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Abstract—An observer-based controller for the single-phase
induction motor is proposed in this paper. The scheme presented
is formulated using block control feedback linearization technique
and high order sliding mode algorithms with measurements of
the rotor speed and stator currents. A second order sliding mode
observer is included into the controller design in order to obtain
estimates of the rotor flux. The stability of the complete closed-
loop system is analyzed in the presence of model uncertainty,
namely, rotor resistance variation and bounded time-varying load
torque.

I. I NTRODUCTION

This paper is aimed to present an observer-based controller
using high order sliding mode (HOSM) algorithms for
capacitor-run single-phase induction motor (SPIM). It is
well known the SPIM is widely used in many household
applications as compressors, pumps, air conditioning systems,
washer, refrigerators, and other equipment which require low
power motors [1]. Therefore, the design of control algorithms
which improve the SPIM performance is a relevant task.

An important class of solutions for this problem is the
observer-based controllers. For the SPIM case, it consistsof:
(i) a feedback controller for speed profile tracking and flux
magnitude regulation,(ii) a state observer to estimate the rotor
flux, and(iii) stability analysis of the whole system closed by
the designed observer-based feedback.

For the feedback controller case, several approaches have
been proposed for the induction motor control. For example,
a classical vector control with field orientation technique,
due to [2], the application of back-stepping [3], passivity-
based control [4], [5], input-output feedback linearization [6],
adaptive [7] and sliding mode (SM) [8]–[11] including neural
networks [12] and discrete controllers [13]. However, mostof
the mentioned proposals are for the three phase motor (TPIM).
The treatment of the SPIM control design problem is different
from the TPIM controller, since the SPIM despite of symmetric
TPIM has a basic control input which applies to the main
winding, and the auxiliary winding is affected by the switched
capacitor, it looks like a ”subactuated” system. Moreover,this
control input that depends on switching parameter which can
take just two values ”0” or ”1”.

In addition, most of the proposed methods assume the rotor
flux to be known. Hence, it is necessary the development of
a tool that allows the estimation of this variable. The estimate
is usually obtained from machine model and the measurement
of speed and stator voltage and current [14], [15]. Several flux
observers have been proposed using adaptive [16], [17] and

sliding mode (SM) [8], [18], [19]. The proposed observers
strategies guaranty robustness in the presence of plant model
uncertainty.

Usually, the stability analysis of the complete observer-
control system is carried by using the separation principle
proposed in [20]. However, this principle was developed for
a class of nonlinear minimum phase systems that can be
presented in the observer canonical form. The induction motor
case covers a different scenario and the applicability of the
observer-controller scheme described in [20] is questionable
and, by far not trivial. Thus, a more precise stability prooffor
the whole scheme is necessary.

In this paper, a robust observer-based controller design
for the capacitor-run SPIM in the presence of uncertainty is
considered. The proposed control scheme is based on the motor
dynamic model including the capacitor dynamics, describedin
a stationary reference frame(αβ) fixed in the stator. First, a
second-order SM observer based onequivalent control [21]
and a generalization [22] of thesuper-twisting algorithm [23]
is designed to estimate the rotor flux. With the measured stator
current and estimated rotor flux, the controller is proposedby
using a combination ofblock control feedback linearization
[24] and quasi-continuous SM algorithms [25] in order to
design a nested integral structure as [26], [27] but with exact
disturbance rejection, similar to the techniques presented in
[28], [29]. The super twisting algorithm for the basic control
input and switching logic for the auxiliary input is proposed
in order to ensure the design sliding manifold be a finite time
attractive. The closed-loop system exhibits the properties of
exponential tracking and robustness, allowing to overcome
the uncertainty due to the parameter variations and external
disturbances as the load torque.

In the following, Section II provides the considered model
of the SPIM. Sections III and IV describe the proposed
observer and controllers, including a detailed analysis of
stability and robustness. Simulation results which demonstrate
the main characteristics of the proposed controller, are
presented in Section VI. Finally, in Section VII the conclusions
are given.

