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An Algebraic Observer for Leak Detection and Isolation in Plastic
Pipelines

A. Navarro, Juan Diego Sánchez-Torres, O. Begovich, G. Besançon and Julián Alberto Patiño-Murillo

Abstract— In the continuation of authors’ studies on leak
diagnosis in pipelines, a new model-based Leak Detection and
Isolation (LDI) algorithm is designed. This system only uses
measures of flow and pressure coming from sensors placed at
the ends of a pipeline. The present approach is based on a finite
nonlinear pipeline model, and extended with variables related
to the leak. On this basis, the purpose here is to investigate
the use of a so-called algebraic observer to estimate the leak
position and its magnitude. The corresponding observer design
is thus presented, and its performances are illustrated both with
simulation results, and experimental ones, with data taken from
a real pipeline prototype.

I. INTRODUCTION

Several researchers have dealt with the issue of designing
Leak Detection and Isolation (LDI) methods, and the main
proposed approaches can be divided in External Methods [1]
and Model based algorithms. For the case of model based
methods several works have been developed [2]-[7]. In all
these publications, a nonlinear asymptotic observer is the
core of the LDI algorithm. The aim of the present paper is
to investigate the use of an algebraic observer for the LDI
problem, which has been introduced in the literature as a
non-asymptotic observer [8]. This observer will be tested in
simulation and real-time.

Algebraic approaches have been recently used for
systems control and observation with emphasis on their
characteristics of non-asymptotic convergence, robustness
to uncertainties and capacity to deal with measured noise
without any assumption on its statistical properties [9]. Some
examples for controller design are given in [10], [11]. For the
case of observers based on algebraic methods, the estimation
is obtained by means of algebraic calculation of the output
derivatives and, for observable systems, can be locally
mapped to the state space [12], [13]. Those approaches have
been related to the theory of linear observers in [14], but they
still offer an alternative to classical implementations which
can interestingly be inspected, in particular for nonlinear
system [15], or in application for abrupt-change detection
[16].
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In the present work, our purpose is to design an observer
based on algebraic methods for direct application to the
LDI problem. This means extending to a class of MIMO
observable systems, a method previously presented for the
SISO class [8], [17]. For the LDI application, we use the
model derived in [7], where the states are: flows, pressure
heads, the leak position and a parameter related with the
leak intensity. Then, the resulting continuous-time nonlinear
model is employed to design an algebraic state observer. To
assess the performance of the designed LDI system, it is
tested with synthetic data obtained from a simulator tuned
with the parameters of the pipeline prototype described in
[18]. After that, the method is applied to the same prototype
but in real-time. It will be seen that, in both cases, the results
are very satisfactory, specially in the real-time case where
noisy signals are present.

In the following, Section II presents the considered
model. Section III describes the proposed algebraic observer
for MIMO systems in the LDI problem. The successful
simulation and real-time results are shown in section IV.
Finally the conclusions are given in Section V.

II. MODEL

This section presents the two Partial Differential Equations
modelling the water dynamics in a pipeline. Also, the finite
dimensional model to design the LDI system is described.

A. Modeling equation

Assuming the fluid to be slightly compressible and the
duct walls slightly deformable; the convective changes in
velocity to be negligible; the cross section area of the pipe
and the fluid density to be constant, then the dynamics of
the pipeline fluid can be described by the following partial
differential equations [19]:
Momentum Equation

∂Q(z, t)

∂t
+Ag

∂H(z, t)

∂z
+ µQ(z, t) |Q(z, t)| = 0 (1)

Continuity Equation

∂H(z, t)

∂t
+

b2

Ag

∂Q(z, t)

∂z
= 0 (2)

where Q is the flow rate [m/s2], H the pressure head [m],
z the length coordinate [m], t the time coordinate [s], g the
gravity acceleration [m/s2], A the cross-section area [m2], b
the speed of the pressure wave in the fluid [m/s], µ = τ

2DA ,
D the diameter [m] and τ the friction factor.
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Leak model: on the other hand, one leak arbitrarily located
at point z1 (see Fig. 1) in a pipeline can be modeled as
follows [19]:

QL = λ
√
HL (3)

where the constant λ is a function, among others of the
orifice area and the discharge coefficient, QL is the flow
through the leak and HL is the head pressure at the leak
point [19].

Q1 Q2

QL

H1 H2 = HL H3

z1 z2

6

Fig. 1. Discretization of the pipeline with a leak QL

This leak produces a discontinuity in the system.
Furthermore, due to the law of mass conservation, QL must
satisfy the next relation:

Qb = Qa +QL (4)

where Qb and Qa are the flows in a infinitesimal length
before and after of the leak, respectively.

