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Abstract 

The world meat market demands competitiveness and optimal livestock replacement decisions can 

help to achieve this goal. We introduce a novel discrete stochastic dynamic programming 

framework to support a manager’s decision-making process of whether to sell or keep fattening 

animals in the beef sector. In particular, our proposal uses a non-convex value function, combining 

both economic and biological variables, and involving uncertainty with regard to price fluctuations. 

Our methodology is very general, so practitioners can apply it in different regions around the world. 

We illustrate the model’s convenience with an empirical application, finding that our methodology 

generates better results than actions based on empirical experience. 
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1. Introduction 

 

We introduce a discrete stochastic dynamic programming framework suited to supporting optimal 

livestock replacement decisions. Specifically, we propose a stochastic non-convex value function, 

which implicitly depends on a profit function that involves economic and biological variables, and 

incorporates selling price uncertainty. The main motivation in establishing this methodology is the 

scarce literature regarding formal procedures to address an important issue in beef production, 

namely optimal livestock replacement decisions (Frasier & Pfeiffer, 1994), this being one of the 

most important factors affecting farm profitability (Kalantari, Mehbarani-Yeganeh, Moradi, 
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Sanders, and De Vries, 2010). Unfortunately, many livestock decisions are not based on economic 

or financial data, but on cattlemen’s intuition (Glen, 1987; Takahashi, Caldeira, & Peres, 1997).    

Livestock should be replaced when performance deteriorates. Performance is affected by age, 

production, costs, prices, and conditions of nature, among other aspects. Evaluating the optimal 

factors in replacing a productive asset such as livestock involves understanding the sequential nature 

of replacement decisions (Glen, 1987), the biological and economic factors that affect these 

decisions, and the uncertainty that affects future selling price realizations. Stochastic dynamic 

programming is an excellent technique that accommodates all these issues and it is therefore 

surprising that it has been little used for evaluating livestock replacement despite the considerable 

potential of its application.  

Literature on optimal livestock actions can be divided into research focusing on optimizing 

fattening strategies, research looking for an economic basis on which to determine optimal policies, 

and studies aiming to define the optimal fattening/replacement time. For optimizing fattening 

strategies, Meyer and Newett (1970) proposed a deterministic methodology, based on a dynamic 

programming structure, to define the optimal food ration and selling time that would maximize 

profits for any type of cattle. Apland (1985) and García, Rodríguez, and Ruiz (1998) used linear 

programming to describe the impact on a herd’s productivity of interest rates and diet, respectively. 

Looking for an economic basis to determine optimal policies, Bentley, Waters, and Shumway 

(1976) used an expression to calculate the net expected revenue for specific periods of time using 

prices and costs, including probabilistic uncertainty concerning the asset’s productivity due to 

mortality or infertility. Randela (2003) proposed a method to compute the average total value of an 

adult cow, which could be understood as the opportunity cost for replacing an animal, allowing 

farmers to determine the impact of mortality.  

Different methodologies have been used to define optimal times for livestock replacement. 

Clark and Kumar (1978) proposed a deterministic dynamic programming model to define the 

optimal time for selling and buying beef cattle using prices and live weight, both variables 

depending on time and breed. Muftuoglu, Escan, and Toprak (1980) and Göncü and Özkütük (2008) 

employed least squares analysis to find the optimum culling age and weight. Frasier and Pfeiffer 

(1994) exploited a Markovian decision analysis with dynamic programming to find the optimal 

replacement time for cattle breeding according to nutritional path. Takahashi et al. (1997) presented 

a new optimization method based on dynamic programming to establish the optimal policy for herd 
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shaping. Arnade and Jones (2003) used seemingly unrelated regression (SUR) together with 

dynamic programming to establish the cattle cycle. Kalantari et al. (2010) used stochastic dynamic 

programming to define the optimal replacement policy for dairy herds using milk production, parity, 

and pregnancy status as state variables to solve the problem. Yerturk, Kaplan, and Avci (2011) 

developed an analysis of variance (ANOVA) to describe fattening performance.  

Cattle raising is an old economic activity, disseminated worldwide, which consists of animal 

handling for productive purposes such as milk and beef production. As meat has been considered the 

main source of protein for human nutrition (FAO, 2012a), the livestock sector plays an important 

role in many economies in terms of producing food supplies, and generating employment and 

investment in different segments of the beef industry value chain (Ramírez, 2013; Randela, 2003). 

