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A Fixed Time Convergent Dynamical System to Solve Linear
Programming

Juan Diego Sánchez-Torres, Martin J. Loza-Lopez, Riemann Ruiz-Cruz, Edgar N. Sanchez
and Alexander G. Loukianov

Abstract— The aim of this paper is to present a new
dynamical system which solves linear programming. Its design
is considered as a sliding mode control problem, where its
structure is based on the Karush-Kuhn-Tucker optimality
conditions, and its multipliers are the control inputs to be
implemented by using fixed time stabilizing terms with vectorial
structure, based on the unit control, instead of common
terms used in other approaches. Thus, the main features of
the proposed system are the fixed convergence time to the
programming solution and the fixed parameters number despite
of the optimization problem dimension. That is, there is a
time independent to the initial conditions in which the system
converges to the solution and, the proposed structure can be
easily scaled from a small to a higher dimension problem.
The applicability of the proposed scheme is tested on real-time
optimization of an electrical Microgrid prototype.

I. INTRODUCTION

Optimization methods have been widely applied in science
and engineering. The optimization goal is to determine the
decision variables values, which maximize or minimize an
objective function, sometimes, subject to constraints. Some
of this problems are large-scale real-time linear programming
procedures. For such applications, sequential algorithms as
the classical simplex or the interior point methods are often
proposed. However, those traditional approaches may not be
efficient since the computing time required for a solution is
greatly dependent on the problem dimension and structure

The use of dynamical systems which can solve real-time
optimization was introduced in [1] and arises as a promising
alternative. A major contribution to this class of solutions
is the use of systems with motion on a sliding manifold,
as proposed in [2], that is an integral manifold with finite
reaching time [3], presented by some non-smooth systems,
providing finite time convergence to the problem solution.
Extensions of the mentioned schemes were presented for
linear programming [4]–[6] and for nonlinear programming
[7]. Some of them are finite time convergence approaches
[8]–[10] and fixed time convergence [11]. For most of the
cases, these systems are presented as the solution to a
controller design problem [12] (including the case of sliding
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{dsanchez, sanchez, louk}@gdl.cinvestav.mx,
martin.loza.lopez@gmail.com

Riemann Ruiz-Cruz is with ITESO University, Periferico Sur
Gomez Morin 8585, Tlaquepaque, Jalisco, México C.P. 45604,
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mode control [13]), in the form of circuits [14], [15] or under
the computational paradigm of the so-called artificial neural
networks where are known as recurrent neural networks [16].
Due to its inherent massive parallelism, those systems are
able to solve optimization problems in running time at the
orders of magnitude much faster than those of the most
popular optimization algorithms executed on general-purpose
digital computers [17], with unusual flexibility because the
system constantly seeks new solutions as the parameters of
the problem are varied [1].

Although the mentioned works exhibit high performance,
it is necessary to tune the network parameters such that the
optimizer trajectories converge to the optimization solution.
For most of the cases, the number of network parameters
increases linearly with the optimization problem dimension,
since for every decision variable there is an individual
selection of each activation function. In addition, the fixed
time characteristic is not presented in most of the mentioned
references. This last desirable property allows the design of
systems with a known and predefined convergence time.

In this paper, a dynamical system for the solution of
linear programming is proposed. Its design is considered as
a sliding mode control problem, where the network structure
is based on the Karush-Kuhn-Tucker (KKT) optimality
conditions [18], [19] and the KKT multipliers are regarded
as control inputs. At this point, a controller with vectorial
structure and fixed time stability is proposed. Its allows the
problem to be solved without the individual selection of each
stabilizing input, instead a multivariable function, based on
the unit control [20], [21], is used. On the other hand, the
fixed time stability [22], [23] ensures the existence of a time
independent to the initial conditions in which the system
converges. This controller is used to the KKT multiplier
design, enforcing a sliding mode in which the optimization
problem is solved.

Thus, the proposed approach have very attractive features
as: fixed time convergence to the optimization problem
solution and a fixed parameters number (four for this case),
regardless of the optimization problem dimension. Therefore,
it offers the scalability characteristic, that allows the on-line
solution of problems with low and higher dimension without
major changes of the system.