B. Spatial Discretization of the Modeling Equations

In order to obtain a finite dimensional model from (1)
and (2), the partial differential equations are discretized with
respect to the spatial variable z, as in [3], [5], by using the
following relationships:

∂H

∂z
≈Hj+1 −Hj

zj
(5)

∂Q

∂z
≈Qj −Qj−1

zj−1
(6)

Assuming only two partitions in the pipeline as shown
in Fig. 1, zj (j = 1, 2) becomes the distance from the
beginning of the pipe to point of the leak and from the point
of the leak to the end of the pipe, respectively. Notice that
z2 = L− z1 where L is the total length of the pipeline and
the leak position is assumed to be different from 0 and L
in this description. Applying approximations (5) and (6) to
equations (1) and (2) together with (3) and (4), and then
incorporating as additional states z1 and λ, we get:

Q̇1

Ḣ2

Q̇2

ż1
λ̇

 =


−Agz1 (H2 − u1)− µQ1 |Q1|
− b2

Agz1
(Q2 −Q1 + λ

√
H2)

− Ag
L−z1 (u2 −H2)− µQ2 |Q2|

0
0

 (7)

Here, the input vector is u = [H1 H3]T = [u1 u2]T ,
and the output vector is y = [Q1 Q2]T . Even if it is very
simplified, this model can be useful for actual leak isolation,
as this will be seen from the results hereafter.

III. ALGEBRAIC OBSERVER SCHEME

A. Method Description

The pipeline equations (7) correspond to a nonlinear
MIMO system of the general form:

ẋ = f (x) + g (x)u (8)
y = h (x)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp is
the output and f , g, h are sufficiently differentiable function
vectors.

For system (8), it is possible to define the following vector
of output derivatives:

V (t) =



y1 (t)
ẏ1 (t)

...
y
(k)
1 (t)

...
yp (t)
ẏp (t)

...
y
(k)
p (t)

...



(9)

From model (8), V (t) can be expressed as a function of
x, u, u̇, . . . , u(k), . . . as:

V (t) = Γ(x, u, u̇, . . . , u(k), . . .) (10)

Observability somehow means that this relationship is
invertible, and that one can find elements among the
components of Γ defining an invertible map with respect
to x [13]. Let us denote by Γ̄(x, u, t) this map, and consider
the vector V̄ (t) conformed by any n independent elements
selected from V (t). Then:

x = Γ̄−1
(
V̄ (t), u, t

)
. (11)

B. Estimation of Algebraic Derivatives

Let γ (t) be an analytical function around t = 0 and
defined for t > 0. In order to estimate its derivative, the
truncated Taylor series expansion of γ (t) around t = 0 is

γ (t) =

N∑
i=0

ai
ti

i!
+O

(
tN
)

(12)

where ai = diγ(t)
dti

∣∣∣
t=0

. This implies that γ (t) can be

approximated by the polynomial pN (t) =
N∑
i=0

ai
ti

i! .

From (12), the i-th order time derivative calculation of
γ (t) can be seen as a problem of parameter estimation
for pN (t). It is possible to calculate ai, i = 0, . . . , N
independently, this reduces sensitivity to noise and numerical
computation errors, which often appears in simultaneous



estimation methods. In addition, the independent calculation
allows the use of higher order polynomials without the
calculation of all its coefficients. The method will be
described with an example, a complete explanation is given
in [20].

Let p2 (t) a second order polynomial approximation of
γ (t),

p2 (t) = a0 + a1t+
a2
2
t2. (13)

Transforming it into Laplace domain yields:

P2 (s) =
a0
s

+
a1
s2

+
a2
s3
. (14)

A detailed explanation for the calculation of a1 is
presented as follows:

• In order to annihilate a2, both sides of (14) are
multiplied by s3 and the derivative with respect to s
is computed:

3s2P2 (s) + s3
dP2 (s)

ds
= 2sa0 + a1. (15)

• Now, in order to annihilate a0, both sides of (15) are
divided by s and the derivative with respect to s is
calculated:

3P2 (s) + 5s
dP2 (s)

ds
+ s2

d2P2 (s)

ds2
= −a1

s2
. (16)

• By multiplying both sides by s−ν , ν ≥ 3, here ν = 3,

3

s3
P2 (s) +

5

s2
dP2 (s)

ds
+

1

s

d2P2 (s)

ds2
= −a1

s5
. (17)

