect to the first



ccordinate of each of the cocordinate functions fi exist and
lei(X) = a5 for i=1,...,m.

A similar argument will show that a5 = Djfi(:::) for i=1,...,m, j=1,...,n.

Thus the matrix representation of f'(x) is

lel(i) szl(i) ces anl(i)

fE) - le2(£) D2f2(£) cee anz(i)

which will be called the Jacobian matrix of f! at x.

Definition 1.2 The differential of f at %, denoted by df[x;h], is

defined to be,

lel(x) szl(x) oo anl(x) hy
D.f (x) D.f (x) ++« D f (x)||n
h

lem(i) szm(i) vee anm(izil ]

whenever the indicated partial derivatives exist. If f'(x) exists,

then df[x;h] = £'(x)h, and lim | f(x+h) - £(x) - 4f{xs;h]| = ©.

ho



Theorem 1.2 Let § be an cpen subset of Rn, and let f: R be differen-
tiable a2t x € 2. Then f is continuous at x.
Proof. Since f'(x) is a linear mapping from R" into Rm, there

exists a constant M > o such that

”f'(ﬁ)ﬁ” < M”HH for all h = Rn.

Now given £ > o, there exists a §, with ¢ > § > o, such that

[£(x+R) - £(x) - £1(GR]| < e whenever ||H] < 5.

Thus

| £(x+h) - £ < |[£1GOR|| + ¢ < M|h|| + e < (M+1) ¢ whenever |[hf< &

So

lim || £{x+h) - £(x)| = o.

h+o

Theorem 1.3 (Mean Value Thecrem.) Let Q be an open subset of R" and
f: 0+R". If f is differentiable on the line segment Ay + (1-A)x £ ©

for osisl, v, %X € §, then there exists m points x ...,im cn this line

lﬂ

segment such that f(y) - f(x) = A(y-x), where A is the linear mapping

represented by



Procf. If hl(A) = fl(k§ + Ql—l)ﬁ) for o<i<l, then hl is a con-
tinuous real valued function of one varlatle for which the standard mean

value theorem holds. Thus there exists a Al in (o0,1) such that
h{(l) - hio) = h‘(hl)
or equivalently

£,(y) - £,(x) = lel(xl)(yl—xl) + D2fl(;(l)(y2_x2) + over + anl(xl)(yn—xn)

where X, = Aly + (l—Al)x.

A similar argument applied to each of the ccordinate functicns

will show the existence of ﬁi = Ai§ + (l—Ai)i, o<ki<l, such that

£ - £5G0 = Dy F (e )y ) + DoF Gy dyyxg) + e+ BLE G )y )

for i=l,....m.



Theorem 1.4 (Chain Rule Theorem.) Let & be an open set in Rn, and g
map 2 into Rk. If g is differentiable at §O £  and f maps an open set
containing glQ) into R™ and f is differentiable at g(io), then the com-

posite mapping F = f(g) of © into R™ is differentiable at §O and
' w = 1 - ' v
F (xo) = f (g(xo))g (xo).

Procof. The mapping f'(g(io))g'(io) from @ to R" is linear. It

remains to be shown that

[EG) - PGk ) - [ (g(x Ne' G 0x - % |

lim — -~ = 0.
o % - 5]
o
If
r(x) = F(x) - F(io) - [f'(g(io))g'(io)][ﬁ—io]

8]

flg(x)) - f(g(io)) - f'(g(io))[g(i) - g(io)]

+ f'(g(io}}[g(i) - g(io) - g'(io)[i~§O]}

and A = f'(g(io)), B = g‘(io), then

el < 1£(a(x)) ~ Flg(x))) - Alg(x) - g(x )]

+ [|Alg(%) - gk ) - BLx-x 1|



Given € > o, there exists a 61 > o and a 62 > o such that

(1) I£¢a(x)) - £lg(x ) - alg(x) - gx I < elglx) - g

whenever |g(x) - g(io)u < 8, and

(ii) le(x) - g(x) - Blx - x I < ellx - x|
and

leG) - gz < &)

whenever Hi - §OH < 62.

So

| £(e(x)) - £g(x ) - Alg(x) - g(x ]| < ellgC0 - g(x )]

ele(z) - g(x) - Blx - x 1 + 8lx - = ]

A

% - x|+ ellBl 1% - x|
whenever ||x - §OH < 52, and
lalg) - glx) - Blx - x 11| < < ||a] (% - x|

whenever ||x - §OH < 6,, which imply that
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whenever ”iwioﬂ < 62.
Thus it has been shown that
| = (x|

lim —
By
o

0,

1
As an example of the chain rule thecrem, let g: >R be given by

1.3

g(xl,x2) = ln(xl+x2) where O = {(xl,XQ)T: X T X, > 0}. Let £f: R™R

2
. _ 2 3.7 .
be defined by f(t} = [t,t",t"1 . Then the function

F(x %) = £(g(x 5%,)) = [In(x +x,), (Inlxy+x,00%, (Inx 12,))°7

has a derivative given by

1 1 ]
X, t X%, Xt X,
) 2 ln(xl+x2) 2 ln(xl+x2)
]
172 (xl+x2) (xl+x2)

S(ln(xl+x2))2 3(ln(xl+X2))2

(xl+x2) (xl+x2) _J

As proven in the theorem, the derivative of I is also given by
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F'(xl,xz) = f'(g(xl,x2))g‘(xl,x2)

1

1 1
2 1ln(x,+x,.) .
l bl
2 , E{l+x2 xl-l-x;l

3(ln(x1+x2

Definition 1.3 Let £ be an open subset of R™ and £: @+R". Then £ is

sald to be continuously differentiable on & if and only if the partial
derivatives, Djfi(ﬁ) for i=1,...,m and j=1,...,n exist and are continu-
ous on 2, and we write f e C'[@]. As Rudin [17, p. 192] shows, an
equivalent definition would require that f be a continucus mapping of &

m
into the space of linear mappings of R” into R .

Theorem 1.5 Let £ be an open subset of R™ and f: 2-R". If f iz con-
tinuously differentiable on §, then f is differentiable on Q.

Proof. Let io £ R and € > ¢ be given. Since f e C'[2], there
exists a § > o such that |D.f.(x) - D.f.(x )| < £ for iz1,...,m and

i i7it 7o n

j=1,...,n whenever x ¢ S where § = {x: HQ—QOH < &} Q. Also by the
Mean Value Theorem there exists a sequence {§i}, i=1,...,n, in 2 such
that fi(xo+h) - fi(xo) = lei(xi)hl + D2fi(xi)h2 + et ani(xi)hn

where io + h e . Then we have

£ (x +h) - fx ) - f'(io)ﬁn =

e
D.f.(x.) - D.f.{(x ))h. h
o | 10056 -0y G| <« 17
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whenever |h| < & and io + h € @, which implies that

| £(x +h) - £(x_) - £'(x )
lim 2 - © ° = Q.
o [I5]

Definition 1.4 Let & be an cpen subset of R" and f map { into R™,

Then f is said to be locally one tc one con £ if and only if about any

in which f is one to one.

W

point x ¢ { there exists a neighborhood of

x2 is not locally one tc cne

As an example, the function f(x)
1 . . . . \
on R7; however, if zerc is deleted from its domain, then f is locally

one tc one on its demain.

Definition 1.5 Let f be a mapping from R into R™. Then f-l is said

to be the inverse of f if and only if f_l is a function that maps

F[R™] onte R® where £f[R"] R" such that £ T(£(%)) = % for all % ¢ R".

Theorem 1.8 Let 2 be an copen subset of R" and f map £ into R™, If
fe C'I0D, f‘(QO) is nonsingular at some ;o £ 0 and §o = f(ﬁo), then
there exist open sets U R" and v R™ such that §O e U and §o e V, T
is one to one on U, and flU] = V. Moreover if f—l is the inverse of f
defined on V, then £ * ¢ C'[V] and [f"l(f(ﬁo))]' f*(%o) = I.

