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Abstract: This paper presents a second order sliding mode observer for flux and load in
induction motors. It is based on a block-wise representation of the motor model in αβ frame and
second order sliding mode algorithms. The block structure provides a straightforward form to the
application of uniform second order sliding mode algorithms, yielding to finite-time convergence
with a predetermined settling time independent on initial conditions. The cases of single-phase,
three-phase and linear induction motors are studied. Finally, numerical simulations show the
efficiency and feasibility of the proposal.

Keywords: Induction Motors, Non-linear Estimation, Second-Order Sliding Mode Algorithms,
Fixed Time Stability

1. INTRODUCTION

The aim of this paper is to present a Sliding Mode (SM)
observer for the estimation of flux and mechanical load
in Induction Motors (IM), due the difficulty of its direct
measurement Kanellakopoulos et al. (1992). The SM meth-
ods are applied with the idea to drive the dynamics of a
system to a sliding manifold that is an integral manifold
with finite reaching time Drakunov and Utkin (1992), this
approach exhibits very interesting and desirable features
such as the work with reduced observation error dynamics,
the possibility to decompose the design problem into two
sub problems of the reduced order, the robustness of the
closed - loop system in presence of parameter variations
and external disturbances and, finite-time stability Utkin
et al. (2009). Therefore, SM algorithms can be considered
as an effective solution to the problem of observers design
for nonlinear systems Walcott et al. (1987), specially when
finite-time convergence of the observed states to the real
ones is required. Most of the proposed SM observers use
the equivalent control method Utkin (1972) to obtain in-
formation of the system by means of continuous equivalent
values of the discontinuous observer inputs in SM motion
Drakunov (1992). With this idea, several designs have been
proposed as the cascade observers Krasnova et al. (2001)
for nonlinear systems presented in so-called block form
Loukianov (1998). Moreover, the continuous High Order
SM (HOSM) algorithms Levant (1993) allow to obtain
a better approximation of the equivalent control value
without filtering, see for example the second order SM
observer in Floquet and Barbot (2007) and an SM observer

? This project was supported by the National Council on Science
and Technology (CONACYT), Mexico (under grant, 129591).

in Bejarano and Fridman (2010) where the estimation of
unknown inputs problem has been considered.

For electrical drives, specially induction motors, the SM
algorithms have been successfully applied to design state
observers Bartolini et al. (2003), Rubio et al. (2011) and
fault tolerant schemes Djeghali et al. (2011). All the
mentioned systems exhibit finite-time convergence to the
equilibrium, however, the settling time of the observer
convergence depends on initial conditions. Therefore, an
interesting feature for a SM observer is related with the
possibility to predefine a determined convergence time
independently on initial conditions. This characteristic was
introduced for observer design in Cruz-Zavala et al. (2010)
by means of the concept of uniform finite time stability
and, it has been applied to controller design in Polyakov
(2012) under the concept of fixed time stability.

In this work, a SM observer design problem for an induc-
tion motors with the time independent to the initial con-
ditions convergence, is considered. To solve this problem,
uniform second order sliding mode algorithms Cruz-Zavala
et al. (2010) are applied to estimate the rotor flux and
mechanical load. The observer structure is based on the
representation of induction motors including single-phase,
three-phase and linear ones in the αβ stationary reference
frame. In this case, it is possible to present in the block
form which consists of two blocks: the first one is composed
by the measured variables and, the second one is related
with the variables to be observed. This block form allows
a simple implementation of the SM algorithms.
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The effectiveness the proposed observer is demonstrated
by means of numerical simulation, showing a good perfor-
mance of this proposal.

This paper is organized as follows: Section 2 introduces the
structured model of the IM in αβ. Section 3 describes the
proposed observer, including the convergence analysis. The
simulations are presented in Section 4. Finally, in Section
5 the conclusions are given.

2. MATHEMATICAL STRUCTURE OF THE
INDUCTION MOTORS IN αβ FRAME

In this Section, we describe the structure of a model that
represents different types of induction motors as: three-
phase, single-phase and three-phase with linear motion.
This model can be described by equations for the stator
current and rotor fluxes in stationary reference frame αβ
as follows:

dΘ

dt
= d1 (λαriβs − λβriαs)− d2Γ− d3Θ

dλαr
dt

= −η1λαr + η2Θλβr + η3iαs

dλβr
dt

= −η1λβr − η2Θλαr + η3iβs (1)

diαs
dt

= −η4iαs + η5λαr − η6Θλβr + η7vαs

diβs
dt

= −η8iβs + η9λβr + η10Θλαr + η11vβs

where λαr and λβr are the rotor magnetic-flux-linkage
components, respectively; iαs and iβs are the stator cur-
rent components, respectively, vαs and vβs are the voltage
of α and β axes in the stator, respectively.

