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ABS Design and Active Suspension Control Based on HOSM

Juan Diego Sánchez-Torres, Alejandra Ferreira de Loza, Marcos I. Galicia and Alexander G. Loukianov

Abstract— This paper tackles the control of a brake assisted
with an active suspension. The goal of the paper is ensure an
effective braking process improving the vehicle safety in adverse
driving conditions. To address this, the wheel slip ratio is kept
to a desired value reducing the effective braking distance by
designing of a robust tracking controller based on high order
sliding modes algorithms, imposing the anti-lock brake system
feature. On the other hand, the active suspension problem is
carried with a nested backward sliding surface design. The
purpose of this control is to improve the driving comfort. To
this aim, the designed controller compensate the effects of the
unmatched perturbation coming from the road. This controller
exploits a high order sliding modes observer, which guarantees
theoretically exact state and perturbation estimation. In both
cases, a continuous control action drives the state trajectories
to the designed sliding manifolds and keeps them there in spite
of the matched and unmatched perturbations. The feasibility
of the proposed scheme has been exposed via simulations.

I. INTRODUCTION

The aim of this paper is to propose robust controllers based

on sliding mode (SM) algorithms for a brake coupled with an

active suspension. The main difficulties of controller design

in automotive systems are related to high non-linearities,

uncertainties caused by external perturbations and parameter

variations which are unknown. In order to deal with these

problems, several researchers have proposed robust control

approaches, including those based on SM algorithms [1],

[2], [3] and, [4]; considering the problem of ABS design

with extremum seeking controllers in order to maximize

the tire/road friction [5] and, the analysis of the nonlinear

dynamics on these systems [6]. Similarly, there are solutions

for the active suspension case [7]. For the case of the ABS

and active suspension as a whole system, a backstepping

design is presented in [8]; however, for this case the road

disturbances are assumed to be known in order to facilitate

the control law design. Also for the whole system, in [9]

a SM controller with a sliding manifold designed using

geometric decoupling methods to disturbance rejection, was

proposed.

The SM algorithms, are proposed with the idea to drive the

dynamics of a system to a sliding manifold, that is an integral

manifold with finite reaching time [10]; exhibiting features

such as finite time convergence, robustness to uncertainties

and insensitivity to external bounded disturbances [11].
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In this work, a controller design for an ABS assisted

with an active suspension. Taking advantage of the SM

algorithms features, the brake controller is proposed such

that it imposes the anti-lock brake system ABS property in

finite time in spite of perturbations. The ABS forces a desired

vehicle motion and, as a consequence, its stability. Similarly,

the active suspension is controlled with the objective of

guaranteeing the ride quality and comfort for the passengers

by reducing the vibration due to the road shape.

These controllers are based on the application of high

order sliding modes (HOSM) algorithms [12]. The use of

these methods allows the design of robust controllers in

presence of external disturbances and parametric variations,

which are supposed to be unknown but with a known

bound. The main feature of the proposed controllers is

the characteristic of exact finite time rejection of both, the

matched and the unmatched perturbations, improving the

safety and the comfort of the vehicle.

To assess the performance of the designed controllers,

the closed loop system is tested by means of numerical

simulation.

In the following, Section II presents the considered

model. Sections III and IV describe the proposed controllers

for the ABS and active suspension problems, including a

detailed analysis of stability and robustness. The successful

simulations are presented in section V. Finally, in Section

VI the conclusions are given.

II. MATHEMATICAL MODEL

In this section, we consider a quarter of vehicle model,

this model includes the active suspension, the pneumatic

brake system, the wheel motion and the longitudinal vehicle

motion.

A. Active Suspension Model

The quarter-car active suspension is a 2-DOF mechanical

system shown in Fig. 1.

Fig. 1. Active suspension scheme.