However, the world beef industry has grown at decreasing rates in the last few decades (FAO, 

2012a; Schroeder & Graff, 2000). Researchers hypothesize about the restructuring of global meat 

consumption patterns (Galvis, 2000). In fact, net returns for beef cattle feeding have been volatile 

since the mid-1970s (Hertzler, 1988), and a significant decay in sales and loss of the meat market 

share to poultry and pork has been demonstrated (Katz & Boland, 2000). Nowadays, the world’s 

meat consumption configuration is 42% pork, 35% poultry, and 23% cattle (FAO, 2012b).  

The worldwide beef market suffers many pitfalls. First, supply fluctuations, volatility in prices 

(Glen, 1987; Kalantari et al., 2010), and foodborne illnesses attributed to red meat (Katz & Boland, 

2000) have meant that consumers’ preferences have shifted to other meat types (Galvis, 2000).  

Second, there is a separation between production and processing processes in contrast to substitute 

industries that are strongly integrated (Katz & Boland, 2000). In particular, asymmetry in the supply 

chain (Lafaurie, 2011), lack of coordination between production and commercialization (Schroeder 

& Graff, 2000), and poor vertical integration (Galvis, 2000) are crucial factors that must be 

addressed in the beef sector.  

Third, cattlemen avoid changes necessary to improve competitiveness due to rigidity in 

regulations (Katz & Boland, 2000), input prices, cost structures, volatile selling prices, and poor 

economic incentives (Kalantari et al., 2010). All these factors reduce their capacity to develop 

technical changes to increase efficiency (Galvis, 2000). In addition, it is clear that the industry’s 

dependence on natural conditions, the influence of climate change, interdependence with other 

human activities, and increasing requirements to become a global competitor, as well as health 

requirements for the exportation of meat (Takahashi et al., 1997), demand a strong reorientation to 
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achieve competitiveness (Crespi & Sexton, 2005), improve the flow of information (Schroeder & 

Graff, 2000), valorize whilst taking into account value-generating factors (Scoones, 1992) and 

increase productivity. 

In this dynamic and challenging competitive environment, proposing methodological 

approaches that can help to improve the performance of the beef sector is a valuable contribution 

from an economic and financial perspective.  

The paper is organized as follows: Section 2 presents the theoretical framework, including our 

methodological proposal. Section 3 sets out an empirical application with its results. Section 4 

provides concluding remarks and future research paths.  

 

2. Theoretical Framework 

 

Dynamic programming is a versatile optimization method developed by Bellman (1957), which uses 

the principle of optimality to reduce the number of calculations required to determine the optimal 

decision path (Kirk, 1970). Bellman’s principle of optimality postulates that: 

“An optimal policy has the property that whatever the initial state and initial decision are, the 

remaining decisions must constitute an optimal policy with regard to the state resulting from 

the first decision.” (Bellman, 1957, p. 83) 

The principle of optimality applies to problems characterized by an optimal substructure, that is, 

when a problem’s solution can be defined as a function of optimal solutions to minimize the size of 

sub-problems or problems with overlapping sub-problems, so the same problem is solved several 

times when a recursive solution arises. The idea behind the method is to find a functional form for 

each problem through the principle of optimality, thereby establishing a recurrence that generates an 

algorithm solving the problem. The recursive expression essentially converts a -period problem 

into a two-period problem with the appropriate rewriting of the objective function. This expression 

is known as the value function and the mapping from the state to actions is summarized in the policy 

function. 

For the purposes of the dynamic programming problem, it does not matter how the decision 

sequence was taken from the initial period; all that is important is that agents are rational and act 

optimally in each period of time (Guerequeta & Vallecillo, 1998). Indeed, the state variables 

summarize all the information from the past that is required to make a decision. The main features 
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of the dynamic programming method are its versatility in modeling both continuous and discrete 

variables, and its capability to introduce uncertainty; this is the only general approach for sequential 

optimization under randomness (Bertsekas, 2005). As the livestock replacement problem can be 

represented as a multi-stage decision process involving uncertainty (Frasier & Pfeiffer, 1994), 

dynamic programming is a natural modeling tool for solving it (Glen, 1987).  

Because complexities in finding a closed form solution are common in dynamic programming 

problems, numerical methods such as the value function iteration procedure, the policy function 

iteration method, and projection methods are used to solve them. The value function iteration 

procedure starts from Bellman’s equation and computes the value function by iterations on an initial 

guess; albeit slower than methods that operate on the policy function rather than the value function, 

it is trustworthy as it has been proved that under certain conditions – a continuous, bounded real-

valued payoff and a continuous, compact non-empty constraint – there is a unique value function 

that solves the problem. Thus, the solution of the Bellman equation can be reached by iterating the 

value function starting from an arbitrary initial value (Adda & Cooper, 2003; Stokey & Lucas, 

1989). 