2.1 Single-phase

For the case of single-phase induction motor in αβ frame
with permanent split capacitor, the voltages vαs and vβs
in (1) are of the form,

vαs = vs cos(ωt) (2)

vβs = n−1vαs − vc (3)

where the dynamics of the capacitor are governed by

dvc/dt = ω0Xciβs (4)

with Xc being capacitor reactance and ω0 = 2πf .

Furthermore the parameters are: η1 = Rr
Lr

, η2 = np,

η3 = RrLm
Lr

, η4 =
(
RαsL

2
r+RrL

2
m

L2
r

)(
Lr

LαsLr−L2
m

)
, η5 =(

RrLm
L2
r

)(
Lr

LαsLr−L2
m

)
, η6 = np

(
Lm
Lr

)(
Lr

LαsLr−L2
m

)
, η7 =(

Lr
LαsLr−L2

m

)
, η8 =

(
RβsL

2
r+RrL

2
m

L2
r

)(
Lr

LβsLr−L2
m

)
, η9 =(

RrLm
L2
r

)(
Lr

LβsLr−L2
m

)
, η10 = np

(
Lm
Lr

)(
Lr

LβsLr−L2
m

)
, η11 =(

Lr
LβsLr−L2

m

)
, d1 =

np
2Lm
LrJ

, d2 =
np
J , d3 = kd

J where Rαs ,

Rβs , Lαs and Lβs are the resistances and inductances of
the main and auxiliary stator windings, respectively. kd is
the viscous friction, Θ = ωr is the rotor speed, Γ = TL is
the load torque and J is the rotor moment of inertia.

2.2 Three-phase

For the three-phase induction motor in αβ frame, the
voltages are presented as:

vαs = vs
√

2 cos(ωt) (5)

vβs =−vs
√

2 sin(ωt). (6)

In the case the parameters are: η1 = Rr
(Lr+Lm) , η2 = np,

η3 = RrLm
(Lr+Lm) , η4 = Rs(Lr+Lm)2+RrLm

2

(Lr+Lm)2(Ls+Lm)−(Lr+Lm)Lm2 , η5 =

RrLm
(Lr+Lm)2(Ls+Lm)−(Lr+Lm)Lm2 , η6 =

Lmnp
(Lr+Lm)(Ls+Lm)−Lm2 ,

η7 = (Lr+Lm)
(Lr+Lm)(Ls+Lm)−Lm2 , η8 = η4, η9 = η5, η10 = η6,

η11 = η7, d1 = 3
2

npLm
J(Lr−Lm) , d2 = 1

J , d3 = kd
J where Rs

and Ls are the resistance and inductance of the stator,
respectively. kd is the viscous friction, Θ = ωr is the rotor
speed and Γ = TL is the load torque and J is the rotor
moment of inertia.

2.3 Three-phase Linear

For the three-phase linear induction motor in αβ frame,
the voltages are presented of the form

vαs = vs sin(ωt) (7)

vβs =−vs sin(ωt). (8)

Thus, in this case, the parameters are: η1 = Rr
Lr

, η2 =

np
(
π
τ

)
, η3 = RrLm

Lr
, η4 = Rs(

Ls2Lr−LsLm2

LsLr

)+
1−
(
LsLr−Lm2

LsLr

)
(
LsLr−Lm2

LsLr

)
Rr
Lr

,

η5 = LmRr(
LsLr−Lm2

LsLr

)
LsLr2

, η6 = np
(
π
τ

)
Lm(

LsLr−Lm2

LsLr

)
LsLr

,

η7 = 1(
LsLr−Lm2

LsLr

)
Ls

, η8 = η4, η9 = η5, η10 = η6, η11 = η7,

d1 =
3npπLm
2LrτM

, d2 = 1
M , d3 = D

M where Rs and Ls are
the resistance and inductance of the stator, respectively.
τ is the pole pitch, M is the total mass of the moving
element, D is viscous friction, Θ = υ is the linear velocity
and Γ = FL is the external force.