This system connects the car body and the wheel masses

and is modeled as a linear viscous damper and a spring
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elements, whereas the tire is represented as a linear spring

and damping elements. The motion equations for this system

are given by

mcz̈c = −Kcw (zc − zw)− Ccw (żc − żw) + fha

mw z̈w = Kcw (zc − zw) + Ccw (żc − żw) (1)

−Kwr (zw − zr)− Cwr (żw − żr)− fha

where mc and mw are the mass of the car and the wheel,

respectively, zc is the car vertical displacement, zw is the

wheel vertical displacement, Kcw and Kwr are the spring

coefficients, Ccw and Cwr are the damping coefficients, fha
is the force of the hydraulic actuator, zr is the disturbance

due to road and żr is its time derivative.

B. Pneumatic Brake System Equations

The specific configuration of this system considers the

brake disk, which holds the wheel, as a result of the

increment of the air pressure in the brake cylinder. The

entrance of the air trough the pipes from the central reservoir

and the expulsion from the brake cylinder to the atmosphere

is regulated by a common valve. The time response of the

valve is considered small, compared with the time constant

of the pneumatic system.
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Fig. 2. Pneumatic brake scheme.

Considering Fig. 2, we suppose the brake torque Tb is

proportional to the pressure Pb in the brake cylinder

Tb = kbPb (2)

with kb > 0. For the brake system we use an approximated

model of pressure changes in the brake cylinder due to the

opening of the valve with a first order relation [13], this

relation can be represented as

τṖb + Pb = Pc (3)

where τ is the time constant of the pipelines, Pc is

the pressure inside the central reservoir. The atmospheric

pressure, Pa, is considered equal to zero.

C. Wheel Motion Equations

To describe the wheels motion, a partial mathematical

model of the dynamic system is used [14]. The dynamics

of the angular momentum variation relative to the rotation

axis, are given by

Jω̇ = −rf (s)− bbω − Tb (4)

where ω is the wheel angular velocity, J is the wheel inertia

moment, r is the wheel radius, bb is a viscous friction

coefficient due to wheel bearings and f(s) is the contact

force of the wheel.

The expression for longitudinal component of the contact

force in the motion plane is

f (s) = µfmφ (s) (5)

where µ is the nominal friction coefficient between the wheel

and the road, fm is the normal reaction force in the wheel

fm = mg +∆fm(zr, żr) (6)

with m equal to the mass supported by the wheel, g is the

gravity acceleration and ∆fm(zr, żr) = −Kwr(zw − zr) −
Cwr(żw − żr) represents the variation of normal reaction

force due to road perturbation. The function φ(s) represents

a friction/slip characteristic relation between the tire and road

surface. Here, we use the Pacejka model [15], [16], defined

as follows

φ (s) = D sin (C arctan (Bs− E (Bs− arctan (Bs)))) .

The slip rate s is defined as

s =
v − rω

v
(7)

where v is the longitudinal velocity of the wheel mass center.

The equations (2)-(7) characterize the wheel motion.

D. The Vehicle Motion Equation

The vehicle longitudinal dynamics without lateral motion

is considered. The main reasons for this assumptions are that

the steering angle changing has virtually no effect on the

force vectors on the wheels. Then, the vehicle longitudinal

dynamics is written as

Mv̇ = −F (s)− Fa(v) (8)

where M is the vehicle mass, Fa(v) is the aerodynamic drag

force, which is proportional to the vehicle velocity and is

defined as

Fa(v) =
1

2
ρCdAf (v + vw)

2
+∆vw

where ρ is the air density, Cd is the aerodynamic coefficient,

Af is the frontal area of vehicle, vw is the wind velocity and

∆vw represents its variations.

As in the expression for longitudinal component of the

contact force in the motion plane (5), the contact force of

the vehicle F (s) is modeled of the form

F (s) = µφ (s) fM (9)

where µ is the nominal friction coefficient between the wheel

and the road, fM is the normal reaction force of the vehicle

fM =Mg +∆fM (zr, żr) (10)

with M equal to the vehicle mass, g is the gravity

acceleration and ∆fM (zr, żr) = −Kwr(zw−zr)−Cwr(żw−
żr) represents the variation of normal reaction force due to

road perturbation.