On the other hand, the Microgrids are a challenging
benchmark for control, optimization and instrumentation.
Several studies have been performed to Microgrids, some
interesting examples are [24], [25]. Therefore, as case study,
this proposal is applied to determine the optimal amounts



of power supplied by each energy source in a Microgrid
prototype. These grids present problems as the time
varying load demand and the non-conventional/renewable
sources availability, requiring to solve large-scale real-time
optimization procedures, most of them in the form of
linear programming. As mentioned above, in contrast to
the publications which use recurrent neural networks for
Microgrid optimization [26], [27], the proposed approach
provides fixed convergence time to the solution and the
tuning of only four network parameters.

In the following, Section II presents the mathematical
preliminaries and some useful definitions. Section III
describes the proposed system for the solution of
linear programming, including the stability analysis and
an academic example which illustrates the fixed time
convergence feature of the system. An application as the real-
time microgrid optimization results are presented in Section
IV. Finally, in Section V the conclusions are presented.

II. MATHEMATICAL PRELIMINARIES

Consider the system

ξ̇ = f(t, ξ) (1)

where ξ ∈ Rn and f : R+×Rn → Rn. If f is a discontinuous
(or non-smooth) function, (1) is understood in Filippov sense
[28].

Definition 1 (Globally fixed-time attraction [23]): Let a
non-empty set M ⊂ Rn. It is said to be globally fixed-time
attractive for the system (1) if any solution ξ(t, ξ0) of (1)
reaches M in some finite time moment t = T (ξ0) and the
settling-time function T (ξ0) : Rn → R+∪{0} is bounded by
some positive number Tmax, i.e. T (ξ0) ≤ Tmax for ξ0 ∈ Rn.

With the definition of a globally fixed-time attractive set,
the following lemma provides a Lyapunov characterization
of these sets on the state space

Lemma 1 (Lyapunov function [23]): If there exists a
continuous radially unbounded function

V : Rn → R+ ∪ {0}

such that V (ξ) = 0 for ξ ∈M and any solution ξ(t) satisfies

V̇ ≤ − (αV p(ξ(t)) + βV q(ξ(t)))
k

for α, β, p, q, k > 0 that pk < 1 and qk > 1, then the set
M is globally fixed-time attractive for the system (1) and
Tmax = 1

αk(1−pk) + 1
βk(qk−1) .

III. OPTIMIZER DESIGN

A. Preliminary Result

Before to present the fixed time optimizer, it will be
exposed a new class of fixed time stabilizer to be used in the
optimizing system design. For this, consider the equation

ξ̇ = φ(ξ, t) + u (2)

with ξ, u ∈ Rn and φ : R+×Rn → Rn. The main objective
is to drive the system (2) to the point ξ = 0 in a predefined
fixed time in spite of the unknown non-vanishing disturbance

φ(ξ, t). A solution to this problem which does not requires an
individual selection of each of the n control variables based
on the unit control is presented in the following theorem:

Theorem 1 (Fixed time multivariable control): Let the
function φ(ξ, t) to be bounded as ‖φ(ξ, t)‖ ≤ a + b ‖ξ‖c,
with a > 0, b ≥ 0, c ≥ 1 known constants. Then, by
selecting the control input

u = −a ξ

‖ξ‖
− bξ ‖ξ‖c−1 − k1

2

ξ

‖ξ‖2(1−p)
− k2

2
ξ ‖ξ‖2(q−1)

with k1 > 0, k2 > 0, 0 < p < 1 and q > 1 being scalars,
the system (2) is globally fixed-time stable with settling-time
Tmax = 1

k1(1−p) + 1
k2(q−1) .

Proof : Let the Lyapunov function V = ‖ξ‖2, its derivative
is given by V̇ = 2ξT ξ̇. Therefore

V̇ = 2ξTφ− 2a ‖ξ‖ − 2b ‖ξ‖c+1

− k1 ‖ξ‖2p − k2 ‖ξ‖2q

≤ 2 ‖ξ‖ ‖φ‖ − 2a ‖ξ‖ − 2b ‖ξ‖c+1

− k1 ‖ξ‖2p − k2 ‖ξ‖2q ,

(3)

that, by replacing the bound for φ, reduces to V̇ ≤
−k1 ‖ξ‖2p − k2 ‖ξ‖2q which is equivalent to

V̇ ≤ −k1V p − k2V q.