It can be noted that for all models in αβ frame, the
meaning of some parameters are the same as: Rr and Lr
are the rotor resistance and inductance, respectively, Lm
is the magnetization inductance, np is the number of pair
of poles.

3. UNIFORM OBSERVER FOR INDUCTION
MOTORS

3.1 Observer Design

For the observer design, the availability of continuous
measurements of motor speed and currents is assumed. In
addition the mechanic load Γ is considered as an unknown
and slowly-varying perturbation to be estimated, that is
Γ̇ = 0. Thus, the system (1) can be written in the following
block-wise form:

ẋ1 = B1(x1)x2 + f1(x1, u)

ẋ2 = B2(x1)x2 + f2(x1) (9)

y = x1
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where x = [x1 x2]T and, the blocks are x1 = [Θ iαs iβs]
T

and, x2 = [λαr λβr Γ]T , with u = [vαs vβs]
T . Here

B1(x1) =

[
d1iβs d1iαs −d2
η5 −η6Θ 0
η10Θ η9 0

]
, f1(x1, u) =

[ −d3Θ
η7vαs − η4iαs

η10Θ

]
,

B2(x1) =

[ −η1 η2Θ 0
−η2Θ −η1 0

0 0 0

]
and, f2(x1) =

[
η3iαs
η3iβs

0

]
.

Based on the system (9), the following observer is proposed
in order to provide a uniform finite estimation of the state
x:

˙̂x1 = B1(x1)x̂2 + f1(x1, u) +M1φ1(x̃1)

˙̂x2 = B2(x1)x̂2 + f2(x1) +B−1
1 (x1)M2φ2(x̃1) (10)

where x̂1 and x̂2 are the estimates of x1 and x2, respec-
tively and, the observer errors are given by x̃1 = x̂1 − x1
and x̃2 = x̂2−x2. The observer inputs φ1(x̃1), and φ2(x̃1)
are defined as

φ1(x̃i) =µ1|x̃1|
1
2 sign (x̃1) + µ2|x̃1|

3
2 sign (x̃1) (11)

φ2(x̃1) =
µ2
1

2
sign (x̃1) + 2µ2

2x̃1 +
3

2
µ1µ2|x̃1|2sign (x̃1)

with µ1 ≥ 0, µ2 ≥ 0 scalars, M1 = diag (m1,1,m1,2,m1,3)
and M2 = diag (m2,1,m2,2,m2,3) are two 3 × 3 diagonal
matrices with positive entries that are the gains of the

observer. The function (•)
1
2 is extended to the form ξ

1
2 =(

ξ
1
2
1 , . . . , ξ

1
2
ni

)
for the expression |x̃i|

1
2 , a similar definition

for (•)
3
2 must be understood, and in the expressions of

the form |x̃i|psign (x̃i) the product is element to element,
B−1

1 (x1) is the inverse of the matrix B1(x1) and is given by

B−1
1 (x1) =


0

η9
η6η10Θ2 + η5η9

η6Θ

η6η10Θ2 + η5η9

0 − η10Θ

η6η10Θ2 + η5η9

η5
η6η10Θ2 + η5η9

− 1

d2

d1 (η9iβs + η10iαsΘ)

d2 (η6η10Θ2 + η5η9)
− d1 (η5iαs − η6iβsΘ)

d2 (η6η10Θ2 + η5η9)

 .

3.2 Convergence Analysis

To analyze the observer convergence, consider the dynam-
ics of the errors x̃1 and x̃2. From (9) and (10) it follows

˙̃x1 = B1(x1)x̃2 −M1φ1(x̃1)

˙̃x2 = B2(x1)x̃2 −B−1
1 (x1)M2φ2(x̃1). (12)

Defining q = B1(x1)x̃2, the system (12) is transformed to

˙̃x1 = q +M1φ1(x̃1)

q̇ = B(x1)q +M2φ2(x̃1) (13)

where B(x1) =
[
Ḃ1(x1) +B1(x1)B2(x1)

]
B−1

1 (x1).

The equation (13) is in the form of the so-called generalized
super-twisting Cruz-Zavala et al. (2010). Hence, with a
suitable choice of the matrices M1 and M2, the system
(12) with (11) is globally uniformly finite time stable.