• Using the Cauchy rule for iterated integrals, the time
domain expression for a1 is

a1 = − 12

T 4

T∫
0

(
15t2 − 16Tt+ 3T 2

)
p2 (t) dt. (18)

• Finally, p2 (t) is replaced by γ (t)

a1 = − 12

T 4

T∫
0

(
15t2 − 16Tt+ 3T 2

)
γ (t) dt. (19)

In a very similar way, the value of a2 is given by

a2 =
60

T 5

T∫
0

(
6t2 − 6Tt+ T 2

)
γ (t) dt. (20)

A filtered approximation for γ (t) is given by a0 in the
form

a0 =
3

T 3

T∫
0

(
10t2 − 12Tt+ 3T 2

)
γ (t) dt. (21)

For the integrals, a moving window of length T is
used. A quite short time window is sufficient to obtain
accurate estimations. In addition, the iterated integrals work
as low pass filters which smooth highly fluctuating noises.
Therefore, ones does not need any knowledge on the
statistical properties of the noise.

C. Observer Design for the LDI System

Let x .
= [Q1 H2 Q2 z1 λ]T = [x1 x2 x3 x4 x5]T by

considering unidirectional flow (i.e. x1 > 0 and x3 > 0), the
equation (7) can be written in compact form (8) with f (x),
g (x) and h (x) as:

f (x) =


−Agx4

x2 − µx21
− b2

Agx4
(x3 − x1 + x5

√
x2)

Ag
L−x4

x2 − µx23
0
0



g (x) =


Ag
x4

0

0 0

0 − Ag
L−x4

0 0


h (x) =

[
h1 (x)
h2 (x)

]
=

[
y1
y2

]
=

[
x1
x3

]
Here it is easy to check that an invertible map

Γ̄ can be formed with the output time derivative
vector as: Γ̄ =

[
y1(t) ẏ1(t) ÿ1(t) y2(t) ẏ2(t)

]
.

Using f(x), g(x) and h(x) yields: Γ̄ = [ x1,
−Agx4

(x2 − u1) − µx21, 2µ2x31 + b2

x2
4

(
x3 − x1 + x5

√
x2
)

+
Ag
x4

(u̇1 + 2µx1x2 − 2µx1u1), x3, Ag
L−x4

(u2 − x2)− µx23 ]
T

=
[
Γ̄i
]

with i = 1, ..., 5.
Therefore, the system state in terms of the output

derivatives (11) is written as

x1 = y1

x2 =
ẏ2 + µy22
Ag

[
L
(
ẏ1 + µy21

)
−Ag

(
ẏ2 + µy22

)
(ẏ1 + µy21)− (ẏ2 + µy22)

]
+ u2

x3 = y2 (22)

x4 =
L
(
ẏ2 + µy22

)
−Ag (u1 − u2)

(ẏ2 + µy22)− (ẏ1 + µy21)

x5 =
x24

b2
√
x2

(
ÿ1 + 2µy1ẏ1 −

Ag

x4
u̇1

)
+

1
√
x2

(y1 − y2) .

Now, the estate estimation problem can be reduced to
the real time estimation ˆ̄V (t) of V̄ (t) in (11) (note that
the system output time derivative is unknown). Thereby, an
estimation of the estate can be given by:

x̂ = Γ̄−1
(

ˆ̄V (t), u, t
)

(23)

Thus, from (23), the estimated values of the state variables
in (22), x̂i, i = 1, . . . , 5, are obtained by replacing the
output, the inputs and their derivatives by their algebraic
estimations. The first derivatives of the outputs are estimated

as in (19), ˆ̇yi = − 12
T 4

T∫
0

(
15t2 − 16Tt+ 3T 2

)
yi (t) dt, with

i = 1, 2. Also, based on (19), the first derivative estimation
of the input u1, ˆ̇u1, is obtained. In a similar way, the second
derivative estimation of the output y1, ˆ̈y1, is calculated using
(20). Finally, ui and yi leads to the estimates ûi and ŷi as
in (21) with i = 1, 2.



IV. SIMULATION AND REAL-TIME RESULTS

The present section shows simulation and experimental
results in order to assess the algebraic observer performance.
In both cases, the pipeline prototype located at the Research
and Advanced Studies Center in Guadalajara, Mexico
(CINVESTAV-Guadalajara) was considered. This pipeline is
composed by plastic pipes and it includes two water-flow
(FT) and two pressure-head (PT) sensors at the beginning
and the end of the pipe, as illustrated in Fig. 2. The length
of the pipeline between sensor is 68.4 m. The prototype also
has a 5 hp centrifugal pump and three valves, which serve
to emulate the effect of a leak, at 16.8, 33.3 and 49.8 meters
respectively. More information about the pipeline prototype
can be found in [18].