Proof. The proof may be found in Rudin [17], p. 193.

As an illustration of Theorem 1.6, let @ = {x ¢ R?: %, > o}

1

and



>
I—‘l\.)l

f(xl 9X2) =

x

Y
Lo

Then f is continuously differentiable on ©, and its derivative is given

by

2xl 0
! =
f (Xl’x2) ) %, 1
2 pd
(xl) 1

. . . T
Since the determinant of f'(xl,xg) is nonzero for any (xl,xz) £Q,

Theorem 1.6 applies, and we can find

Since f_l is centinucusly differentiable,

rH-l 0 j
) 2y
(£ 3y)1 = 1
¥y
=
2/3}'1"




1u

Now then
S
1 ' 2xl
[ “(£(x,,x,3)] =
1°72 x2
_— b
2
and

1 0
-1 L
[£ (f(xl,xz))] f (xl,xz) = \; lJ’

as the theorem implies. Recall that a bilinear operator C(x,y) that
n n . m . . . . . A - n
maps R* x R into R is a mapping which is linear in x for each y ¢ R

and in y for each x ¢ R™.

Definition 1.5 The second derivative f''(x) of a mapping f: rRI-R™

. = . . ‘q n n
at a point x ¢ R" is defined to be a bilinear operator from R™ » R

into R such that

o |ELGHOR - £1GOE _ £1(RER))

11 — =
g I%| %]

where £"(x) is of the form, f"(x) = [Bl(ﬁ),BQ(i),...,Bm(i)]T and

F(R,K,0) = [ETslci)E, ETBQ(Q)E,...,ETBm(i)E]T with
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BB et B (%)

5l Ry eee BE(R)
n

15

Bi(ﬁ) = ?2 ? for i=1,...,m.
LEin(i) <o bin(iz‘
Thus,
(1.1) 1lim Hf'(§+E)E”f'(£)E -2 B RKTBA,... K B HJTH = 0
o %] I3/ "

must hold for every k,h ¢ R".

Let k = [t,o,...,o]T ¢ RV,

Then (1.1) becomes

T £, (5rR) - B f ()Dn, + [0, Gfd - DoF ()Thy + oo v [0 5 () - I)n:'l(Q)]'h“_‘ ﬁilhl + h;?h? b }:llr. N U
Lim 1_‘D1f2(§+1?) - :lf2(§)1h1 + [L|2f2(:2+i) - D?fz(;)'lh? ot [F:Lf2(§+)2) - Drfzr,;)]hn bilhl 4 be\,,? + + h'iﬂh“ ‘
e It 7 : h ’ ‘ =0
lflfmfiafi) - lem(;()]hl + [32fn(§+)}) - :gfm(i)]).,z .t [Lnfm(;Fz) - an_r(;qj'l?xﬂ thlhl + hrl"zr? o+ rfl”nh_] ||
By taking the limit as tto and as tdo, we see that
1 - 2 m -
b =D . f b = D .f =
11 7 Pfi () byy o= Dy F 60 byy 7 Dy ()
1 = 2 - m -
b =D f b = D f =
12 7 Dpyfi 00 B, = Do f 60 B1p 7 Doy ()
1 - 9 _ - m o -
b =D f b =D f =
1n - Ppafi0 by, = D E,00 By ® D)
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In the same manner it can be shown that

[T i - LI BN ] . _—I
Dllfi(x) D21fi(x) Dnlfl(x)
i Dlzfi(x) Dzzfi(x) soo Dnzfi(x) .
Bi = R for i=1,...,m.
Dipfpxr Dy 0 Pon1¢%)]

We shall define a norm on the second derivative in the following

manner

n §ey
Il = max [} |b
i<k<m i=1 351

<
1]

Although this norm is not the operator nerm, it has the property that

£ Gk 00 < (£ Goll (8] &l

Theorem 1.7 (Taylor's Theorem) Let f be a mapping from R" into R,
If £ and all of its second partial derivatives exist on the closed

+ = n
region T = {x ¢ R": a_ < x

< <
l_l_Cl,HQ$X C

2 - TRt T n- n

then

F(x+h) = £(X) + £'GOR + %—B(g,h,ﬁ)

whenever x and x + h are in T, and B(£,h,h) is given by



=y -
I
T
B(E,i,5) = [P By D
5Top h
u—n.m-u—

with

Dllfi(X+€ih) Dzlfi(x+€ih) ree Dnlfi(x+€ih)

Dlzfi(x+£ih) D22fi{x+£ih) v Dnzfi(x+§ih)

Bi _

nfi(£+giﬁ) D, f.(x+£.R) sen Dnnfi(£+£iﬁ)

)]
s
where o < £i < 1 for i=1,.,.,m.

Procf. Let ¢i(t) = fi(xl+hlt,x2+h2t,...,xn+hnt} where fi is a
coordinate functlon associated with f.

Then using Taylor's Theorem for a function of one variable on

¢i(t) we have
! 1 I : <
¢i(1) = ¢i(0) + ¢i(0) + §-¢i(ai) with © < 5i 1

which is the same as

[ — -_— n -_
£, (x+h) = £, (x) + Y D £, x)n

n
S a2
Z D f.(x+E.h)h. +
K=1 [;:l kk™1 1 k

el o

.

2 ¥ D
22ks<n
1<k

kjfi(x+5ih)hkh

I_l_J .

17
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Thus we have f(x+h) = f(x) + f'(x)h + %—B(ESE,E).

Definition 1.6 If g(x): rRESET ig given by g(x} = [gl(ﬁ),gg(ﬁ),...,

gm(i)]T, then ng(§) iz defined to be

- - - ~ T
ng(x) = [ngl(X), ngQ(x)”"’ngm(X)]

Definition 1.7 If

J(x) =

where x ¢ R™ and aij(§): Rn+Rl for i=1,...

defined to be

DjJ(i) =

(3, (%) 2y, (x)
azl(i) aQQ(i)
_fml(;) amQ(X)

Ejall(x) Dja12
Dja2l(x) Dja
Ejaml(x) Dja

Smﬂ

for J=1,2,...,n.

j=1,...,n, then DjJ(i) is




CHAPTER II
NEWTON'S METHOD

In this chapter Newton's method is motivated and described. A
proct of the convergence of this method is provided, and the con-
vergence is shown to be quadratic. The reader can find most of these
results in Isaacson and Keller [9].

Let g(x) = [gl(i),gQ(i),...,gn(i)]T be a mapping of a subset of

R" into R,

Definition 2.1 A vector X is said to be a fixed point of g if and only

if g(x) = x.

Theorem 2.1 Let a be a fixed point of g, and let g'(x) exist and
satisfy ||g'(x)| < X < 1 for all x in the sphere S(a,p) =
{x: |x-af < o}. Then
(i) o is the unique fixed point of g in S{a,p) and
(ii) for any initial estimate % e 8(a,p), the iterates {ﬁn},
where §k+l = g(ik) for k=0,1,2,..., converge to a.

Proof. Using Thecrem 1.3, we have

g{x) = g(y) + A(x-y) for =x,y e S(a,p)

where A is the nxn matrix mentioned in Theorem 1.3. Note that

la]l < ». Then



(2.1) le(z) - g < Al [Ix-¥] < r|x-y|

for x,y € S{a,0).

Now let y = & and we have

(2.2) le(z) - all < Alx-al for % € S(a,p).
If X = x°, then ”g(ﬁo)—&”‘= ”ﬁl—&ﬂ < %73 < rp. If % = El, then
”g(il)—&u = Hﬁz—an < A“il—&ﬂ < AQHEO—&H < 3%, and by the cbvious

induction argument we have

ngk-an < p  for k=0,1,2,...