II. M ATHEMATICAL MODEL FOR THESPIM

The dynamic model of the SPIM can be considered as the
model of an unsymmetrical2-phase(a, b) induction machine
in the variables of circuit elements. After the transformation
to a fixed frame(αβ) [30], the single phase induction motor
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scheme with the stator current and the rotor flux as the state
variables, is presented in Fig. 1.
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Fig. 1: Single phase induction motor.

and its dynamic equations are given by

diαs
dt

=− c1a10iαs + c1c40λαr − c1c3npωrλβr

+ c1vαs +∆αs

diβs
dt

=− c2a20iβs + c2c40λβr
+ c2c3npωrλαr

+ c2vβs +∆βs

dλαr
dt

=− a30λαr + npωrλβr + a40iαs +∆αr

dλβr
dt

=− npωrλαr − a30λβr + a40iβs +∆βr

dωr

dt
=d1d2 (λβriαs − λαriβs)− d2TL

(1)

where λαr and λβr are the rotor magnetic-flux-linkage,
iαs and iβs are the stator current,vαs and vβs are
the voltage of the main and auxiliary stator windings,
respectively,ωr is the rotor speed,np is the number of
pole pairs, TL is the load torque. This model considers
variations on rotor resistance of the formRr(t) = Rr0 +
∆Rr(t) where∆Rr(t) is an unknown but bounded function
of time, leading to a set of uncertain model parameters
a1(t) = a10 + ∆a1(t), a2(t) = a20 + ∆a2(t), a3(t) =
a30+∆a3(t), a4(t) = a40+∆a4(t) andc4(t) = c40+∆c4(t)

where a10 =
(

Rαs +Rr0
L2

m

L2
r

)

, a20 =
(

Rβs +Rr0
L2

m

L2
r

)

,

a30 = Rr0

Lr
, a40 = Rr0

Lr
Lm andc40 = Rr0

L2
r
Lm are the parameter

nominal values. The parametric uncertainties are presented
by ∆a1(t) = ∆a2(t) =

L2
m

L2
r
∆Rr(t), ∆a3(t) = 1

Lr
∆Rr(t),

∆a4(t) = Lm

Lr
∆Rr(t), and ∆c4(t) = Lm

L2
r
∆Rr(t). While

the model parameters which do not depend on the resistance
variations are given byc1 = Lr

LαsLr−L2
m

, c2 = Lr

LβsLr−L2
m

,

c3 = Lm

Lr
, d1 = np

Lm

Lr
andd2 = 1

J .

Thus, the unknown terms in (1) are defined by
∆αs = ∆c4(t)c1λαr − ∆a1(t)c1iαs, ∆βs = ∆c4(t)c2λβr −
∆a2(t)c2iβs, ∆αr = −∆a3(t)λαr + ∆a4(t)iαs, and∆βr =
−∆a3(t)λβr +∆a4(t)iβs.

The dynamics of the capacitor (see Fig.1) are given by

dvc
dt

= ω0Xciβs

whereXc is the capacitor reactance andω0 = 2πf , with f
being the fundamental frequency.

Using the relation between the voltagesvαs andvβs in (1)
of the form

vαs = vs

vβs = n−1vs − vcρ
(2)

where the switching parameterρ ∈ {0, 1}, the voltagevβs
yields to

vβs =

{

n−1vs − vc if ρ = 1

n−1vs if ρ = 0

being n−1vs as a referred voltage of the main winding to
the auxiliary winding withn = NA/NB, whereNA is the
number turns of main winding andNB is the number turns of
an auxiliary winding.

III. SECOND ORDER SLIDING MODE OBSERVER FOR
ROTOR FLUXES

Having the rotor speedωr and stator currentiαs, iβs
measurements only, in this section a second order SM observer
is designed to estimate the rotor flux.

Considering the transformation

λ∗αr = iαs + c1c3λαr , λ∗βr = iβs + c2c3λβr (3)

the flux and current dynamics (1) are represented in new
variables of the form
diαs
dt

= −ϑ11iαs + ϑ12λ
∗
αr − ϕ1ωrλ

∗
βr + c1vαs +∆αs

diβs
dt

= −ϑ21iβs + ϑ22λ
∗
βr + ϕ2ωrλ

∗
αr + c2vβs +∆βs

dλ∗αr
dt

= ς11iαs + ς12λ
∗
αr + c1vαs +∆αr

dλ∗βr
dt

= ς21iβs + ς22λ
∗
βr + c2vβs +∆βr

(4)

whereϑ11 = c1a1 +
c1
c4

, ϑ12 = ϑ22 = c4
c3

, ϑ21 = c2a2 +
c4
c3

,
ϕ1 = c1c3np, ϕ2 = c2c3np, ς11 = c1c3a4 − c1a1 − ς12,

ς21 = c2c3a4 − c2a1 − ς22, ς12 =
(

c1c4−c1c3a3

c1c3

)

and,

ς22 =
(

c2c4−c2c3a3

c2c3

)

. Here, the disturbances∆αs and ∆βs

are considered to be slow-varying, that isd∆αs

dt =
d∆βs

dt = 0.