Finally, by direct application of Lemma 1 with k = 1, the
proof is finished. �

B. Fixed Time Solution of Linear Programming

Consider the linear programming problem
minx cTx

s.t Ax = b

l ≤ x ≤ h
(4)

where x =
[
x1 . . . xn

]T ∈ Rn are the decision
variables, c ∈ Rn is a cost vector, A is an m × n matrix
such that rank(A) = m and m ≤ n; b is a vector in Rm
and, l =

[
l1 . . . ln

]
, h =

[
h1 . . . hn

]
∈ Rn.

Let y =
[
y1 . . . ym

]T ∈ Rm and z =[
z1 . . . zn

]T ∈ Rn.
The Lagrangian of (4) is formed as

L (x, y, z) = cTx+ zTx+ yT (Ax− b) . (5)

The KKT conditions establishes that x∗ is a solution for
(4) if and only if x∗, y and z in (4)-(5) are such that

∇xL (x∗, y, z) = c + z + AT y = 0 (6)
Ax∗ − b = 0 (7)
zix
∗
i = 0 if li < x∗i < hi, ∀i = 1, . . . , n. (8)

Following the KKT approach, the solution for (4) is such
that x∗ ∈ Ω where Ω = int(Ωd ∩ Ωe) with

Ωe = {x ∈ Rn : Ax− b = 0}
Ωd = {x ∈ Rn : l ≤ x ≤ h} .

(9)



Then, y and z must be designed such that Ω is a fixed
time attractive set, fulfilling conditions (6)-(8).

In addition to condition (8), z is considered as{
zi ≥ 0 if xi ≥ hi
zi ≤ 0 if xi ≤ li

(10)

and the variable σ ∈ Rm is defined as σ = Ax− b. Hence,
with basis on Theorem 1 and considering the conditions (6)-
(10) a continuous fixed time solver for the problem (4) is
proposed in the following Lemma:

Lemma 2 (Fixed Time Solver for Linear Programming):
For the dynamical system

ẋ = −c + AT y + z (11)

with the variables y and z proposed as the multivariable
control inputs

y =φ (σ)

z =ϕ (x, l, h)
(12)

defined by

φ (σ) =


−‖(AAT )−1Ac‖σ

‖σ‖ − k1
2

‖(AAT )−1‖p1σ
‖σ‖2(1−p1)

−k22
∥∥(AAT )−1

∥∥q1 ‖σ‖2(q1−1) σ
if l ≤ x ≤ h

0 if x < l or x > h

(13)

and ϕ (x, l, h) =
[
ϕ1 (x, l1, h1) . . . ϕn (x, ln, hn)

]T
,

with ϕi (x, li, hi) of the form

ϕi (x, li, hi) =



−‖c‖(xi−li)
‖x−l‖ − k3

2
(xi−li)

‖x−l‖2(1−p2)

−k42 (xi − li) ‖x− l‖2(q2−1)

if xi ≤ li
0 if li < xi < hi

−‖c‖(xi−hi)
‖x−h‖ − k3

2
(xi−hi)

‖x−h‖2(1−p2)

−k42 (xi − hi) ‖x− h‖2(q2−1)

if xi ≥ hi

, (14)

and k1 > 0, k2 > 0, k3 > 0, k4 > 0, 0 < p1 < 1,
q1 > 1, 0 < p2 < 1 and q2 > 1 are scalars, the
point x∗ is globally fixed-time stable with the settling-time
Tmax = 1

k1(1−p1) + 1
k2(q1−1) + 1

k3(1−p2) + 1
k4(q2−1) .

Proof : In order to analyze the stability of the system (11)
closed by (13)-(14) to the set Ω defined in (9), the following
Lyapunov function is proposed:

V = σT (AAT )−1σ + xTx (15)

where it is highlighted the existence of (AAT )−1 due to A
is a full rank matrix.

The derivative of the Lyapunov function (15) along the
trajectories of system (11) is given by

V̇ = 2
(
−σT (AAT )−1Ac + σTφ (σ) + σT (AAT )−1×

Aϕ (x, l, h)− xT c + xTATφ (σ) + xTϕ (x, l, h)
)
.

From (13) and (14), V̇ can be written as

V̇ =

{
−σT (AAT )−1Ac + σTφ (σ) if l ≤ x ≤ h
−xT c + xTϕ (x, l, h) if x < l or x > h.