To compute the value function using this procedure, we must define functional forms and 

discretize state variables. In the case of stochastic dynamic programming problems, the formulation 

of which includes expected values for the future, we can approximate an order one autoregressive 

random shock, which comes from a continuous distribution, to a discrete Markov chain using the 

technique presented by Tauchen (1986). This method simplifies computation of expected values in 

the value function iteration framework and has the advantage that we can discretize before 

implementing the numerical method, avoiding the calculation of a cumbersome integral in each 

iteration. 

 

2.1. Formulation of the model 

Determining the optimal selling time for livestock is a basic problem that farmers face. We define 

this as the time at which farm managers maximize the net expected present value of financial profits 

associated with livestock management, Π , , where the state variables are , the animal’s 

weight (kilograms), and , the price per kilogram (US dollars).  

Specifically, at each point in time, the agent chooses whether to sell or to wait another period. 

Given that this problem fits within the family of problems called optimal stopping problems (Chow, 
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Robbins & Sigmund, 1971), we can describe it as a dynamic stochastic discrete choice problem, 

which can be expressed as a two-period problem using Bellman’s equation.  

Formally, let ,  represent the value function of having an animal in state , . We can 

express this as the maximum value between keeping the animal and selling it, and thus:  

, max , , ,  (1) 

where, ,  and ,  represent the value functions of keeping and selling the animal in 

state , , respectively.  

This problem has a non-convex value function, which is common in economic applications but 

is unusual in dynamic programming applications given the complexity of introducing it in the 

dynamic programming framework. 

We define  as the probability of death, . |  as the expected value function conditioned 

by the information available in period , and Π .  as the present value of profit from selling the 

animal. Then, the value of keeping the animal is the expected value function of the next period 

conditioned on the available information at time , multiplied by the survival probability. The value 

of selling the animal is the present value of the profit. Thus: 

, 1 , |  (2) 

, Π ,  (3) 

The net present value of profit at time  is the present value of income, discounted at rate , minus 

the initial inversion made when the producer bought the animal at 0, and the present value of 

the costs per kilogram earned in each keeping period. Hence: 

Π , ̃  (4) 

where 1  and  ̃ is the average cost per kilogram. 

Let  represent the age of the cattle;  is implicitly a control variable as it maintains a straight 

relation with the state variable weight, , and the real control variable, which is the time an investor 

should keep the animal.  

We assume that the weight of the cattle, , is a function of the age and a Gaussian stochastic 

perturbation. We also introduce square age to gather the concavity in weight evolution. Empirical 

evidence suggests that animals gain more weight when they are calves.  
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In addition, we model price per kilogram, , as the product between two components. The first 

component is the expected price conditioned on the weight. The second component (  is an 

autoregressive Gaussian process; this represents changes around the expected price. Modeling prices 

in a multiplicative form, rather than an additive form, simplifies the interpretation and analysis of 

price shocks. For instance, 1	implies a neutral situation. We introduce these shocks because 

prices are a source of uncertainty that affects business profitability.   

The functional forms that define the state variables  and  are:  

 (5) 

̅ |  (6) 

̅  (7) 

1  (8) 

where, ∼ 0, ,			 ∼ 0, , and ∼ 0, . 

 

3. Empirical Application 

 

3.1. Estimation 

To apply our methodological approach, we estimate equation (5) using 24 representative fattening 

cattle that were weighed at different ages since they were weaned at the age of 10 months. This 

dataset comes from an extensive cattle farm, providing a sample size of 162 observations, meaning 

that the farmer weighed each animal approximately seven times. Also, we found that farm managers 

sold these animals at a weight of 440 kg on average. In addition, we use average weight and market 

prices between October 2010 and May 2013 to estimate equations (7) and (8).  

Table 1 shows the estimation results of equation (5). The coefficients have the expected signs, 

gathering the concavity in age (we show the regression diagnostics in Appendix 1). Figure 1 shows 

the relation between age and weight for the representative animal; as we can see, weight increases at 

a declining rate. 
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 Table 1. Parameter estimates: age versus weight 

Weight  
Observations 162 

 0.681 
Parameter Value Standard errora 

 26.43*** 0.878 
 -0.34*** 0.046 

***Significant at the 0.01 level 
a. Robust standard errors 

 

 

Fig. 1 Average relation between age and weight 

 
We obtain the parameters of price in two phases: in the first stage, we estimate equation (7); then, 

we calculate 	using equation (6) to estimate an autoregressive model with drift (equation (8)). 