Based on (4), and defininĝλ∗αr , λ̂∗βr, îαs, and îβs as the
estimates ofλ∗αr, λ∗βr, iαs, and iβs, respectively, an observer
based on the equivalent control method [21] is designed as

dîαs
dt

= −ϑ11iαs + ϑ12λ̂
∗
αr − ϕ1ωrλ̂

∗
βr + c1vαs + ∆̂αs

+ l11ρ1
(

ĩαs
)

+ V1

dîβs
dt

= −ϑ21iβs + ϑ22λ̂
∗
βr + ϕ2ωrλ̂

∗
αr + c2vβs + ∆̂βs

+ l21ρ1
(

ĩβs
)

+ V2

dλ̂∗αr
dt

= ς11iαs + ς12λ̂
∗
αr + c1vαs + l3V1

dλ̂∗βr
dt

= ς21iβs + ς22λ̂
∗
βr + c2vβs + l4V2

d∆̂αs

dt
= l5V1,

dV1
dt

= l12ρ2
(

ĩαs
)

d∆̂βs

dt
= l6V2,

dV2
dt

= l22ρ2
(

ĩβs
)

(5)
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where ĩαs = iαs − îαs, and ĩβs = iβs − îβs are the
estimation errors ofiαs, and iβs, respectively. Withρ1 (·) =

µ1|·|
1
2 sign(·) + µ2(·) + µ3|·|

3
2 sign(·), ρ2 (·) = 1

2µ
2
1sign(·) +

3
2µ1µ2|·|

1
2 sign(·) +

(

µ2
2 + 2µ1µ3

)

(·) + 5
2µ2µ3|·|

3
2 sign(·) +

3
2µ

2
3|·|2sign(·), lj > 0 for j = 1, . . . , 6 and, µi > 0 for

i = 1, 2, 3.

As a result, the rotor flux estimateŝλαr and λ̂βr are

obtained aŝλαr =
λ̂∗

αr−îαs

c1c3
and λ̂βr =

λ̂∗

βr−îβs

c2c3
.

IV. SLIDING MODE CONTROLLER DESIGN

Provided that the currents and speed are continuously
measured and the rotor fluxes are estimated, the objective here
is to design a SM controller which can effectively track the
desired speedωref and the module to the square of the rotor
flux φref reference signals by means of the continuous basic
controlvs and auxiliary controlρ as a discontinuous function.

A. Sliding Manifold Design

As first step, the state variablesx1 andx2 are defined as
x1 = [ ωr φ ]

T andx2 = [ iαs iβs ]
T , whereφ = |ψ|2 =

λ2αr + λ2βr. Thus, the system (1) can be represented in the
nonlinear block controllable form with disturbance [24]

dx1
dt

=f1 (φ) +B1 (λr)x2 +D1TL +∆r

dx2
dt

=f2 (ωr, λr, is) +B2u+∆s

(6)

where λr = [ λαr λβr ]
T , u = [ vαs vβs ]

T ,
f1 (φ) = [ f11 f12 ]

T
= [ 0 −2a30φ ]

T ,
D1 = [ −d2 0 ]

T , f2 = [ f21 f22 ]
T , ∆r =

[ 0 2∆αrλαr + 2∆βrλβr ]
T , ∆s = [ ∆αs ∆βs ]

T ,

B1 (λr) =

[

d1d2λβr −d1d2λαr
2a40λαr 2a40λβr

]

and, B2 =
[

c1 0

0 c2

]

, with f21 = −a10c1iαs + c1c40λαr − c1c3ωrλβr

andf22 = −a20c2iβs + c2c3ωrλαr + c2c40λβr.

Only the estimates of the rotor fluxes are available for the
control design. Hence, the estimated variablesφ̂ = λ̂2αr + λ̂

2
βr,

λ̂r = (λ̂αr , λ̂βr) and its errors̃φ = φ− φ̂, λ̃r = λr − λ̂r, are
defined.