4. SIMULATION RESULTS

This section shows numerical simulations results of the
proposed observer for each case of induction motor. For
the simulation purpose for all cases, the initial conditions

of the state variables of the observer are selected equal to
one. The tracking signals are the flux and the load torque
these is introduced as step form.

4.1 Single Phase Induction Motor

For Single-phase induction motor the parameter are pre-
sented as Krause P. C. (2002):

Single-Phase

H.P. 0.25 Vs 110 (V )

f 60 (Hz) np 2

n = NA
NB

1.18 Rαs 2.02 (Ω)

Rβs 5.13 (Ω) Rr 4.12 (Ω)

Lαs 0.1846(H) Lβs 0.1833 (H)

Lr 0.1828 (H) Lm 0.1772 (H)

J 0.0146 (Kgm2) kd 0 (kgm2/s)

Imax 15 (A) Crun 35 µf

µ1 1 µ2 1

m11 640 m12 640

m13 630 m21 64000

m22 64000 m23 155.5

0 1 2 3 4 5
−1

−0.5
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0.5

1

0 0.05
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Fig. 1. Error of rotor flux λ̃αr and λ̃βr of SPIM.
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Fig. 2. Load torque estimated T̂L and error of load torque
T̃L of SPIM.
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4.2 Three Phase Induction Motor

For three-phase induction motor the parameter are pre-
sented as Krause P. C. (2002):

Three-phase

H.P. 3 Vs 220 (V )

f 60 (Hz) np 2

Rs 0.435 (Ω) Rr 0.816 (Ω)

Ls 0.0020(H) Lr 0.0020 (H)

Lm 0.0693 (H) M 2.78 (kg)

J 0.0089 ((Kgm2) kd 0 (kgm2/s)

Imax 18 (A)

µ1 1 µ2 1

m11 640 m12 640

m13 357.25 m21 64000

m22 64000 m23 1.5

0 1 2 3 4 5
−1

−0.5

0

0.5

1

0 0.05
−1

−0.5

0

0.5

1

0 1 2 3 4 5
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Fig. 3. Error of rotor flux λ̃αr and λ̃βr of TIM.
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Fig. 4. Load torque estimated T̂L and error of load torque
T̃L of TIM.

4.3 Three-Phase Linear Induction Motor

For three-phase linear induction motor the parameter are
presented as Boldea and Nasar (1997):

Three-phase linear

H.P. 4 Vs 180 (V )

f 60 (Hz) np 2

Rs 5.3685 (Ω) Rr 3.5315 (Ω)

Ls 0.02846(H) Lr 0.02846 (H)

Lm 0.02419 (H) M 2.78 (kg)

D 36.0455 (Kg/s) τ 0.027 (m)

Imax 14.2 (A)

µ1 1 µ2 1

m11 640 m12 640

m13 45 m21 64000

m22 64000 m23 20
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Fig. 5. Error of rotor flux λ̃αr and λ̃βr of TLIM.

0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

 

 

0 0.05 0.1
−2

−1

0

1

2

3

4

5

 

 

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.05 0.1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

T
L

T
L

est

T
L

a
n
d
T̂
L

T̃
L

Time [Sec] Time [Sec]

Fig. 6. Load torque estimated T̂L and error of load torque
T̃L of TLIM.

In Fig. 1, 3 and 5 the time evolutions of the rotor flux λ̃αr
and λ̃βr errors of induction motors are shown, while Fig.
2, 4 and 6 present the time evolution of the estimated load
torque T̂L and the load estimation error T̃L of induction
motors cases.
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Fig. 7. Convergence time of both observers by growing
initial condition norm.

The Figure 7 presents a comparison of the proposed ob-
server with another which uses the so-called super-twisting
Levant (1993) algorithm, that means fixing µ1 = 1 and
µ2 = 0 in (11). Here is highlighted that the convergence
time for the super-twisting grows unboundedly with the
norm of the initial condition, while the convergence time
of the uniform observer is asymptotically bounded by a
constant for growing initial condition’s norm.

5. CONCLUSIONS

In this work a uniform observer scheme based on the
model on the stationary frame αβ for induction motors
are proposed. The flux and load torque were estimated,
all of them are shown to give appreciable results in order
of convergence time to estimate the rotor flux and the load
torque.
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