Table 2 displays the estimation results. The coefficients are significant at the 0.05 level and 

correspond to those expected based on theory (we show the regression diagnostics in Appendix 1).  

Figure 2 exhibits the price prediction conditioned on weight. As we can see, the price per 

kilogram decreases at decreasing rates: as the animal weighs more, the marginal value for gaining a 

kilogram is lower; that is, the relative price of a kilogram is higher when the animal is younger. 
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Table 2. Parameter estimates: price equations (US$/kg) 

Price ̅ |  
First stage  

̅
Observations 180 

 0.250 
Parameter Value Standard errora 

 1.7799*** 0.0514 
 -0.0014*** 0.0003 
 1.32 10 *** 4.35 10  

Second stage  

̅ |
1  

Observations 95 
 0.122 

Parameter Value Standard errora 
b 1.002*** 0.007 
 0.354*** 0.099 

***Significant at the 0.01 level 
a. Robust standard errors 
b. Do not reject the null hypothesis of 1 at the 0.05 level 

     
 

 

Fig. 2 Average relation between price and weight  

 

We set the mortality rate at 2%, which is consistent with empirical evidence for the livestock sector 

in the region (FEDEGAN, 2006). The average cost per kilogram of cattle weight in this farm is 

US$0.5. The monthly interest rate is equal to 1%, corresponding to an annual interest rate of 12.7%, 

which is the average annual interest rate for a credit loan in the country. 
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3.2.Dynamic programming 

We must use a numerical technique to approximate the solution because the problem presented in 

section 2.1 does not have a closed solution. This is a valid mechanism as the problem fulfills the 

conditions to ensure that the value function can be achieved by iteration (that is, the operator	 , 

mapping from a guess concerning the value function to another value function, is contracting 

mapping). Therefore, we implement the value function iteration procedure to compute the value 

function from an initial guess. To solve the dynamic problem using the value function iteration 

method, we follow four steps: first, the specification of functional forms; second, the discretization 

of both control and state variables; third, the computation of iterations and definition of tolerance 

parameters; finally, the evaluation of the value and the policy functions.  

We performed the first step in section 2.1, in which we specified all the functional forms, 

including the payoff functions for selling and keeping the animal. To complete the second step, we 

discretize the control variable age  into 36 points, with each point representing a month; thus, the 

time horizon is set over three years, which is the maximum time that animals stay on the farm in our 

study case. Taking the age discretization, we can discretize the weight and expected price through 

equations (5) and (7). As the multiplicative random shocks of the price come from a continuous 

distribution that follows a Gaussian autoregressive process of order one with parameters ( , , , 

we implement Tauchen’s (1986) procedure to avoid the calculation of an integral for the expected 

value function in each iteration. This method approximates an autoregressive process of order one 

using a Markov chain to create a discrete state space of the shock process, discretizing it into  

optimal points and defining the transition matrix |  by calculating the 

transition probabilities between points. Therefore the Markov chain mimics the autoregressive 

process (Adda & Cooper, 2003; Tauchen, 1986; Tauchen & Hussey, 1991). We show the pseudo-

code in Appendix 2.  

We use the parameters given in section 3.2 to run the code. In addition, we discretize age and 

price shocks into 36 and 500 points, respectively. Simulation exercises show that the autoregressive 

process is well approximated and that 500 points are sufficient to reach an equilibrium point in the 

resulting value function. The method takes 21 iterations to converge to the value function , which 

we present in Figure 3.  
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Fig. 3 Value function 

Figure 4 presents the selling and keeping value functions 	and . In panel (a) we can see that 

when the animal weighs less, that is, when it is younger, the selling function is lower, even negative, 

meaning that farm managers should wait another period to sell. On the other hand, when there is a 

positive price shock ( 1), the farmer should sell. We observe in panel (b) the keeping value 

function. In particular, we observe that when the animal is younger, the keeping value function is 

higher, so the farmer should wait to sell. 

(a) Selling value function 

 

(b) Keeping value function 

Fig. 4 Selling and keeping value functions 

The policy function defines whether the farmer should sell or wait at time  according to the cattle 

weight and selling price features. Specifically, the policy function takes the value one if the selling 

value function is higher than the keeping value function. Figure 5 shows the policy function, from 
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which we deduce that the investor should wait for a positive price shock and a weight of around 300 

kg. However, if the animal weighs more than 500 kg, it is not necessary to wait for a favorable price 

shock to sell. 