Setting thecontroller-used error ẑ1 = [ z11 ẑ12 ]
T and

real tracking errorsz1 = [ z11 z12 ]
T , with z11 = ωr −

ωref (t), ẑ12 = φ̂ − φref (t) and, z12 = φ − φref (t) =

φ̂+φ̃−φref (t) = ẑ12+φ̃, the dynamics of the first transformed
block (6) become

dz1
dt

= f1(φ̂) +B1(λ̂r)x2 + Φ̃ + ∆̄1 (7)

where Φ̃ =
[

0 dφ̃
dt

]T

and ∆̄1 = D1TL + ∆r +
[

dωref (t)
dt

dφref (t)
dt

]T

.

To stabilize the dynamics forz1, x2 can be selected as a
stabilizing term in form of a virtual controller. Therefore, the

desired value forx2 is defined asx2des=
[

ides
αs ides

βs

]T
, and

it is proposed of the form

x2des= x02des+ x12des (8)

wherex12des will be designed to reject the disturbance∆̄1 in
finite time by using the integral sliding mode technique [31].
The termx02des is such thatz1 converges exponentially to zero.

To establish the controlx2des in (7), the error variable
z2 = [ z21 z22 ]

T is defined as

z2 = x2 − x2des. (9)

and (7) is rewritten as

dz1
dt

= f1(φ̂) +B1(λ̂r)x
0
2des+B1(λ̂r)x

1
2des

+B1(λ̂r)z2 + Φ̃ + ∆̄1.
(10)

In order to calculatex12des, the variableσ = [ σ1 σ2 ]
T

is proposed as
σ = ẑ1 + ξ (11)

whereξ = [ ξ1 ξ2 ]
T is an integral variable to be defined

below.

From (11), the dynamics ofσ are given by

dσ

dt
= f1(φ̂) +B1(λ̂r)x

0
2des+B1(λ̂r)x

1
2des

+B1(λ̂r)z2 + Φ̃ + ∆̄1 +
dξ

dt
.

(12)

With the selection ofdξdt as

dξ

dt
= −f1(φ̂)−B1(λ̂r)x

0
2des (13)

whereξ(0) = z1(0), the system (12) reduces to

dσ

dt
= B1(λ̂r)x

1
2des+B1(λ̂r)z2 + Φ̃ + ∆̄1. (14)

To enforce sliding motion on the manifoldσ = 0 despite
of the disturbancē∆1, the termx12des in (14) is chosen as
x12des = B−1

1 (λ̂r)ν, with ν = [ ν1 ν2 ]
T defined as the

solution to

dν1
dt

= −kσ1

dσ1

dt + kδ1 |σ1|
1
2 sign(σ1)

∣

∣

dσ1

dt

∣

∣+ kδ1 |σ1|
1
2

dν2
dt

= −kσ2

dσ2

dt + kδ2 |σ2|
1
2 sign(σ2)

∣

∣

dσ2

dt

∣

∣+ kδ2 |σ2|
1
2

.

(15)

Here, the derivativesdσ1

dt and dσ2

dt are obtained using a SM
differentiator [32].

When the motion on the manifoldσ = 0 is reached, the
solution to dσ

dt = 0 in (14)

{B1(λ̂r)x
1
2des}eq = B1(λ̂r)z2 + Φ̃ + ∆̄1 (16)

shows that the disturbancẽΦ+∆̄1 is rejected by the equivalent
control {B1(λ̂r)x

1
2des}eq [15]. Therefore, the dynamics on

σ = 0 are given by

dz1
dt

= f1(φ̂) +B1(λ̂r)x
0
2des. (17)
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Thus, the desired dynamics−K1ẑ1 for dz1
dt in (17) are

introduced by means of

x02des= B−1
1 (λ̂r)

[

−f1(φ̂)−K1ẑ1

]

(18)

whereK1 = diag(k1, k2) with k1 > 0, k2 > 0. Hence, with
(18) in (13), dξdt reduces to

dξ

dt
= K1ẑ1. (19)

B. Inducing Sliding Modes

From (9) , it follows that

dz2
dt

= f2(ωr, λ̂s, is) +B2u+∆2 (20)

where the term∆2 = ∆r − dx2des
dt is a bounded disturbance.