FT

?

FT

6

PT

?

PT

6

Valve 1

6

Valve 2

?

Valve 3�

Pum
p

R
eservoir

Fig. 2. Schematic diagram of the pipeline prototype.

In order to generate the synthetic data (and to deduce
the observer), the mathematical model (7) was used. This
model assumes a straight pipeline, and the prototype is not
straight. Therefore, it is necessary to find an equivalent
straight pipeline of this prototype. To do that, we follow
[21], to find the lengths of the equivalent pipeline, which
are named Equivalent Straight Lengths (ESL). These lengths
will be used in the model to design the LDI.

Table I shows the main parameters of the pipeline
including their length expressed in Equivalent Straight
Coordinates.

TABLE I
PIPELINE PROTOTYPE PARAMETERS

Parameter Symbol Value Units
ESL between sensors L 100.15 [m]
ESL for the firth valve l1 22.42 [m]
ESL for the second valve l2 48.03 [m]
ESL for the third valve l3 75.36 [m]
Internal diameter D 6.54× 10−2 [m]
Pressure wave speed b 375.88 [m/s]
Friction factor τ 1.68× 10−2 [-]

The simulation as well as the real experiments were
performed as follows: first, a leak located at zl = l3, the

third valve (i.e. z1 = 75.36), was induced at time t = 500
s. A simple leak alarm given by |Qin −Qout| > δ (Qin
represents the inflow measured whereas Qout is the outflow
measured and δ is a chosen threshold) was implemented in
order to start the observer at the time of the leak occurrence,
denoted as tl. At this time, the leak isolation begins. The
threshold is defined experimentally according to the noise in
the system.

All initial conditions for the simulation, as well as the
real-time implementation, were initialized equal to zeros, i.e.
ŷ1(0) = ˆ̂y1(0) = 0, ˆ̇y1(0) =

ˆ̂
ẏ1(0) = 0, ˆ̈y1(0) =

ˆ̂
ÿ1(0) = 0;

ŷ2(0) = ˆ̂y2(0) = 0, ˆ̇y2(0) =
ˆ̂
ẏ2(0) = 0, ˆ̈y2(0) =

ˆ̂
ÿ2(0) = 0

and u̇1(0) = 0. Here, ˆ̂• (·) denote the estimated variables
with the synthetic data and •̂(·) the variables estimated with
real data. Finally, the T value in (19), (20) and (21) was
fixed equal to 5s.

Figure 3 shows the evolution of the pressure head at the
beginning and at the end of the duct (the signal inputs u1
and u2). This figure depicts both: the synthetic data (Ȟin

and Ȟout, dotted line) and the real data (Hin and Hout,
continuous line). In the same manner, Fig. 4 shows the flow
rate at the extremes of the pipe: real data in continuous line
(Qin and Qout) and the synthetic data in dotted line (Q̌in
and Q̌out). Fig. 5 presents the pressure head at the leak point:
ˆ̂
H2 represents the pressure estimated with synthetic data
(dotted line) and Ĥ2 is the pressure head at the leak point
estimated with real data (continuous line); the dashed line
represents the “ideal” pressure given by the model (denoted
by H2). In Fig. 6, the dotted line represents the leak position
in the ESL coordinates, estimated with synthetic data (ˆ̂z1),
and the continuous line shows the leak position in the
same coordinates, estimated with real data (ẑ1). In the same
figure, the dashed line shows the real leak position in the
ESL coordinates (z1). Fig. 7 depicts the lambda parameter
evolution. This Figure shows the accurate estimation with
synthetic (dotted line) and real (continuous line) data (ˆ̂λ and
λ̂, respectively) with its real magnitude represented by the
dashed line (denoted by λ).

V. CONCLUSIONS

This work presents a methodology based on a algebraic
observer for leak detection an isolation in a plastic pipeline
using only pressure and flow-rate sensor at the ends of the
duct. The method was tested with synthetic data and real data
taken from a pipeline prototype. In the experimental results,
it is possible to verify that the pressure head dynamics as
well as the leak position and its magnitude were tracked in an
accurate way by the simulated observer. This methodology
could afford a good solution for analytic redundancy fault
detection problem.

As future work, the algorithm as well as the leak alarm
will be refined to achieve better performance. In particular
the extension of the method to the location of multiple leaks
will be investigated.
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