Notice that |Ko-a] < &5 72-a] < +-+ < [5°-d <p. So & € Sas0)

1A

Akp and A < 1, we have lim §k = a.
ke -roo

for k=0,1,2,... Also since "ik—&“

A

So (1i) holds.
For uniqueness, let B be another fixed point of g in S{a,p).

Then [ a~-B|= ||eg(a)-g(R)| < Mla-B| < Ja-B] which is a contradictien.

Definition 2.2 Let {ik} be a sequence in R" that converges to o £ R .

‘ ; . “k+l1 =
Then the sequence is said to be rth order convergent if uxk l~au

|~

MHik—&Hr for k=0,1,2,... where M and r are positive real numbers. An

+1

¢ : -k -k , . . .
iterative scheme {x = g(x ), k=0,1,2,...} is said to have rth orda:

€

convergence at a fixed point @ = g(a&) if there exists a neighborhcod 3

- o2 e -0 . ; =+l
of o such that for each initial wvalue x e S, the iteraticn x =

g(%k), k=0,1,2,... is rth order convergent to a.
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By (2.2), the iteration examined in Theorem 2.1 is first order

convergent. An alternate terminology 1s that it converges linearly.

Let us now determine conditicns on g which will provide a faster rate

of convergence.

Theorem 2.2 Let o be a fixed point of g, and let g'(x) exist and be
bounded on S(a,p). If g'(a) = 0 and 2 e S{a,p), then the iterates
=k+1

{Qk} given by x = g(gk) for k=0,1,2,... are ?nd order convergent.

(Second order convergence is often called quadratic convergence.)

Proof. Expanding g(x) about o, using Taylor's thecrem, gives

Note that |B{x) is bourded by say ¥ for x ¢ S{a,0). If g is evaluated

at Qk, the result is g(ﬁk) - gla) = B(gk,ﬁk—&,ﬁk—a). So

|G < IBEO -] ? < MFF-all?,  for k=0,1,2,...

Now let us concentrate on solving f(x) = o, where f(x) is a
mapping from a subset of R" into R". Rewrite this system as a fixed
point problem with g(x) = x - A(x)f(x), where A(x) is an nxn matrix
with components aij(i). In addition, A(x) must be nonsingular so that
the solutions of the two systems will ceincide. The simplest choice

for A(x) is A, a constant nonsingular nth order matrix.



However, from Theorems 2.1 and 2.2, we know that the algorithm

§k+l = §k - Af(ﬁk) will converge quadrztically whenever x° is "close

enough' to a,g'{a) = C, and g satisfies the hypotheses of Theorem 2.2.
Since differentiating g(®) = x - Af(X) gives g'(X) = I - Af'(X), g'(a)
will equal zero if f'(a) is nonsingular and A = [f'(&)]_l. In practice
however the soclution a is generally not available, so we let A(x) =
[f'(i)]_l for each iteration. Thus A now depends on x. This is Newton's
method. A recap of the procedure follows.

Newton's Method: To solve f(x) = o, chcose an initial approxi-
mation x° to the root. Compute successive ilterations using the formula

-k+1 X 3
®

= g(x) = Qk - [f'(x )]"l f(ik) for k=0,1,2,... Normally, instead

of computing [f'(ﬁk)]_l, the equation is rearranged to read f'(§k)

k+l -k
-x )

—f(ﬁk). This linear system is then solved for the correction

_+ —_ - _ _
xk 1. xk so that xk L = pk + xk.

(%

=k
vector p

Consider the following 2x2 illustration of Newton's method. Let

* = E%_J and £Gx) = EI(Xl’XQTI' Then f'(x) = |:lfl(><) D€y (%)
x

f?(Xlsxg_)J lfQ(X) Dgf (X)J
The iterates are given by f‘(ik)( <t k) = —f(x ), which when wrizten
out in component form becomes,
k K k % k+1 K k k
lel(xl A DQfl(Xl’XQ) x| - X fl(xl’XQ)
Kk K+l kD Kk k
leZ(Xl ) D2f2(xl,x23_ 5 - ng fQ(Xl’ 2)

Thus we have
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K+l K K+l K

k _k Kk Kk kK ky _
(xl xl)lel(xl’XQ) + (x2 —x2)D2fl(xl,x2) + fl(xl,xz) 0
(2.3)
k+1 k k k k+1 k k k k k _
(xl —xl)lez(xl,xz) + (x2 —x2)D2f2(xl,x2) + f2(xl,x2) = 0

for k=0,1,2,...

Geometrically speaking in the cne dimensional case, Newton's
method approximates the graph of the functicn f with the tangent line
to £ at ﬁk. The next iterate is then the zero of this tangent line.
In two dimensicns, as in the previcus illustration, the equation
Z = (Xl—xi)lel(xi,x;) + (XQ_XZ)DQfl(XE’Xg) + fl(xt,xg) denotes the
tangent plane to the surface z = fl(xl,x2) at the point

(x?,x;,fl(xi,x;)). So the solution tc system (2.3) represents the
. : _ k _k k
intersection of the tangent planes to z = fl(xl,xg) at (xl’XQ’fl(Xl’

k _k

X _ K Ko . .
x2)) and to z = fg(xl,xz) at (Xl’XQ’fQ(xl’XQ)) in the xlxg(z—o) plane.

Thus In two dimensiecns, tangent planes instead of tangent lines are

used.

Thecrem 2.3 Let f map a subset of R" into R and & be a fixed point of

g where g(%) = % - [£'(R)1718(X). Now if [g'(x)]| < » < 1 and g"(x)

1A

exists and is bounded for x in S(a,p) where p > H&—QOH, then Newten's
methed converges quadratically.

Proof. Theorem 2.1 implies that the iterates converge. If it
can be shown that g'(a) = o, then Theorem 2.2 will give second order

convergence. The jth column of g'(x) is given by
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Dig(x) = B, - f'(£>‘lnjf<§) - [Djf'<i>‘1]f<§)

where

55 = [o,...,o,lj,o,...,o]T and Djf'(£)‘l = -f'(i)‘l[njfr(i)]f'(i)‘l.

Then we have

- - cr=v-1 -y L=yl -
ng(u) 5j - £ (w) Djf(a) [Djf (a) “1f(a)

It has been shown that if x° is "close enough” to o, so that
lg'(x)| < X <1 for x & S(a,p) where g = ”&—QOH, then Newton's method
converges. 1f in addition Fr(x) is nonsingular at a and differentiable,
the convergence is of second order. However we need a sufficient con-
dition for the convergence of Newton's method when the root o is

unknown.

Theorem 2.4 Let f be a mapping from an open subset of R" into Rn, and
the initial approximation x° be such that £'(X°) has an inverse with
norm bounded by

(2.4) s G217 < a.

If the difference of the first two iterates is bounded by



(2.5) 12220 = |t 217G < b,

and the coordinate functions of f have continuous second partials so

that

(2.8) l£"(x)] ¢ c for all X e S(2°,2b),

and if, in addition,

N+

(2.7) a,b,c are such that a * b « c <

then (i) the iterates are uniquely defined and lie in S(io,Eb),

and

(ii) +the iterates converge tc some element a such that f(a) =

and -6 < 2.

Proof. It is convenlent to introduce the following notation:

X

RPN SR k+1 Kkt

= [f'(ik)]'l; A =1 - HYJ

o

Now by a lengthy induction argument we wish to establish the following

for k=0,1,2,..-

e e
2
(2) JFM -2 <

(@) A = [EE ) s 5



@y T = [ a-aR Ty < 2t

Since (1) and (2) are true for k = o by hypothesis, El and x°
are elements of S(QO,QD) where the second partials of the coordinate
functions are continucus. This enables us to use Theorem 1.3 to show

-1 - 1 -1 -
° 4 B(El,xluxo,-) which implies that jJ —Jo” < cHxl—on,

1
J =4 This
bound on the norm of the difference of the first two Jacobians along
with (2.4), (2.5), and (2.7) establishes the following inequality

1 1 -1 -
I < 0] 10%=0Y < aoll-2)

AN

- abc < %—, which proves (3) for k=c.