To induce a SM motion on the manifold onz21 = 0 or
iαs = ides

αs in the current loop, taking into account (2), the basic
control vs is formulated as [23]

vs =− α1 |z21|1/2 sign(z21)− α3z21 + u1 (21)
du1
dt

=− α2sign(z21)

with α1 > 0, α2 > 0, andα3 > 0. And to induce a quasi-
sliding mode motion on the manifoldz22 = 0 or iβs = ides

βs ,
the auxiliary controlρ for the capacitor is designed by means
of the following switching logic:

ρ =
1

2
sign(z22vc) +

1

2
. (22)

V. STABILITY ANALYSIS OF THE OBSERVER-BASED
CONTROLLER

The extended closed loop system is presented as
{

dz1
dt = −K1ẑ1 + ν +B1(λ̂r)z2 + Φ̃ +∆1 (23)























dσ
dt = ν +B1(λ̂r)z2 + Φ̃ + ∆̄1

dν1
dt = −kσ1

dσ1
dt

+kδ1
|σ1|

1
2 sign(σ1)

| dσ1
dt |+kδ1

|σ1|
1
2

dν2
dt = −kσ2

dσ2
dt

+kδ2
|σ2|

1
2 sign(σ2)

| dσ2
dt |+kδ2

|σ2|
1
2

(24)

{

dz2
dt = f2

(

ωr, λ̂s, is

)

+B2u+∆2 (25)


























dĩαs

dt = ϑ12λ̃
∗
αr − ϕ1ωrλ̃

∗
βr + ∆̃αs

−l11ρ1
(

ĩαs
)

− V1
dĩβs

dt = ϑ22λ̃
∗
βr + ϕ2ωrλ̃

∗
αr + ∆̃βs

−l21ρ1
(

ĩβs
)

− V2

(26)



























dλ̃∗

αr

dt = ς12λ̃
∗
αr +∆αr − l3V1

dλ̃∗

βr

dt = ς22λ̃
∗
βr +∆βr − l4V2

d∆̃αs

dt = −l5V1
d∆̂βs

dt = −l6V2.

(27)

It is possible to demonstrate for the block (24) that there
is a SM on the manifoldσ = 0 in finite time by using the
results exposed in [25]. Similarly, it can be shown the finite
time convergence of the system (25) to the manifoldz2 = 0
[11]. Finally, the uniform finite time convergence to zero of
the estimation errors̃iαs and ĩβs in the system (26) can be
proved with the results presented by [22].

The SM motion is given by the systems (23) and (27)
constrained to the set

[

σ1 σ2 z21 z22 ĩαs ĩβs
]T

=

[ 0 0 0 0 0 0 ]
T as follows:

dz1
dt

= −K1(z1 + z̃1)

dλ̃∗αr
dt

= (ς12 − l3ϑ12)λ̃
∗
αr − l3∆̃αs +∆αr

+ l3ϕ1ωrλ̃
∗
βr

dλ̃∗βr
dt

= (ς22 − l4ϑ22)λ̃
∗
βr − l4∆̃βs +∆βr

− l4ϕ2ωrλ̃
∗
αr

d∆̃αs

dt
= −l5ϑ12λ̃∗αr − l5∆̃αs + l5ϕ1ωrλ̃

∗
βr

d∆̂βs

dt
= −l6ϑ22λ̃∗βr − l6∆̃βs − l6ϕ2ωrλ̃

∗
αr.

(28)

To analyze the stability of the system (28), it can be written
as a linear system with non-vanishing disturbance of the form

ė = Me+∆ (29)

wheree =
[

zT1 λ̃∗αr λ̃∗βr ∆̃αs ∆̃βs

]T

,M is the block
matrix

M =















−K1 0 0 0 0

0 ς12 − l3ϑ12 0 −l3 0

0 0 ς22 − l4ϑ22 0 −l4
0 −l5ϑ12 0 −l5 0

0 0 −l6ϑ22 0 −l6















and∆ =
[

z̃T1 ∆αr + l3ϕ1ωrλ̃
∗
βr ∆βr − l4ϕ2ωrλ̃

∗
αr

l5ϕ1ωrλ̃
∗
βr l6ϕ2ωrλ̃

∗
αr

]T

.

For (29), the Lyapunov candidate functionV = 1
2e

TPe
is proposed, withP > 0. With the adequate choice ofli
when i = 3, . . . , 6 andK1, the matrixM is Hurwitz. Hence,
there exists one unique solutionP to the Lyapunov equation
MTP+PM = −Q, whereQ = QT andQ > 0.

For the system (29), it is satisfied

λmin(P) ‖e‖22 ≤ eTPQ ≤ λmax(P) ‖e‖22 (30)
∂V

∂e
Me = −eTQe ≤ −λmin(Q) ‖e‖22

and the perturbation term is considered to be bounded by
‖∆‖ ≤ α2 ‖e‖2 + β2, with α2 > 0 andβ2 > 0.