(16)

Thus, similarly to (3), it follows that

V̇ ≤


−k1

∥∥(AAT )−1
∥∥p1 ‖σ‖2p1 − k2 ∥∥(AAT )−1

∥∥q1 ‖σ‖2q1
if l ≤ x ≤ h
−k3 ‖x‖2p2 − k4 ‖x‖2q2 if x < l or x > h

which leads to

V̇ ≤

{
−k1V p1 − k2V q1 if l ≤ x ≤ h
−k3V p2 − k4V q2 if x < l or x > h.

By applying Lemma 1 with k = 1, the conditions (7) and
(8) are satisfied, guaranteeing fixed time convergence to the
set Ω. Now, by using the equivalent control method [21],
the solution of ẋ = 0 and σ̇ = 0 in (11) for t > Tmax has
the form c + AT {φ (σ)}eq + {ϕ (x, l, h)}eq = 0. Therefore,
the condition (6) is fulfilled, implying the point x∗ ∈ Ω is
globally fixed-time stable. �

Note that, in contrast to the common approaches presented
in the literature, this scheme only needs the tuning of four
gains in spite of the problem dimensions.

C. An Academic Example
Consider the linear programming problem [10]

minx 4x1 + x2 + 2x3

s.t. x1 − 2x2 + x3 = 2

−x1 + 2x2 + x3 = 1

−5 ≤ x1, x2, x3 ≤ 5.

(17)

In order to expose the performance of the proposed
algorithm, the settling-time is selected as Tmax = 2

3 seconds;
as usual, the p and q parameters are selected as p1 = p2 = 1

2
and q1 = q2 = 3

2 , respectively. Then, the gains for the
system (11) are calculated as: k1 = 15, k2 = 15, k3 = 10
and k4 = 10, fulfilling the Tmax design condition. The
results are shown in Fig. 1, displaying the obtained results
of 35 simulations where the initial conditions are randomly
selected within a range from −30 to 30.
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Fig. 1. Transient behavior of the x variables.

Here, it can be observed that the network converges to the
optimal solution x∗ = [−5,−2.75, 1.5] before the prescribed
settling-time.



IV. APPLICATION EXAMPLE: REAL TIME OPTIMIZATION
OF A MICROGRID LABORATORY PROTOTYPE

The algorithm previously presented is applied to a
Microgrid laboratory energy optimization problem solution.

A. Microgrid Prototype Description

The Microgrid prototype contains a wind power system,
directly connected to the utility grid, and a DC voltage bus,
which interconnects a solar power system, a battery bank
system and a load bank system. The Microgrid prototype
connection scheme is shown in Fig.2, and a properly picture
is displayed in Fig. 3. All these devices are developed by
Lab-Volt1.

Fig. 2. Microgrid prototype connection scheme.

Fig. 3. Microgrid prototype.

B. Optimization Statement

In order to optimize the Microgrid, the condition for every
device is presented as follows:

1Lab-Volt,675, rue du Carbon G2N 2K7 Quebec, Quebec Canada.

1) Wind Power System (WPS): WPS includes a doubly
fed induction generator (DFIG), and a dynamometer which
emulates the wind power. The generated power by this
system (PW ) is fixed to:

PW =


PWmin

St ≤ Smin
PM Smin ≤ St ≤ Smax
PWmax

St ≥ Smax
(18)

where St is the generator speed at time t, Smin is the
generator minimum allowed speed, Smax is the generator
maximum allowed speed and PM is the calculated WPS
power. For this test, Smin is set to 1840 rpm and Smax
is set to 2000 rpm for a safe dynamometer functionality.
Using these speed values, the minimum WPS power (PWmin

)
is equal to 0 watts and the maximum (PWmax

) is 240 watts.
2) Solar Power System : The solar power system (SPS)

is implemented by means of a two photovoltaic cells
workbench. SPS power contribution (PS) is bounded to:

PSmin
≤ PSt

≤ PSmax
(19)

where PSt
is the SPS power at time t, PSmin

is the minimum
power obtained from this device, in this case 0 watts, and
PSmax is the SPS maximum power, which for this module
is 1.2 watts.