Now since ”Al" < 1, it is a well-known result that I—Al is nonsingular
l)_l” < ———l——I—-. So we have
1 - a7

and H(I—A

O
e < 82 cz-ay Y <« EL ¢ s

<
1 - a7

which establishes (4) for k¥ = o. Observe that Jl = JO(I—Al) since J°
is nonsingular by hypothesis, and thus Jl also has an inverse.
Let us now prove (1), (2), (3), and (4) for k= n by assuming

these same inequalities hold for o < k € n-1. Since (2) is valid for

k equal to n-1, HAn” < 1 which implies that J% is nonsingular by an

argument in the preceding paragraph. Thus §n+l = %X - an(ﬁn) i3

-n+l -n
- x|

uniquely defined with |x < “Hn" “f(in)”. Now to get a bound

on |£(x™)|, recall that (2) is valid for o < k < n-1 which impiies

%" ¢ 8(x°,2b) so that Taylor's theorem can be used to produce
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n n -1 -n —n-1

w1 [ - 1+ —B(E LR =X )

£(x n-1

£(x)

Y+ J

- —-B(g sn- l’xn ;n—l)_

Taking the norm of both sides of the above equation and using (2.%), we

see that [EG™| < $[-"7H?

Thus from (1) and (4) at k = n-1 and

from (2.7) it is possible to conclude that

2
ST s P G < § @R PSP < 5 <2“a>{ 2 -
J

which establishes (1).

The repeated use of (1) will establish (2) in the following way,

k . . k .
R P N e S (AP S R S
i=zo i=o 21

Now since §p+l is in S(io,Qb), the Mean Value Theorem can be

used to show Jn+l = J% ¢ B(.En+l Rl X", ) so that

”Jn+l _ Jn” < c”§n+l _ ;n

. This result together with (1), (4), and

n+l| n+l”

< 2Mac b . abe < é-which
5 2

proves (3) for k = n. Recall that HAn+l” < 1 implies that S s nen-

(2.7) implies that ||A < |55 9™ - g

+1 1
A

<

1 - a

singular and [T - A . So (4) can be established by

1'1+l”

noting that



n
“Hn+l” < ”H “ < 2n-l-la
1 - A

Now (i)} follows from (4) which implies that the Hk exist for all

k and thus the sequence of iterates {ik} is well defined, and (2) shows

that §k+l £ S(§0,2b) for all k.

For the convergence argument we use (1) to show that

k+m-1 . . kt+m-1
e A A LR
i=k i=k 2 2

So the iterates {Ek} form a Cauchy sequence in R™ and converge to some

2
& in 5(x°,2b). Recall that |£(x%)| < %Ilﬁk - 2 < > %’f] =
2 _ 2 |
Qbkc . So lim”f(ik)“ = 0. But we also have lim”f(xk)” = | £(3)||. Thus
! =Tk X b ek A,
fla) = 0. Also ||x ™o | < —iji-implies that lim|x e xKH =
2 oo

la - 2 < -2%
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CHAPTER III

DIFFICULTIES OF WEWTON'S METHOD

Because of its simplicity and rapid convergence, Newton's method
is often used to solve nonlinear systems of the form f(x) = o where
X € R and f{x) e R, Nevertheless there are seriocus difficulties with
this method. The excessive number of calculations required to compute
the inverse of the Jacobian matrix at each iteration is one of the
principal complaints. The calculaticn of the derivative alone reguires
n(n+l) functional evaluations, not to mention the calculaticns reguired
for the inverse. Not only is this process inefficient from a programming
point of view, but the derivative may be 1ll-conditioned cr may not even
exist, Another major drawback to the method is the necessity of guess-
ing an initial approximation within a suitable neighborhocd of the sclu-

ticn so that convergence is assured.

Point Substitution Method

Let us turn ocur attention to the problem of calculating a new
Jacobian matrix for each iteration. Our purpose is to show that
instead of evaluating the Jacoblan at each iterate, as Newton's method
requires, the first derivative term in the algorithm can be calculated
at any arbitrary peint in a particular region of R" and the iterates
will still converge. Thus those peints at which f' is easily calcu-

lated can be chosen, while those points where f£' 1s not defined or
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ill-conditicned can be avoided. The following results can be found in

Bartle [2].

Lemma 2.1 Let & be an open set in R™ and £'(x) exist and be bounded
for all % £ §. TFurthermore for x= ¢ R, let G(QO,E) be a rezl number

such that |f'(x) - f'(io)n < £ whenever X ¢ S(io,d(io,s)) . Then if

%' and %° are in S(x°,8(x",e)), we have

1 -2

e R

11D - £ - 21Ok :
Prcof. Using the Mean Value Theorem in Chapter I we conclude
-1 -2 -1 -2 . . .
that f(x7) - f(x") = A(x” - x7) where A 1s an nth order matrix with
e - £ <e. <o

<

[£(xY) = 82y - £ GOMRY - 221 < A - £ GO R -

(748

1A

1 -2
e =7 - x7.

Lemma 3.2 In addition to the hypotheses of Lemma 3.1, if f'(x_)_l is
alsce defined and bounded on a neighborhood N of io, then for any

a > Hf'(QO)_lH, there exists a 8 such that

(1) if % - 3% < g, then £ G 7Y < 2 and
(it) if Hik - z°| < & for k=1,2,3, then
rrhy - £G:D - £ &R - 2] o« & R - 7).
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Proof. If e = a - ”f'(io)“l“, then there exists a §, > o such

that 1f |% - %7 < 6., then |£'GO™ - £/ GO 7Y < €. Thus if

l’

“§ - QOU < 61, we have

=
I

2 GO - 12 GO < £ GO GO <o = a - e GO

and so Hf'(ﬁ)_l” < a. Also by the continuity of f', there exists a
o= o . , =0 1
§, > o such that if = - x| < §,> then [£1¢x) - £1(x%)| < Ia
& 3
Now 1f il, §2, and is are in S(QO,B) where B = min{l,?;-,?;-}, then
Lemma 3.1 can be used to show
-1 -2 0= - 1 - -2
[£%) - 2G5 - £ GOE - X s K - #L

So

l£Gh) - £x%) - £ GO < D - £ - 2 GO ET-x7])

-1 —2"

s e GH-21 GOHIE-E < = R

ey
- Ya

L I Ead

Theorem 3.1 Let © be an cpen subset cf Rn, and f: 9+R" have a bounded

first derivative on @ such that f'(io) has an inverse that satisfies

”f'(io)_l” <a <, Then if |£() <« é%—where B is as in Lemma 3.2,

and each Ek for k=1,2,3,... is an arbitrary element of S(QO,B) except
k+1 -k

-0 . -0 . . -
for z  which equals x~, the iterative process x = x -

[f'(Ek)]_lf(ﬁk) for k=0,1,2,... converges to a unique solution a of
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F(x) = & in S(x7,B). :urthermcra “ik - &H < i% .
2

Procof. Using an inductive approach, we will establish the fol-

lowing:

(1) % -x° ] <5

k-1
x|

(2) |&° - < alf Y, and

e

(3) Hf(Qk)u < 5%— for k=1,2,...