The derivative ofV , yields to

V̇ = −eTQe− 2eTP∆ (31)
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and, substituting the bounds (30) in (31), results

V̇ ≤ (−λmin(Q) + 2α2λmax(P)) ‖e‖22 + 2β2λmax(P) ‖e‖2
= −α (1− θ) ‖e‖22 − αθ ‖e‖22 + β ‖e‖2

where α = λmin(Q) − 2α2λmax(P), β = 2β2λmax(P) and
0 < θ < 1. Finally, V̇ ≤ −α (1− θ) ‖e‖22, ∀ ‖e‖2 > δ, with
δ = β

αθ .

Thus, the nominal systeṁe = Me has an exponentially
stable equilibrium pointe = 0 and, the solutione(t) of
(29) is ultimately bounded. The ultimate bound is given by

‖e‖2 ≤ δ

√
λmax(P)√
λmin(P)

.

VI. N UMERICAL SIMULATION RESULTS

To verify the effectiveness and efficiency of the proposed
observer-based controller, numerical simulations are conducted
using the Euler integration method with a time stepts =
1× 10−4.

Parameters and data of the SPIM are in the Table 1. [30]:

Single-Phase

H.P. 0.25 Vs 110 (V )

f 60 (Hz) np 2

n =
NA
NB

1.18 Rαs 2.02 (Ω)

Rβs 5.13 (Ω) Rr 4.12 (Ω)

Lαs 0.1846(H) Lβs 0.1833 (H)

Lr 0.1828 (H) Lm 0.1772 (H)

J 0.0146 (Kgm2) kd 0 (kgm2/s)

Imax 15 (A) Crun 35 µf

TABLE I: Parameters of SPIM

The controller gains are adjusted tok1 = 500, k2 = 750,
kσ1 = 30, kσ2 = −10, kδ1 = 1, kδ2 = 0.0015, α1 = 36,
andα3 = 1. And, the gains for the observer arel11 = 15000,
l21 = 17000, l12 = 0.01, l22 = 0.01, l5 = 50 and,l6 = 50.

For the simulation purposes, the initial conditions of the
state variables are selected to zero. Tracking performanceis
verified for the two plant outputs: driving the square of rotor
flux φ to a constant referenceφref = 0.15, and a speed profile
ωref for ωr, proposed as follows:

1) The SPIM starts on repose with the reference speed
on 100 rad/sec.

2) At the first second, a change of the speed reference
from 100 rad/sec to120 rad/sec, is presented.

3) Finally, at3 seconds, a change of the speed reference
from 120 rad/sec to140 rad/sec, is presented.

In addition, the system is subject to disturbances which are
introduced as follows:

1) The SPIM starts on repose with a load torque of0.5
N-m, then at1 sec. a change of load torque from0.5
N-m to 0.8 N-m. After that at3 sec. another change
of load torque from0.8 N-m to 1 N-m. And finally
at 4 sec. one more change of load torque from1 N-m
to 0.5 N-m.

2) At 2 seconds, a30% increase in the value of the rotor
resistance is presented.

3) The SPIM starts whit a increase in the value of
inductances at15%.
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Fig. 2: Rotor speedωr and module to the square of rotor flux
φ.
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Fig. 4: Stator currents in axis frameα β.

The rotor speed tracking response is depicted in Fig. 2
which shows a satisfactory performance under the change of
the speed reference att = 1, 04 sec. andt = 3.04 sec., where
the speed tracking effect is achieved almost totally after0.082
sec. Fig. 2 shows the module to the square of the rotor fluxφ
response too; it is possible to see that the module is maintained
over the given reference. The errors responses of rotor fluxes
are shown in Fig. 3.
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On the other hand, the stator currents (see Fig. 4) are in
the appropriate range during the start(0 < t < 0.2) that
corresponds to the proposed control algorithm. Finally, inFig.
5, the responses of the voltages are presented, wherevαs is the
super-twisting SM control and,vβs is the discontinuous SM
control.
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Fig. 5: Stator control voltages of axisα β.

VII. C ONCLUSIONS

An observer-based control scheme was proposed to track
the rotor angular speedωr and module to the square of rotor
flux φ. It is based on SM algorithms allowing a robust design.
The stability conditions of the closed-loop system was derived.
The simulation results have shown a robust performance of the
designed controller with respect to the perturbations caused by
the load torque, fulfilling the stator current constraints.
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