The value function is formed by blending both selling and keeping value functions, taking the 

maximum of these at each point of the grid; that is, the value function represents the potential 

farmer’s profit for each configuration of the state variables. However, it is important not to interpret 

the value function as present value cash profits as there are some configurations of the state 

variables for which the value function denotes the expected profits of waiting another period. The 

policy function allows us to determine where the value function actually displays selling profits. 

Figure 6 displays the net present value of the farmer’s profit, that is, the value function of selling 

cattle.  

 

Fig. 5 Policy function 

 

Fig. 6 Value function if the animal is sold 
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Variable  is an unknown price shock that investors cannot predict, so for the decision-making 

process managers will always expect that shocks take the value of one, which is the mean or neutral 

situation. Table 3 summarizes the maximum value for each function when 1. It is remarkable 

that the maximum found for the value function equals the maximum of the keeping value function 

although the maximum in the selling function is lower. This is explained by the fact that prices have 

a stochastic component and the calculation when the animal is younger generates expected values 

that are slightly higher than the real values once the animal gains weight. 

In addition, we can see in this table that the present value of cash profits (US$238.98) is lower 

than the maximum obtained in other functions. This happens because the configuration that 

generates the highest value in the selling value function produces a higher value in the keeping value 

function. Thus, it is better for the owner to wait another period in the hope of a positive price shock 

in the future, which will represent higher profits, but risking a negative price shock, which 

represents lower profits.  

To summarize, a neutral price situation would imply that managers should sell animals with a 

weight of 497.6 kg. This generates the maximum attainable present value of profit per animal, i.e., 

US$238.98. 

 

Table 3. Maximum values and variable configuration: neutral price situation 

Function 
Maximum Value 

(US$) 

Variable Configuration 
Age  

(Months) 
Weight  

(Kg) 
Price  
(US$) 

Selling -   241.64 29 480.53 1.44 
Keeping -  295.29 12 268.20 1.51 
Value –  295.29 12 268.20 1.51 
Value* 238.98 32 497.60 1.44 

                     *Value function if the animal is sold 

 

As stated above, farm managers sell animals weighing 440 kg in our study case. In a neutral price 

scenario, this weight represents a net present value of US$235. This is close to the optimal strategy 

proposed in our framework (US$238.98), although we obtain a 1.7% higher net return using our 

proposal.  
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Let us analyze this 1.7% net return excess: It takes 32 months to achieve an animal weighing 

497.6 kg, while it takes 24.4 months to have an animal weighing 440 kg, that is, there is a difference 

of 7.6 months. This implies an annual net return excess equal to 2.69% ( 1 1.70% / . ). The 

total factor productivity growth for last few years in the entire economy and the agricultural sector 

has been estimated at 1.4% and 1.1%, respectively (DNP, 2011). Thus, we find that our 

methodological approach can generate significant improvements in competitiveness. 

Stochastic discrete problems, such as the one that we present, have the feature that a threshold 

function, representing the point at which the decision of whether to sell or not is indifferent, can be 

computed. In the model, we can define the threshold ∗ as the price at which the choice to sell or 

keep the animal is indifferent. Thus, if ∗, the policy function  takes the value of one, that is, 

the investor should sell.  

We can calculate the threshold by equating  and , and solving for ∗ the following: 

, ,  

Π , 1 , |  

̃ 1 , |  

∗ 1 , | ∑ ̃
 (9) 

Figure 7 depicts the price threshold in a neutral situation. If the price is higher than the threshold 

given a weight , the investor should sell. For instance, if the price is higher than US$2.1 per kg for 

fattening animals that weigh 250 kg, the farm manager should sell those animals.  

 

Fig. 7 Price threshold 

Sell

Wait



15 
 

 

Finally, an important feature of the dynamic programming framework is its facility to simulate 

models using the policy function to determine the optimal choice for each period. Furthermore, 

when we can describe the problem as a stochastic discrete model, simulations are simplified as the 

policy function is mapped using the threshold function. As a consequence, we can use simulations to 

describe multiple agents’ behavior and the market’s configuration patterns through time.  

To perform model simulations representing a stock of  animals, we have to define a price 

shock for each animal at each point in time simulating the  autoregressive process. Then, we can 

calculate the selling price at each point in time by multiplying the shock and the expected price at 

that point. Thus, if the price is higher than the threshold, farm managers should sell animals of that 

specific weight. We use this framework to find the percentage of cattle at age  in the herd that 

farm managers should sell in a rational environment. Appendix 3 shows the pseudo-code.  