-1

By hypothesis, | x -

OO <2 [FG) < B < foadeh

-3 = TG

proves (1) and (2) for k=1. Since £(x¥) = £(x) - £(x°) - £ ()% =",

Lemma 3.1 shows that Hf(gj)” < g; HQl - EOH. Thus (1), (2), and (3) are

true for k=1. HNow suppose they are true for 1 ¢ k ¢ n. Using Lemmi 3.7,

QU*L e -f‘(En)_lf(gn) implies that H§n+l - inn f(gn)" whicth

< a

proves (2) for k = n+l.

since 2" - FY < al fGM L FIFN - FTL we can see indue-
tively that
Iy . Tl .
i B R I U I S A
i=o ~i=o
This establishes (1) for k = n+l.
Now 71 & 8(x°,8) and £(*Y) = +&P™H - G - P GRHGTREY

-n+1l

imply by Lemma 3.2 that |f(x )| < §§—H§n+l

-

Thus (3) is proven.
Notice that H§k+p - ﬁk” < Z N§k+i - §k+i_l“ <

L P 6 T sl B
a”f(go)nﬂ_ {7 27 < = for all p = 1.
i=o 2
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So the {Qk}'s from a Cauchy sequence in s(x”,8) R, and therefore
converge to some a ¢ S(QO,B) with limn§k+p - an = jla - ka < j%-for
pe K - 2
k=0,1,2,... Statement (3) shows that lim|f(x")]| = [[£(a)]| = o proving
ko

that a is a solution of f(x) = o.
Regarding uniqueness, suppose ? is ancther solution of
- - ~0
f(x) = o in S(x ,R).

Then

Iv-a) = £ GO e GOF-31 < a| £ GOIY-aT) =

al#() - £ - £rEF-a] < )7

by Lemma 3.2. So ||y - o] = o which contradicts the hypothesis that
Yy # a.

Observe that Lemma 3.2 is not needed in the proof if ik = ik

for k=1,2,... Note also from the convergence factor that

”§k+l a) < %—”ik - a] for k=0,1,2,... Since the convergence rate

has net been shown to be any higher than one, ease in handling the
Jacobian matrix has apparently cost us the quadratic convergence rate.
In fact, with Ek = x° for ¥=1,2,3,..., this scheme has only linear
convergence wWhen used in Rl on the functien f(x) = xE. However when
the Ek‘s are all chosen equal to ;o’ the linear operator remains con-
stant throughout the algorithm, and the general recursion formula

-k —o)

becomes §k+l = x - f'(x _lf(ik) for k=0,1,2,...
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Notice that each iteration requires only n cocrdinate function
evaluations. Thus with respect to time, the reduction in the number
of calculations per iteration tends to offset any reduction in the
convergence rate.

Given f(x) and ;o, let {Qk} be the iterates computed by
Newton's method, and let {;k} be the iterates computed by the point
substitution method with z° = X° for k=1,24... Then if L = H§l—§o”,
M= ﬂf'(go)_l", N=|£(x%)], and h = LMN < %—, error bounds for the

two metheds are given by the following formulas (which can be found

in Lohr and Rall [13]):

2k-1
7 - a1 s BR—

15 - &) < 2hn(1 - VITom)S = ry

where o is the solution to f(x) = o approached by beth {Qk} and {ﬁk}a

Now let T and t2 signify the times required to calculate f(§k) and

f'(ik)_l, respectively, and let t

3
F 2 e @O EE) given £(3%) and £ ()7L, If € is the

denote the time required to compute

desired accuracy, ne = min{k: . < e}, and ny = min{k: vy < e}, then

the point substitution process will give the desired accuracy in the

least amount of time whenever ng(tl+t3) < ne(tl+t +t3). Now, Lohr ani

2
Rall [13] suggest a procedure which combines the two methods to reduze

computing time. In this procedure the error and time analyses are

. . . . k k
repeated after each iteration. At the kth iteration let Ty t2’ and
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tg be the times required to compute f(ﬁk—l), f'(:::k—l)_l and ﬁk =
gL f'(ik_l)_lf(ﬁk_l) given f(ﬁk_l) and f’(ik_l)_l, respectively.

Then substitute ik for Ql and ik_l

k

for %~ in the formulas for L, M and

and Nk), and using Lk, Mk and Nk in

N (czll these new values Lk, M
the error bound expressions compute ”E and nz, the number of zdditicnal
iterates needed for each method to converge. In addition let ti be the
time required to compute nt and ng. Then the procedure is to use
Newton's method for k iterations until

k k
1 £

[T

k k k k
n (t] + ta) <n (4t g 4t

m: =

and then switch to the point substitution algorithm until the con-
vergence criterion is satisfied.

Another special case of this modified method is to use the same
Jacobian for r iterations where r is some positive integer chosen

beforehand. Thus we let

Ek = ;o for k=1,2,...,r-1
Ek = % for k=r,r+1l,...,2r-1
2 = 227 for k=2p,2r+1,...,3r-1

This scheme also reduces the number of calculations required per

iteration when compared to Newton's Method. Again, in order toc reduce
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the time required for each iteration, it may have been necessary to

forfeit the quadratic convergence.

Corollary (Bartle [2]). Let f: 02-R" be as in Theorem 3.1. Consider a

set of bounded linear operators {Tk} where T R%RY for k=0,1.2,...

k:

such that the fellowing conditions are satisfied,

(i) HTn(i) - 2 xZ) < ﬁ%— for all x £ S(x°,B), n=0,1,2,...
and
. -1,- ¢ = e —0.
(i1) |77 < a for all x £ S(x ,B), n=0,1,2,...
n
Then the sequence of iterates defined by TR T;l(ﬁk)f(ﬁk)
for k=0,1,2,... will converge to a € S(QO,B) where o is a solution of

the equation f(x) = o.

Procf. The proof is the same as the proof of Theorem 3.1.
Condition (i) implies that Lemma 3.2 holds, and condition (i1) takes
the place of requiring that {Ek}C:‘S(ﬁo,B).

Thus instead of choosing new points at which to evaluate the
Jacobian matrix, i1t may be possible to switch to a different, more

easily managed set of bounded linear operators.

Secant, Wolfe's, and Barnes' Methods

Another method commenly used to circumvent the calculation of

. . . 1.1 1 o
the derivative is the secant method. If f: R >R, let % and x be two
initial approximations to a root a of f(x) = o. Then the secant

iterates are given by the formula,

X k-1 ]
k+1 Kk X' - ¥ £

% = % -
f(xk) - f(xk_l)J
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or equivalently

k k-1 ]
xk+l = £x) xk-l - fix ; T xk for k=1,2,...
_ )}

() - £(x°71 F(x) - £(x

Notice that this algorithm is similar to Newton's method except that

k k-1
X - X
£y - £

secant method requires only one functional evaluation per iteration

However the

[f'(xk)]_l has been approximated by

while Newton's method in the same setting uses two. The following

theorem can be found in Isaacson and Keller [9].

Theorem 3.2 Let x° and x= be two initial approximations of w«, a root

of f: R;+Rl, and suppose all the iterates {xk} of the secant method for
. < f'{x)
this system lie in S(a,p)} for p > o such that o < ) < M for all
. o B 1 B

®x,¥ € S(a,p)., Now if [x - a’ < ﬁ-and |x - a| < —where B < 1, then

. k . . k+1
1im ®x° = o and the rate of convergence is given by |x - ul <
koo

Ex |.o0 . -

B |x” - a| where g, 1s @ sequence of real numbers such that gy = 1,

g, = 2, and 8 T 81 T8, T 1 for k=3,4,...