E. State Space Equations

The dynamic equations of the whole system

(3)-(8) rewritten using the state variables

x =
[
x1 x2 x3 x4 x5 x6 x7

]T
=

[
zc żc zw żw ω Pb v

]T
results in the following

form:






ẋ1 = x2

ẋ2 = −a1 (x1 − x3)− a2 (x2 − x4) + b1us

ẋ3 = x4

ẋ4 = a3 (x1 − x3) + a4 (x2 − x4)− a5x3

−a6x4 − b2us +∆r

(11)







ẋ5 = −a7x5 − a8f (s)− a9x6 + ∆̄1

ẋ6 = −a10x6 + b3ub + ∆̄2

ẋ7 = −a11F (s)− fw (x7) + ∆̄3

(12)

with the outputs

ys =
[
x1 x3

]
and yb =

[
x5 x7

]

where a1 = Kcw/mc, a2 = Ccw/mc, a3 = Kcw/mw,

a4 = Ccw/mw, a5 = Kwr/mw, a6 = Cwr/mw, a7 = bb/J ,

a8 = r/J , a9 = kb/J , a10 = 1/τ , a11 = 1/M , b1 = 1/mc,

b2 = 1/mw, b3 = 1/τ , us = fha, ub = Pc and fw(x7) =
1

2M (ρCdAf ) (x7 + vw)
2
.

Here, ∆r = a5zr + a6żr, the term ∆̄1 contains

the variations of the friction parameters µ, bb, wheel

inertia moment J and the normal reaction force due to

road perturbation ∆fm(zr, żr). The term ∆̄2 contains the

variations of the parameters τ and Pc. Finally, the term

∆̄3 contains the variations of the parameters µ, Cd, Af , ρ,

the wind velocity variation ∆vw and the force due to road

perturbation ∆fM (zr, żr).

III. ACTIVE SUSPENSION CONTROLLER DESIGN

In this section, a HOSM observer to estimate the state and

identify the unknown inputs in finite time is used. Then, a

sliding manifold is designed such that the system’s motion

along the manifold meets the regulation of the system state

and the rejection of perturbations coming from the road.

Define xs =
[
x1 x2 x3 x4

]T
, then the subsystem

(11) is represented of the form

ẋs = Asxs +Bsus +Ds∆r

ys = Csxs
(13)

where As =







0 1 0 0
−a1 −a2 a1 a2
0 0 0 1
a3 a4 −a3 − a5 −a4 − a6







,

Bs =
[
0 b1 0 −b2

]T
, Cs =

[
1 0 1 0

]
and,

Ds =
[
0 0 0 1

]T
.

Assuming that there is a constant ∆+
r such that the

perturbation as well as its successive derivatives are bounded,

i.e. |∆r| ≤ ∆+
r ,

∣
∣
∣∆̇r

∣
∣
∣ ≤ ∆+

r ,
∣
∣
∣∆̈r

∣
∣
∣ ≤ ∆+

r for all t ≥ 0. An

algebraic HOSM observer is proposed in order to estimate

the state and identify the perturbation. Next subsection is

devoted to summarize the observer design, for further details

see [17].

A. State Observation and Unknown Input Identification

For estimation purposes system (13) is strongly observable

or equivalently for us = 0 the triplet (As, Ds, Cs) has no

zeros. Consequently, the state estimation can be achieved

from the output and its derivatives. Beforehand the estimation

error must be bounded. Consider the following auxiliary

system:
˙̃xs = Asx̃s +Bsus + L (ys − ỹs) (14)

where ỹs = Csx̃s and x̃s is the estimate of xs, matrix L
must be designed such that the matrix Ã := (As − LCs) is

Hurwitz. Defining the error xe := xs − x̃s, from (13)-(14) it

follows:

ẋe = Ãxe +Ds∆r. (15)

Thus, the error xe(t) is ultimately bounded, i.e., there exist

a known constant δe > 0 and a finite time te, such that

‖xe(t)‖ ≤ δe, for all t > te.