Figure 8 illustrates our simulation exercise using a herd composed of 10,000	animals. We 

observe in this figure the percentage of sales according to weight. For example, our model predicts 

that in a rational market, 12% of the animals that weigh 351 kg or 30% of the animals that weigh 

417 kg are sold at market. In addition, we observe that farm managers should sell 100% of the cattle 

weighing more than 510 kg. Finally, a clear consequence of our framework is that farm managers 

should sell 50% of the livestock weighing 497.6 kg. 

 

Fig. 8 Simulated sales according to age 
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4. Conclusions 

 

We introduce a flexible stochastic dynamic program that allows the investor to support decisions 

concerning the best time to sell fattening cattle. Our proposal contains both economic and biological 

variables, and involves uncertainty derived from future price realizations. This dynamic program 

makes it possible to find the optimal time by comparing financial outcomes rather than other 

biological or technical measurements that are common in the literature; our approach makes it easier 

to interpret the results as financial profit is a classic figure that investors use to evaluate investments. 

In addition, our proposal allows us to perform different simulation exercises to identify livestock life 

cycles in the market.  

Our methodological approach is very general, so practitioners can use it in different regions by 

using appropriated parameter estimates. Moreover, its economic and financial foundations, as well 

as its mathematical, statistical, and computational framework, can be used as a basis to model other 

economic sectors.  

We find in our study case that although common sense and empirical experience are priceless 

assets, techniques based on scientific principles can help to improve the level of competitiveness of 

the livestock sector. 

Future work lies in improving our estimation strategy. In particular, we would like to estimate 

our model using the structure of our stochastic dynamic program. However, we require an excellent 

micro dataset, as well as a macro dataset, to achieve this objective. Unfortunately, we have not yet 

found such a resource. 
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Appendix 1. Statistical tests 

 

 Equation 
Jarque–Bera 

Normality Test 

White’s 
Heteroskedasticity 

Test 

Weight  
1.1 

(0.578)* 
3.77 

(0.012) 

Price 

First component: 
̅  

320.74 
(0.00) 

3.51 
(0.0319) 

Stochastic component: 

̅ |
1  

17.20 
(0.00) 

0.69 
(0.504)* 

a. * Do not reject null hypothesis 
b. p-value appears in parenthesis 
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Appendix 2. Pseudo-code for the value function iteration method applied to the optimal selling time 

problem. 

 

optimalSellingTime() 
 Define animal information 
 Read , ,	t 

 ←  
 Define parameters 
 Read ,  ,  ̃ 
 ← 1  
 Initialize , , , , , , ,  
 Discretize Variables 
 Discretize AR ← Tauchen procedure(N, , ) 
 Save probability transition matrix  
 Discretize Age  ← : 1: 36 
 ←  
 ← 1  
 ̅| ←  
 ← ̅|  
 Iterate Value Function 
 Define maxIter, tol 
 for 1	 	 1 
  for 1	 	  
   ←  
   Initialize , ← ,  
  end for 
 end for 
 for 1	 	maxIter 

for 1	 	 1 
   for 1	 	  
    ←  
                                                               1  
    ← ̃                        

 ← ∑  
    ← ,  

      , ← 1 , : 1, :  
   ← max ,  
  end for 
 end for 

error ← max / ; 
  if error  tol then break else  ← 	end if  
 end for  
 Calculate Policy Function 
 Policy function ←  
end optimalSellingTime 
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Appendix 3. Pseudo-code for simulating sales behavior applied to the optimal selling time problem. 

 

Simulations() 
 Define information  
 Define number of periods  
 Read threshold function given 1  
 Read expected price  

 Define parameters  
 Initialize number of simulations   
 Initialize AR Parameters , ,   
 Simulate AR 
 Define Burn-in iterations   
  ← generate shocks ∼ 0,  
 Initialize 1, : ← 1 1, :  
 for 2:  
  for 1	 	  
   , ← 1 1, ,  
  end for 
 end for 
 Drop  first simulations of  
 Simulate agent’s behavior 
 for 1:  
  for 1	 	  
   , ← ,  
   if  , → , 1 else , 0  end if 
    if  , 1 → , 1 else , 0  end if 
   if  1 
       if  1, 1 → , 1 end if 
   end if  
  end for 
 end for 
end Simulations 
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