Proof. Let us introduce the divided difference notation

k-1

k
k-1 k f - f
(L Ky - £ s
X - X
and
k-1

k k
1 X 1 - f[x ao::l
k-1
X

k k-1

flo,x ,x ] fLx

-
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Now Theorem 1.3 enables us to write

(3.1) f[xk'l,xk] = f'(gk)

where Ek lies between xkul and xk, and the identity,

£7(n)
2

k k-1

{(3.2) fla,x ,x 1=

with nk lying between xk_l, xk and o, can be found in Milpe-Thomson

[14]. Use the secant formula and the divided difference notation to

see that
K+l ok K LRt
X -a =¥ -a - f(x") X o1
flx) - £f(x 7))
_ .k f[xk_l,xk] - f[xk,a]
= (7 - a) kK k-1
flx ,x 7]
_ .k k-1 f[a,xk,xk"l]
= (x - a)(x - a) T
flx % ]_J
Then
I+ Kk k-1 £1(n%) ko k-l
X -al = |x° - al |x - «f | < M| x al = - af
2F1(87)

for k = 1,2,...
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Thus for k = 1,

E
x2 - al <M xl - Q x° - al < B 1 x0 - al.
| | < w| ||
gk o]
Now suppose |x - a| < B [x - al for k=2.,3,4,...,n, then
g g
|n+1_ |<M|Xn—0t||n-l—0.|SMGanO—dlﬁn_l|o—G
g tg__,tl g
< B n “n-1 |Xo _ | <8 n+l \ o ul

Jeaves [10] computes the convergence rate of the secant method

1+ V5
S——

5 , Which places it at a disadvantage when compared to Newton's

method. However because it requires fewer calculations per iteration,
the secant method often converges to a solution more quickly than does
Newton's methed.

It is important to notice that the secant algorithm can alsc be

characterized in the following way: At the kth step., solve the linear

system
(x) (k) _
al + a2 =1
a(k)f(xkhl) + a(k)f(xk) =0 for a(k) and a(k).
1 2 1 2
Then let xk+l = aik)xkul + aék)xk, and the iterates will be the same

as those produced by the earlier version of the secant method. With
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this in mind, Wolfe [23] generalizes the secant method in the one
dimensional case to higher dimensional spaces as follows.
-n

Let f(X) be a transformation frem R" into Rn, and §0,§l,...,x

s . . . - - n . .
be n+l initial approximatiocns in R” to & where & & R© is a solution of

£(x) = o.
Now let
£.GO) £GhH e £ G
1 1 1l
-0 -1 -n
f2(x ) fQ(X ) f2(x )
sl s
=0 -1 -n
fn(x ) fn(x ) fn(x )
J-l l “« s l
a = [a »21 5 .,an]T and, b = [o,...,o,l]T e R™.
Solve
Aa = b to get
a = ElE if A is non-singular, which shows that a is
the n+l st column of A™T.
_ n -3
Notice that a satisfies Z aif.(x Y = o for §=1,2,...,n and
i=o ]
n
z a. = 1
[ i
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Now the n+l st iterate is defined to be

I uith ™ where "f(§j)" z "f(gL)” for i=o,...,n and repeat

Replace X
the process. Now if Wolfe's method is slightly altered, a type of
quadratic convergence can readily be shown. The alteration only
changes the wvector tc be replaced by the new iterate. Instead of let-
ting the new iterate §n+l replace whichever of the previous n+l
iterates had the largest functional value In norm, let ik replace
;k—(n+l).

This is used to establish a definite pattern in the compu-

tations.

Theorem 3.3 Let f: R™5R"™. Then if
(i) f£"(x) and [f'(ﬁ)]_l exist for % ¢ S(a,p) where a is a
solution of f(x}) = o and p > o,

(ii) the ai's described above remain bounded so that
"eo
”aif (X)”

> <b for i=o,...,n in all iterations for x e S(a,0),

(iii) ik e 8(a,p) for k=o0,1,... and
(iv) (n+l) bp = 98 < 1,
the iterates computed by the modified Wolfe's method converge to a.
Proof. First note that there is no loss of generality in
assuming that f'(a) = I providing that f'(a) is nonsingular. If

f'(ﬁ) 7 I, let g(x) f‘(a)_lf(Q). Then g'(a) = I, and the algorithm

can be applied to g since any root of g will also be a root of f.
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Using Taylor's theorem on f gives

f(§n+l = £f1(a)[x -ntl aj + __B(€n+l —n+laa,£n+l_&).
If we observe that
-n+l - n E— -
fria)lx -al= 7§ aif’(u)[xl - &)
i=o
and
S@E - a1 = £ - LaEt R D)
for iso,l,...,n,
then

-n+l v ~i, 1 _.zi =i - i -
flx )= ) a. (F(x7) - §-B(€ ZX =0 ,x ~a))
i=o
+ % B(En+ln—n+lga’§n+lf&)

I
N~

a, (- +B(ELE-a,% )

. 2
i=o
+ %‘ B(€n+l ,>—(n+l_& ,)—{]’H‘l__&}
However f'(a) = I, shows that f(xn+l) = [£n+l al + —-B(£n+l
n
x“+l—a,£“+l—&) Thus since [§n+l"&] = - z [—fB(E X —u)]

we have



n ”a.f”(éi)” . n .
ntl - i o2 . —
Faai- I e S TS LR T
1=C 1=0
< (n+1)bp? = 8p

Continuing in this manner gives the following results:

" §n+2

- af

IA

n+l .
b Z ”Ql - &”2 = ban + b82p2 = pr(n+62) < Bp
i=1

12273 _ 3| < poZ(n-1 + 26%) < 8

1A

bp2(n+l 82) = Gsp

A

| -l

3

1%2™2 - & < bp?(ne? + 6% < 6%

1A

bo2((n+1)6%) = 870

1A

-3n+l -
| - d|

So the bound on the error is Skp where § < 1 and k 1s initially
equal to one but then more than doubles after each cycle of n+l
iterations.

We will now describe ancther zlgorithm, based on the secant

u3

method, which is alsc designed to avoid the time consuming job of com-

puting the derivative at each iteration. Due to Barnes [1], this

method is claimed to be of particular value when a good approximation

to the root and to the Jacobian matrix can be found. Indeed the
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process first requires an initial guess of the solution and first
derivative, It then proceeds toc use as few functional evaluations as
possible to correct the Jacobian matrix at each iteration. Barnes
comments that in practice his method seems to be more reliable than
Wolfe's secant method. To describe this method let X be the initial
approximation to the root, J° be the approximation to the Jacobian
matrix at EO, and fk the value of T at §k for k=0,1,... Compute 50
from 0%° = -£°, and then let X' = x° + p°. Notice that if J° is the
Jacobian matrix at ;o, this first iterate is identical to the first

iterate of Newton's methed.

Let us choose the next approximate Jacobian matrix, Jl, so that

(3.3) 1= 0 4+ gl5°
. 1 o o o . . .
Then if J = J + D where D is the correction matrix, we want
f‘L = £° + (JD+DO)EO to be satisfied, or equivalently,
(3.4) £t = po°
o fl_OT -0 n
A solution to (3.4) is D~ = ? where z is an element of R to be
-0 -0
Z p

chosen later.

The general iterative scheme for Barnes' method is

Ek - _(Jk)—lfk
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= + ol
T

K fk+l£k

D = T
-k~ -k
Z P

SAE T LI for k=0,1,2,...
— -l- .
Note from (3.4) that kak = fk l. Since Jk+l = Jk + Dk, we see that

Jk+lak _ Jkak + Dkgk - fk+l _ fk_

-k .
Now the z 's are chosen to be orthogonal te the correction

vectors to the solution. Thus if k > n, Ek is chosen orthogonal to

-k-nt -k~ . . sk
pk o l,...,pk l} (previous n-1 steps}, or if k < n, then zk is chosen

-k -1
&

{
-0 . - ~k .

orthogonal to {p ,...,s }. Yor simplicity, choose z  to be the linear

combinaticn of the previous k-1 or n-1 correction vectors which is

orthogonal to the appropriate elements mentioned above. If the z 's

are also taken tc be unit vectors, they can be fermed using the Gram

Schmidt process.

Thus

D pj = — = p~ =0 for 1l<i-j<n.