Defining the output of the linear error system ye :=
ys − ỹs, let us construct an extended vector considering the

output vector and the derivative of a linear combination of

the output unaffected by the perturbations, i.e.
[

d
dt (CsDs)

⊥
ye

ye

]

=

[

(CsDs)
⊥
CsÃ

Cs

]

︸ ︷︷ ︸

Ms

xe. (16)

Due to the strongly observability property of the system

(13), it can be shown that matrix Ms has full rank

(see, e.g., [18]). This means that the algebraic equation

(16) has a unique solution for xe. Hence, rearranging the

previous equation and pre-multiplying both sides by M+
s :=

(
MT

s Ms

)−1
MT

s it yields to

xe =
d

dt
M+

s

[

(CsDs)
⊥
CsÃ 0

0 I2

] [
ye∫
ye

]

︸ ︷︷ ︸

Ys

. (17)

Following [19], under the boundedness assumption of∣
∣
∣∆̈r

∣
∣
∣ ≤ ∆+

r a third order sliding mode differentiator can

be constructed

ν̇0 = −5Λ
1
3Ψ

2
3 (ν0 − Ys) + ν1

ν̇1 = −3Λ
1
2Ψ

1
2 (ν1 − ν̇0) + ν2

ν̇2 = −1.5Λ
1
2Ψ

1
2 (ν2 − ν̇1) + ν3

ν̇3 = −1.1ΛΨ0 (ν3 − ν̇2)

(18)

where νi ∈ R
2 for i = 0, . . . , 3 are the outputs of the

differentiator, the function vector is defined as Ψk (vi) =
[

|v1,i|k sign (v1,i) |v2,i|k sign (v2,i)
]T

with k ∈ R and

Λ is a Lipschitz constant of function Ÿs and can be figured

from (15) as Λ ≥
∥
∥
∥Ã

∥
∥
∥

2

e+ +
∥
∥
∥ÃDs +Ds

∥
∥
∥∆+

r .

In [19] it was shown that there is a finite time tf such that

the identity νi =
di

dtiYs is achieved for every i = 0, . . . , 3.



The vector xe can be reconstructed from the first sliding

dynamics, i.e. ν1 = xe accordingly

x̂ := ν1 + x̃ for all t ≥ tf

where x̂ represents the estimated value of x. Therefore, the

identity x̂ ≡ x, for all t ≥ tf holds.

Thus, for identifying the unknown inputs, from (18) we

can recover ẋe, i.e. ν2 = ẋe for all t ≥ tf and from (15) it

follows that

∆̂r := −D+
s

[

Ãν1 − ν2

]

for all t ≥ tf

and consequently calculating the derivative of (15) it yields

to
·

∆̂r := −D+
s

[

Ãν2 − ν3

]

for all t ≥ tf

where ∆̂r and

·

∆̂r represent the estimated values of ∆r and

∆̇r. Therefore, the identities ∆̂r ≡ ∆r and

·

∆̂ ≡ ∆̇r are

fulfilled for all t ≥ tf .

B. Nested Backward Sliding Control

Applying twice the regular form [20], the system

(13) is transformed into x̄11 = x1 + b1
b2
x3, x̄12 =

x2 + arx3 + b1
b2
x4, x̄2 = x3 and, x̄3 = x4.

Where ar = −a2 + b1
b2

(a4 + a6 − a2) + a4

(
b1
b2

)2

and the

transformed system yields to

·
x̄1 = A1x̄1 +B1x̄2 +D1∆r (19)
·
x̄2 = A21x̄1 +A22x̄2 + x̄3 +D2∆r (20)
·
x̄3 = A31x̄1 +A32x̄2 +A33x̄3 + us +D3∆r (21)

where x̄1 ∈ R
2, x̄2, x̄3 ∈ R, and the matrices are of the

corresponding dimensions. Since the system (19) satisfies

the matching condition span {D1} ⊂ span {B1}, there exist

a matrix Γ such that B1Γ = D1, [21]. To this end x̄2 can

be exploited and regarded as an input x̄2 = −Kx̄1 − Γ∆̂r

then
·
x̄1 = (A1 −B1K) x̄1.

In the ideal case ∆̂r ≡ ∆r and D1

(

∆r − ∆̂r

)

= 0.