3) Battery Bank System: The Microgrid surplus power is
stored in a battery bank system (BBS), which includes two
lead-acid batteries. BBS power (PB) must satisfy the next
constraints:

PBmin
≤ PBt

≤ PBmax
(20)

where PBt is the BBS power at time t, PBmin is the BBS
minimum allowed power and PBmax is the BBS maximum
allowed power. The BBS maximum and minimum power
are fixed in order to increase the batteries lifespan as long as
possible. For this purpose PBmin

is established as a 10% of
its full charge value and PBmax as a 60%. Therefore, if the
batteries have a power rate of 2.5 watts, PBmin and PBmax

are set to 0.25 watts and 1.5 watts respectively.
4) Utility Grid System: The Microgrid laboratory has a

junction point with the utility grid system all the time, as
shown in Fig.2.

The power consumption for this system (PG) is limited
to:

PGmin ≤ PGt
≤ PGmax

(21)

where PGt
is the utility power at time t, PGmin

is the
minimum allowed power consumption from the utility grid,
for this test is set to 0 watts, and PGmax is the utility
maximum allowed power. The utility grid can be considered
as an infinite power source; however, for this test PGmax

bound is set to 250 watts.

C. Proposed Optimizer

The main goal for this test is to optimize the power of the
Microgrid based on the previously bounded energy sources,
and the required output power of the load (PL).



The optimization problem, using the equations (18) to
(21), can be expressed as follows:

Minimize PG − PW − PS − PB
s.t. PG + PW + PS + PB = PL

PGmin
≤ PGt

≤ PGmax

PWmin
≤ PWt

≤ PWmax

PSmin ≤ PSt ≤ PSmax

PBmin ≤ PBt ≤ PBmax

(22)

In order to match the form of the equation (4), the
needed matrices are established as: cT = [2 − 1 −
1 − 1]T , x = [PG PW PS PB ]T , A = [1 1 1 1],
b = [PL], l = [PGmin

PWmin
PSmin

PBmin
] and h =

[PGmax PWmax PSmax PBmax ]. The gains for the algorithm
are set to: k1 = 1.5, k2 = 1.5, k3 = 20 and k4 = 20, with
the parameters p1 = p2 = 1

2 and q1 = q2 = 3
2 .

D. Real-Time Results

The presented optimization method uses the measured load
power as the vector b and the matrices defined in section
IV-B, to set the references for the interconnected systems in
real-time.

The given references for the SPS and BBS systems
are continuous values, however, these modules can only
be turned on or off to the Microgrid. For this reason a
power high limit for activation and a power low limit for
deactivation are established; i.e. if BBS power high limit is
overcome, this module is connected to the Microgrid or if
the power reference is lower than the power low limit, the
module is disconnected. WPS has an internal PI controller
to change the dynamometer speed and accomplish the power
reference set for this module.

In order to test the optimization method on the Microgrid
laboratory, at the beginning the prototype is left to stabilize
the power without and output load connected. At 30s a 145Ω
resistive load is connected to the DC voltage bus; then, at
60s and 90s, same value resistors in parallel configuration
are plugged-in. A fourth 19Ω load is connected at 120s; this
represents a high disturbance to the system. The loads are
disconnected in the same order to show the transient behavior
of the Microgrid, as Fig. 4 displays.
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Fig. 4. Load power and references sum.

In Fig. 5, the utility grid behavior is shown. It can be seen
that the real power is close to the PGmin which is set as 0
watts.
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Fig. 5. Utility grid power and utility grid power reference.

In Fig. 6, the WPS power and its reference is displayed. It
can be noted that this module approaches to its reference all
the time. Fig. 7 and Fig. 8 show how SPS and BBS modules
attend to reach their power references even though a related
controller for these modules has not been developed yet.
BBS tracking error is higher than SPS, because the power
contribution of this module depends on the state of charge
of the batteries.
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Fig. 6. Wind power and wind power reference.
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Fig. 7. Solar power and solar power reference.
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V. CONCLUSION

In this paper, a new dynamical system which solves
linear programming is presented. Its main features are fixed
convergence time and fixed parameter number despite the
problem dimension. In the simulation results it is shown the
independence from the initial conditions and the convergence
time. Furthermore, the method structure can be extended
from a small to a high dimension problem statement, without
a convergence time alteration. The optimization algorithm
is used to obtain the optimal solution for a Microgrid
laboratory energy distribution problem. The algorithm gives
the references to track for all the energy sources connected
to the prototype, minimizing the consumed power from the
utility grid. The presented results validate the optimization
method for a real-time application. As future work, the
proposed algorithm will be extend to solve other convex
optimization problems.
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