Hence J1+l 5] = [J]+l + D]+1 + ...+ Dljﬁj = J]+l 5] for

l<i-j<n, and so
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kskoi | pOei4l) k-1

fk_i+l - fk_i = Gfk_i for i<k,c<i<n.

Therefore for k > n, we have
“k-n -k-n+ - - -n+ -
T ARSI e B P P T ks SR Yo B

Now it may be of benefit to show how §k+l where k > n can be expressed

in terms of the previcus n + 1 iterates and their function values.

Since Gfk_l_l = Jkﬁk_l—l for o<i<n, we see that fk—l - Jka—l =

fk_l_l - Jkﬁk—l_l = L for o<i<n, where L is an nx1l matrix. Thus the

equation gl kil Jk[ik-l _gk-inl

] for ozi<n can be written as

(3.5) fk—l = Jkﬁk-l + L for o<i<n

Now if I is the 1 x (ntl) matrix with each element one, then (3.5) can

be rewritten as
F=JX+ LI

where

Fh?\"

1

ju
e

1

)

+

H
)

Mo

)

M

g
[:’H-k‘ LI
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xk—n Xk-n+l ... xf—

1 1 1
X=1: : :
k-n k-n+1l k

X x OIIX
LD n 0|

Then F, = J%X + L.,I for i=1,...,nt1l when F., J%, L. denote the ith
i i i i i i

rows of the respective matrices, or equivalently

s
1

k X
o,

The transpose gives

kT
T T.T4|J
Py o= O[T ]| =s
L
So by Cramer's Rule
T (T det[2-]
detlx"|F.] F,
1 1
L, =
1

det[XT|IT] det[%ﬂ

This gives L in terms of the n + 1 previous vectors and their function

values. Now §k+l - ik = —[Jk]_lfk. So

;Ek‘i'l - }-{']( _ [:Jk]—lfk
= (X7 - £9

- —[Jk]_lL,

which shows how §k+l can be expressed as a function of the previcus
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iterates and their functional wvalues. A convergence procof for this

method can be found in Barnes [1], page 6€9.

Broyden's Methed

The idea of approximating the inverse of the Jacobian matrix
and then "improving" it at each iteration is also incorporated by
Broyden [3,4] in his papers on quasi-Newton methods. The approximate
Jacobian matrices of this method, {Bk}, satisfy a particular property
to be deseribed later of the true Jacobian matrix. In addition, the
improvement of Bk at each iteration 1s developed in a manner designed
to minimize the number of calculations required.

Broyden's method is used, as is Newton's method, to solve
f(X) = o where f is a differentiable function from R" into Rn, and the
algorithms of the two methods are very similar. For this new method
let B° and x° be initial approximations to the Jacobilan matrix and the
roct of £, respectively. Then calculate the improvement vector, Ek,

at the kth step by 5k = ~ka(§k) where Hk is the inverse of Bk, and
k+1 -k k-k

compure the k+lst iterate using the formula x = x + tp for
k=1,2,... where tk ¢ RT isg designed to assist the convergence of the
iterates.

k . .
The t 's are to be chosen in the following manner. Once a

. : . -k . k .
direction of improvement, p , has been obtained from -H fk, the function

at the new iterate fk+l = f(;ck + tak) can be treated as a function of -.

Now tK should be chosen to either minimize the norm of fKTl or v
simply reduce the norm of £ 5o that "f(§k+tk5k)" < kaﬂ, The mini-

mization procedure gives the greatest improvement in the solutiun burt
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may require an excessive number of calculatlions. On the other hand,
the norm reduction strategy normally requires fewer calculations but
may not provide as good an immediate improvement in the solutiomn.
Broyden states that hls experiments suggest that the norm reduction
method consumes less computer time and is therefore more desirable.
It is also of interest to note that this technique can be used
cccasionally with the regular Newton's method to induce convergence
in an ordinarily divergent system.

Unfortunately the convergence of the iterates is not guaranteed
in this algerithm. However the norms of the functional values of the
iterates form a non-increasing sequence, and in practice this is often
encugh for ccnvergence.

Let us now discuss the appearance of the Bk's. Recall that at
the kth step

-k+1 -k -k k
X .

{3.8) = x + tp for t = t

Let g(t) = ﬁk + tEk so that F(t) = f(g(t)) = f(;ck + tSk). Then taking

the derivative according to Theorem 1.4, we have

(3.7) Fr(t) = £'(g(tNg'(t) = £'(g(x))p" .

Now to approximate F'(t), expand T about tk using Taylor's tnecrsn to

show

P(FeXy = PR - SFE )« (B,
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1
where Sk € R 1is to be chosen later and &k lies between tk - sk and

Sk. Ignoring the errcor term in the Taylor expansion glves
SkF'(tk) z F(tk) - F(tk~5k), and from (3.7) we have

k+1

s e ee)5®] = r(ef) - PRy = e - e

ATy

This is the property that the approximate Jacobian matrix will be

. . + .
required to satisfy. Thus Bk 1 will be chosen so that

k k+lk k

(3.8) I Ul ] U C L ST

In choosing sk, several considerations should be kept in mind. In
order for the above approximations to be valid, the second and higher
order terms of Tayleor's expansion must be negligible,and so |Sk|
should be as small as possible. On the other hand, Isk\ must be
large enough so that no appreciable round off error creeps into the

computation of the right-hand side of (3.8). Now in order to avoid

extra calculations sk will be related to the tk already chosen. If

the first trial value of t was used as tk, then let sk = tk in which
case f(§ + (tk—sk)pk) = f(x Y. Thus Bk+l is required to satisfy

+ - . .
tk[ k+ls k] = f{ k+1) - f(xk), and no extra functional evaluations are

needed. However if f(>_<k + tSk) was evaluated at more than one value of

ute

t, let t be the closest such value to tk. Now if \tk\ < |tk—t"1,

. k . k k i
again let sk = t . Otherwise let s =t -t so that

k k k -k
P

- - L. + .
(" + (t -5 )p ) = f(xk + t pk). Now Bk . must satisfy
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(tk—t“)[Bk+lEk] = f(§k+l) - f(ﬁk + thﬁk), and again no new functional

evaluations are required.

1

For cenvenience, let [Bk]—l = Hk and yk = f(§k+ ) -

k k ki-k

F(x  + (t -s ) ), then (3.8) can be written as

k+1-k k-k
H v =s8p.

(3.9)

Definition 3.2 An algorithm for finding a roct of a differentiable

function f£: R'+R" which requires an initizl estimate of bhoth the rcot
and the Jaccbian matrix of f, and which produces its iterates by the
formula §k+l = ik + tkﬁk with Ek = —kak and Hk+l satisfying

Hk+l§K = skﬁk as described above is defined to be a quasi-Newton method.

In order for such an algorithm to be well defined, each Bk must
be nonsingular so that Hk can be computed, and Iskl must be small encugh
so that the Taylor approximation is valid. Broyden comments that as x
apprecaches the rcot of £, Taylor's approximation deoes improve, and in

his numerical experiments, quadratic convergence is often approached.

Theorem 3.4 If the iterates {Qk} of a quasi-Newton method lie within a

neighborhood N of a, a solution of f(x) = ¢, where f'"(x) is bounded in N

then lim"[Hk+l

ko0

—“ktl
X

- £'( )_l]§k“ = o,

Proof. By Taylor's theorem, we have

-k+1 k-k -k+1 -k+1 -k 1 - k-k k-k
£ - &9 = f(xk‘r ) - f'(xk+ )[skp 1+ gBEEk,s o .8 p 1.
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since 7° = £(x°TY) - £FX 4 (5-5)5F) = =& - 2@ - 5G9, we
see that §k = f'(§k+l)[sk5k] B[Ek,skpk,skpk] Then we can solve for
k-k
5 0 .

k -k -k+ -k k-k

s p = F'(x l) l[yk + l-B[E ,sko »s p 11,
But s%F = Hk+1§k so that

+1~ ~k+1l,-1.~
(3.10) A 1 A i SR I - - L N

Now because the iterates {Qk} converge, lim skEk = 0, and applying this
koo
to (3.10) we have

lim”[Hk+l - £ k+l) -1 kn - 0.