The gain K is designed such that Ā1 := A1 − B1K is

Hurwitz. With this aim, let us design the auxiliary variable

ξ = x̄2 +Kx̄1 + Γ∆̂r and from (19)-(20) it yields to

˙̄x1 = Ā1x̄1 +B1ξ

ξ̇ = Ā21x̄1 + Ā22ξ2 + D̄2∆̂r + Γ
˙̂
∆r + x̄3

(22)

where Ā21 = A21 − A22K − KĀ1, Ā22 = A22 + KB1,
D̄2 = D2 −A22Γ.

Now, x̄3 will be designed to stabilize (22). Consider a

Lyapunov candidate function V (x̄1, ξ) = x̄T1 P x̄1 + ξT ξ,

where P is a symmetric positive definite matrix satisfying

PĀ+ ĀTP = −I . Thus, designing

x̄3 = −
((
Ā21 +BT

1 P
)
x̄1 +

(
Ā22 + I

)
ξ + D̄2∆̂r + Γ

˙̂
∆r

)

(23)

yields to V̇ ≤ −‖x̄1‖2 − ‖ξ‖2. In the ideal case, the

coordinates x̄1, ξ will be exponentially stable. Finally,

the coordinate x̄1 is exponentially stable, i.e. there exist

constants α1, α2 > 0 such that ‖x̄1‖ ≤ α1 ‖x̄1(0)‖ exp−α2t

for all t > tr, with tr > 0, and the remaining trajectories will

be bounded, i.e. |x̄2| ≤ |Kx̄1|+ |Γ|∆+
r and from (23) there

exist some Φ > 0, such that |x̄3| ≤ Φ |x̄|+
∣
∣Γ + D̄2

∣
∣∆+

r for

all t > tr.

Considering (23), the sliding manifold takes the form

σ = x̄3 + ϕ
(

x̄1, x̄2, ∆̂r,
˙̂
∆r

)

(24)

where ϕ
(

x̄1, x̄2, ∆̂r,
˙̂
∆r

)

is the nested backward

compensator [22], given by ϕ
(

x̄1, x̄2, ∆̂r,
˙̂
∆r

)

=
(
Ā21 +BT

1 P +
(
Ā22 + I

)
K
)
x̄1 +

(
Ā22 + I

)
x̄2 +

(
D̄2 +

(
Ā22 + I

)
Γ
)
∆̂r + Γ

˙̂
∆r.

The dynamics of the sliding variable (24) is given by

σ̇ = A31x̄1 +A32x̄2 +A33x̄3 +D3∆r + us

+ ϕ̇
(

x̄1, x̄2, ∆̂r,
˙̂
∆r

)

. (25)

To induce SM on the manifold σ = 0, the super-twisting

control algorithm [12] is applied to (25)

us = us1 + us2 (26)

with us1 = −
(

A31x̄1 +A32x̄2 +A33x̄3 +D3∆̂r

)

−ks1 |σ|1/2sign(σ), u̇s2 = −ks2sign(σ) and ks1 , ks2 > 0.

The stability condition for the system (25) closed-loop by

(26), can be obtained via the transformation qs = us2 +

ϕ
(

x̄1, x̄2, ∆̂r,
˙̂
∆r

)

to

σ̇ = −ks1 |σ|
1
2 sign (σ) − qs

q̇s = −ks2sign (σ) + ϕ̇
(

x̄1, x̄2, ∆̂r,
˙̂
∆r

)

.
(27)

Under the assumption

∣
∣
∣ϕ̇

(

x̄1, x̄2, ∆̂r,
˙̂
∆r

)∣
∣
∣ < δϕ < ∞

and choosing ks1 > 0 and ks2 > 3δϕ + 4
(

Σ
ks1

)2

then

(σ, qs) = (0, 0) in finite time [23]. Establishing a SM in

the manifold σ = 0.

IV. BRAKE CONTROLLER

Consider the brake subsystem (12), defining xb =
[
x5 x6 x7

]T
, and taking into account the slip equation

(7), the direct action of the pressure Pb in the brake cylinder

over the wheels motion, and the measurements of yb =
[
x5 x7

]
, the tracking error e1 is defined as

e1 , x5 −
1− s∗

r
x7. (28)

Note that if e1 = 0, then s = s∗. This results in the

maximum friction force, minimizing the braking time until

the wheel locking is avoided.

Straightforward calculations reveal that it is possible to

write x5 and x7 in terms of e1. From (11), (12) and (28)

the dynamics of e1 can be written in the Nonlinear Block

Controllable with perturbation form [24]

ė1 =f1 (e1) + b1 (e1)x6 +∆1 (e1, t) (29)

ė2 =− a10e2 + b3ub +∆2 (e, t) (30)



where e2 = x6 − x6δ is an auxiliary error variable, with

x6 considered as a virtual control for (29), with desired

value x6δ . The expressions f1 (e1) and b1 (e1) are given by

f1 (e1) = 1−s∗

r [a11F (s)− fw(x7)] − a7x5 + a8f (s) and

b1 (e1) = −a9. With e = (e1, e2), the terms ∆1 (e1, t) =
∆̄1 − 1−s∗

r ∆̄3 and ∆2 (e, t) = ẋ6δ − a10x6 are the system

perturbations. It will be assumed that those perturbations

and their first derivatives are bounded as |∆1 (e1, t)| ≤ ∆+
1 ,∣

∣
∣∆̇1 (e1, t)

∣
∣
∣ ≤ ∆+

1 , |∆2 (e, t)| ≤ ∆+
2 and

∣
∣
∣∆̇2 (e, t)

∣
∣
∣ ≤ ∆+

2 .

Selecting

x6δ = − 1

b1 (e1)
(f1 (e1) + λ1e0 + λ2e1 − u1) (31)

as is [25], where ė0 = e1 and u̇1 = −αψ1,2 (e1, ė1), with

ψ1,2 = ė1+|e1|
1/2sign(e1)

|ė1|+|e1|1/2
and α, λ1, λ2 > 0, and applying the

super-twisting control algorithm [12] as

ub =
1

b3
(ub1 + ub2) (32)

with ub1 = −kb1 |e2|1/2sign(e2), u̇b2 = −kb2sign(e2) and

kb1 , kb2 > 0; the system (29)-(32) reduces to






ė0 = e1

ė1 = −λ1e0 − λ2e1 + u1 + b1 (e1) e2 +∆1

u̇1 = −α ė1+|e1|
1/2sign(e1)

|ė1|+|e1|1/2

(33)

{

ė2 = −a10e2 − kb1 |e2|1/2sign(e2) + ∆2

u̇b2 = −kb2sign(e2)
(34)

where ė1 is calculated applying a SM differentiator [19] and

the brake valve is considered of the type of valve which can

vary its position in a continuous range.

The stability of the closed loop system (33)-(34) is

outlined in a step by step procedure. Step A) Reaching phase

of the projection motion (34), Step B) Stability of the SM

dynamics (33) and Step C) Stability of the zero dynamics

x7.

Step A) Let qb = ub2 +∆2 (e, t), then from the equation

(34), it follows that

ė2 = −a10e2 − kb1 |e2|1/2sign(e2) + qb (35)

q̇b = −kb2sign(e2) + ∆̇2 (e, t) . (36)

Under the assumption

∣
∣
∣∆̇2 (e, t)

∣
∣
∣ ≤ ∆+

2 , it follows that if

kb1 > 0 and kb2 > 3∆+
2 + 4

(
∆+

2

kb1

)2

, then (e2, qb) = (0, 0)

in finite time [23]. Establishing a SM in the manifold e2 = 0
despite of the perturbation ∆2 (e, t).