Ko

Let us now show that the improvement in the inverse of the

approximate Jacoblan matrix can actuzlly be calculated from the

requirement that Hk+l§k = k oK where y = f(§k+l) - f(i + (tk—sk) k)

If Dk is the improvement matrix at the kth step, then we have

TUREIEET S

Thus Hk+l§k = Hk§k + Dk§k where Hk+l§k = skﬁk, so that

T T
One such solution for Dk is Dk = [skEk - Hk§k]5k where Ek must



satisfy EkTik = 1. A more general solution would be

(3.11) Dk - [SkgkjikT ) Hk§k£kT

where akT§k = EkT§k = 1. Thus we would calculate E° using the
formula

o1 I L

As a particular case of the general solution, let

p Hy

which gives

T
[Hk§k + skak]Ek Hk

T
-k k-k
p Hy

This particular solution alsc arises in another quite natural way.

Recall that the condition Bk+l must satisfy is

~ — k -k = X k.- ke k+1-k
P 27+ 55 - 2E (=K = S E TR

This relates the change in f(x) to the change in x in the directiom

Sk. Since there 1s no information available about changes in any

53



. - +1- - -
directicn other than pk, let Bk lqk = quk whenever ¢

this in mind, solve (3.8) for Bk+l

k+l _ ok v _Blspo 1o
(3.13) B a3 7

I
to
+

-k k. k-k._-k

y -Blspe 1l
T T

-k~ k-k

p- (s 1

T

P

0.

With
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+ . .
Now to solve for Hk l, use Householder's formula which states that if

A and A + §§T are nonsingular where §,§ € Rn, then

B I |
(a+xy )t =t A D R
1+ y A X
k k. k-k
Applying this to (3.13) with A = B, % = Z ’TB [so ]
X k-k
e [s7p]

shows that

ST [Hk]_l[skﬁki]akTHk

, and §T

]

T
gL o g _ o [skpk] B
- -1 k-k
B 8 e o
T
Ek [skgk]

_J

=P

_kT
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ke k -k —kT k

k-
K [y +sp lp H
= H -
T T T
- k- ~ -k -k'. k-k
7SR + 6" Hky -p [se]
K kekgk ok
K [Hky +sp o H
= H - T
-k* k-k
p Hy
ST 4T e
Another particular methed is given by z° = -q = YT s SO

=k -k

that vy

k-k k=k -kT
LS R [so + Hy ly
- B T
-k =k
vy y

Again this method can be derived another way. Since nothing is given
T

about Hk+;§k when v §k = 0, let Hk+l§k = Hka in such a case. With
this in mind sclve (3.9) for Hk+1
K-k | kkok
k+1 _ Hk (sp” + Hy ly
H = -
—kT—k
y oy

However Broyden remarks that this method has proven to be unsatisfactory

in practice.

4T —kTHk
A third method suggested is to let =z = yT and let
-k k-k
T H
%7 o k+1
-q = pT . Thus the formula for H is
-k -k
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T
k-k,-k
_Lsele

T Kk kT ok
y Hy Py

T
i Hk;k;k Hk

+ . . .
Clearly Hk . is symmetric whenever Hk is symmetric.
Note that in each of the above three methods we were able to

. +L ., o s -
define Hk . in terms of quantities which had already been calculated.

Freudenstein and Roth's Method

Another major drawback to Newton's method is the necessity of
guessing an initial approximation near enough to the true solution.
A poor initial estimate of the solution may create a divergent seguence
of iterates. In actual practice, the complexity of the function often
precludes the choosing of a "good" initial estimate. One procedure
which may prevent divergence was discussed in the description of

Broyden's method. Let Ek = -ka(ik) where Hk = J(Qk)_l and then cal-

culate the next iterate, §k+l, frem the formula §k+l = §k + tkﬁk where
t is chosen so that the norm of f(§k+l) 15 either minimized or less
than the norm of f(ik). Although the convergence of such a sequence
has net been mathematically guaranteed, in practice this norm reduction
procedure will occasionally provide convergence when the cordinary
Newton's method does not.

Ireudenstein and Roth [7] have another method which they have
experimented with chiefly using second and third degree polynomia.s

and have found to be guite useful. This method, which they call thz

parameter-perturbation procedure, makes excellent use of the technizue
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of permitting the root of one equation to be the first approximation
to the root of a similar equation.

If f(x) = 0 is t%e equation to solve, suppose that each fi can

i
be written as f.(x) = Z (x) for i=1,...,n where the a., are
i o Ak %k ik
real numbers and the ¢ik are functiogs of x. MNow consider a recernd sat
it
of equations of the form ggo)(i) = z EE)¢ k(X) for i=1,2, »T
k=1
where a solution to g( )(x) = [g(o)( ), (O)(i)] = 0 is known. We

will now change g(o) into f by a finite number of successive small

changes in the coefficients of the ¢ik S
m.

(]) ~ (]) (j) (o) (o)
If g.° " (x)= Z q4; (x) where 43 ik +(aik_q1k ) 2 T for
k=0 () "o - I :
i=1,...,n and 3=1,...,N, then g xX) = [g (x)y...,8 (x )] = £(x).
Now use the known root of g(O)(i) as the initial approximation for

(1)

Newton's method to a solution of g (%) = 0. Compute the solution to

g(l)

(x) = 0 and use it as the initial approximation in Newton's method
(2

)

to sclve g (x) = 0. Continue in this way until a solution of

(N)(x) = f(x) is obtained. If the changes in the coefficients of the

¢ik’s are '"'small enough'", the initial approximations from one step to
the next will be good enocugh for convergence. Actually a more general

(o)

algorithm than this can be obtained. Let f(x) and g (%) be functions

{o)

of any form where a sclution of g (x) = § is known, then define a

sequence of functions by

e P = 00 ¢ o - G for 351,00

Now proceed as before.
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(1) (3-1)
ik T Yk

0f course, g need not be equal for all j=1,...,N
as described, but rather these step sizes may be varied in any desired
manner. For instance if a step size is too large for convergence, it
may be halved or quartered or whatever is necessary for the previcus
root to lie within the radius of convergence of Newton's method for
the next equation. Thus each step may require several smaller steps
to implement it. In fact the optimal step size way not be known in
advance, and so the method may have tc be continually modified as i1t
proceeds. Ancther preoblem that may arise with this procedure is that

the Jaceobian matrix may wvanish. At the jth step, if the determinant

cf the Jacobian matrix falls below scme predetermined level, change

(1)

the increments of each S individually so that the value of the

determinant 1s lncreased above the set value and then reintroduce the
regular variaticn.

The usefulness of the parameter-perturbation procedure can be

seen 1n the follcowing example. Let f(x) = E:;-for x-0., This function
b

has a root at x = 3 and takes on its maximum value of %E-at X =6
On the interval (6,#), the function decreases and approaches zerc

: . o
asymptoticaliy. Thus for x~ = 7, Newton's method produces a sejuence
of iterates which increases without bound and thus diverges. However
: . . (c) _ .2 .
if we employ the parameter-perturbation procedure with g = ¥ and

n = 3, we will arrive at the solution x = 3. The dsta are summarized

in the fo:ilowing tabie and graph.



g c B 23 Py - ij—+ 28 | 60 = £
3ax 3x
X" = %0 = 1 x° = 1.34
x' = 3.5 xt = 1.25 X' = 1.82
X2 = 1.76 x2 = 1.34 x2 = 2.33
x3 = 1.05 x3 = 2.76
xi+ = x4 = 2.97
x5 = 3.00
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