Step B) Taking into account the equation (30) and defining

z1 = e1 and z2 = ė1, the motion on the manifold e2 = 0 is

given by

ż1 =z2

ż2 =− λ1z1 − λ2z2 − α
z2 + |z1|1/2sign(z1)

|z2|+ |z1|1/2
+ ∆̇1 (z1, t)

Under the assumption

∣
∣
∣∆̇1 (e1, t)

∣
∣
∣ ≤ ∆+

1 , it follows that

if α > ∆+
1 , then (z1, z2) = (0, 0) in finite time [26],

establishing a SM on the manifold e1 = 0 despite of the

perturbation ∆1 (e1, t).
Step C) Note that during braking process x7 > 0 and with

s = s∗ due to the control action, the zero dynamics becomes

ẋ7 = −a11F (s∗)− fw (x7) + ∆̄3. (37)

From the vehicle mechanics, the term fw (x7) − ∆̄3

can be considered to be bounded
∣
∣fw (x7)− ∆̄3

∣
∣ ≤

∆+
3 . In addition, a11F (s∗) ≫ ∆̄3. Therefore, let γ =

a11F (s∗) − ∆+
3 , γ > 0, and V = 1

2x
2
7, then V̇ =

−x7
[
a11F (s∗) + fw (x7)− ∆̄3

]
< −γx7. Hence, V̇ <

−γ0
√
V , where γ0 = γ

√
2. Thus, x7 = 0 in finite time.

Also, from (28) it follows that x5 = 0 in finite time.

V. SIMULATION RESULTS

The feasibility of the proposed control scheme are shown

in simulations on the wheel model design example, the

system parameters are listed in Table 1.

TABLE 1

Values of Parameters (MKS Units)

Parameter Value Parameter Value Parameter Value

mc 1800 J 18.9 E 0.97

mw 50 kb 100 Af 6.6

Kcw 1050 bb 0.08 Cd 0.65

Kwr 175500 r 0.3 ρ 1.225

Ccw 19960 B 10 vw -6

Cwr 1500 C 1.9 g 9.81

τ 0.0043 D 1 v 0.5

To maximize the friction force, we suppose that slip tracks

a constant signal during the simulations s∗ = 0.203, which

produces a value close to the maximum of the function φ(s).
With parameters value presented in Table 1, the φ(s) function

represents the friction relation under a dry surface condition.
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Fig. 3. Control signal for ABS ub.
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Fig. 4. Longitudinal speed x7

(dashed) and the linear wheel speed
x5 (solid).

The road perturbation is considered as zr = 0.1 cos (10t).
The control law parameters are, ks1 = 100000, ks2 =

150000, K =
[
−20 173

]T
, kb1 = 1000, kb2 = 500,

α = 100 and λ1 = λ2 = 50. The matrix A is designed

such that its eigenvalues are {−50,−60,−80− 70}, while

Λ = 10000 for HOSM observer design.

The control signal ub for the ABS is presented in Fig. 3,

and the longitudinal speed v and the linear wheel speed rω
are shown in Fig. 4, the ABS controller should be turned off

when the longitudinal speed is close to zero.

The Figure 5 shows the slip rate during the breaking

process. It can be observed the fast convergence to the

reference value s∗ and Fig. 6 presents the errors e1 and e2
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Fig. 5. Slip performance in the
braking process.
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Fig. 6. Errors e1 (solid) and, e2

(dashed).

The Figure 7 shows the coordinate x̄11 position during

the breaking process. The position is kept constant until the

car is almost stopped. On the other hand, Fig. 8 shows the

suspension position x̄2; it moves constantly, counteracting

the changes on road and wheel.
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Fig. 7. Suspension position x̄1.
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Fig. 8. Suspension position x̄2.

The control action us for the suspension is shown in Fig.

9. The valve can put or extract fluid into the reservoir to

obtain the required force. The system arrives to the sliding

surface (Fig. 10) and it is maintained there in spite of the

unmatched perturbations coming from the road.
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Fig. 9. Control signal for
suspension us.
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Fig. 10. Sliding surface σ.

VI. CONCLUSIONS

In this work HOSM based controllers for ABS assisted

with active suspension has been proposed. In both cases,

the simulation results of the closed-loop system are very

accurate, taking into account the high uncertainty of

the system, namely, parametric variations and neglected

dynamics as well as the perturbations from the road.
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