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Abstract—In this paper a sliding-mode observer for a class [12]. Subsequently, for the calculation of equivalent coht
of non-linear systems is proposed. The observer is based onwe propose the use of robust sliding mode differentiators
the equivalent control method. The mathematical tools reqired (see [13], [14]) instead of the common used classic low-

to design such an observer are also presented. The proposed filt In additi th tion t f the obse
scheme can ensure finite time convergence of the observer angP@Ss Tters. In addition, the correction term ot the obsersye

the reduction of chattering effect due to relay-type corretion designed using the super-twisting algorithm, in order tsuee
terms. Several examples are presented to illustrate the ppwsed finite time convergence of the observer and the reduction

method. of chattering effect due to relay-type correction termse Th

other goal of this paper is to show that the proposed observer

can also be applied to a chemical process system like the

Sliding mode approaches have been widely used f@ontinuous Stirred Tank React¢CSTR).

the problems of dynamic systems control and observationin the following, in section 1l some mathematical

due to their characteristics of finite time convergencegreliminaries are given. In section Ill an observer desigsel

robustness to uncertainties and insensitivity to externaler the equivalent control method for a class of observable

bounded disturbances. In addition, the state observers h&SO systems with some matching conditions on the input is

another important properties like the possibility of obtag proposed. Two examples of the proposed observer, including

a step by step design and working with reduced observatian observer design for a CSTR and the use of an observer

dynamics [1, Ch. 4], [2] . Often, sliding mode motion isfor synchronization of a chaotic system are presented in IV.

obtained by means of a discontinuous term depending Bihally, in section V some conclusions are given.

the output error, into the controlling or observing system.

Additionally, by using the sign of the error to drive the slig [I. MATHEMATICAL PRELIMINARIES

mode observer, the observer trajectories become insentiti hi . h h tical N

many forms of noise. Hence, some sliding mode observersm.t IS section, we present the mathematical concepts
. . o . fequired to formulate an observer design based over the

have attractive properties similar to those of the Kalmaarfil

: . " L . ) equivalent control method. Basic topics of sliding mode
(i.e. noise resilience) but with simpler implementatioh [3 . ,
. . . observers based on equivalent control method are given and
Several researchers have dealt with the issue of design

L . o 1% the arbitrary-order differentiator and the supesting
fr:g:?(inrgotﬁz ccl):sssei::V:Ir;r(:glregwlfgirﬁga-ﬁgsgfasﬁgtzseﬁyngs algorithm are introduced. These concepts are requirechfor t
[6]. Some applications of the sliding mode techniques observer design (and, by extension, to maintain its pragsrt

. _— : E% be proposed in section Ill. For the calculation of equéwal
control and ro.bust (j_|fferent|at|on are presented n [7]19_\]0 ontrol, we employ robust sliding mode differentiatorse(se
that the classical sliding modes techniques are a parncuE

|I. INTRODUCTION

case of the high order sliding mode concept and can ilg]' [14]) instead of the commonly used classic low-pass

. ) i ) fters. The super-twisting algorithm is employed in order
cqn_5|dered as a first order shdmg_mode [8]. The high 0“?'% ensure finite time convergence of the observer and the
sliding modes allow also to take into account the sampli

. "Wduction of chattering effect.
measurement delays [8]. Some practical examples of the use

high order sliding mode observers can be found in [9], [10k ' g|iding Mode Observers Based on Equivalent Control
All of these imply that the high order sliding mode observejathoq
is very convenient for real implantations. _ )

In this work, our purpose is to discuss an observer designL€t us consider the following SISO system
based over the equivalent control method for a class of b= f (@) +g(@)u 1)
observable SISO systems with some matching conditions on
the input. This method has been treated previously in [1d] an y=h(z)



wherez € R™ is the stateu € R is the input,y € R is Under Condition 2, to estimate the state variables of the
the output andf, g, h are sufficiently differentiable function system (1) using the measurementsn observer of the form
vectors. . ) .

For the system (1), let us define the vector of output &=0"" (&) Msign(V (t) — H (&) + g (x)u  (7)
derivatives,H (), as follows:

is used.
hi (x) h(x) Drakunov [11] showed that using a suitable choice of
ho (z) Lsh (z) M (&), m; (&) as a upper bound of,4q (z) with ¢ =
r) = : = : ; (2) 1,...,n—1andm, (&) of L}h (x), the observers in equations
' ' 5) and (7) converge in finite time.
and theObservability matrix O (z), as: B. Arbitrary-order exact robust differentiator
Real-time differentiation is a well-known problem, and
dh (x) L
dL:h (z) several approaches have been proposed to obtain time
O (z) = OH (x) — ! (3) derivatives for a given signal. Between these all solutions
ox :

: sliding mode based methods have demonstrated high accuracy
dL?‘lh(x) and robustness. For the calculation of higher order exact
derivatives, successive implementation of a first order
differentiator with finite time convergence is used in [13].
For the same objective, an arbitrary-order exact robust

WhereLj;h(:z:) represents the-th Lie derivative ofh (z) in
the f vector field direction.

In addition, let us suppose the following condition: differentiator based in a recursive scheme and which pesvid
Condition 1. In other words, the system (1) is observable, i€ best possible asymptotic accuracy in presence of input
the sense that the observability rank condition noises and discrete sampling is proposed in [14]. fet) €

C*[0,00) be a function to be differentiated and let< k,
rank(O (z)) = n. (4) then thek-th order differentiator is defined as follows:
is fulfilled [15]. S = o,

For the case of systems without inpyt= 0, to estimate Co = —A\pLF+1 |20 — f (t)|ki+1 sign(zo — f (t)) + 21

the state variables of the system (1) using the measurements h=0

y, an observer of the form ) -
. = —Ag—1L¥ |21 — Co| F sign(z1 — (o) + =
b — 01 (&) Msign(V (1) — H (2)) 5) G k—1L% |21 = ol gn(z1 — Go) + 22

is proposed in [11], [4]. In (5), the function sigm) is ®)

extended to the form sigg) = col(sign(&1),. .., sign(&,)), k=1 = Gr—1,

M (z) = diag(my (&), ...,my (&)) is anxn diagonal matrix ¢, _; = —\ L2 |2p_1 — <k_2|% Sign(z_1 — Co2) + 2k
with positive entries which are the gains of the observer, 2 = —AoLsign(zx — Goo1)

V (t) =col(vy (t),...,v, (t)) with vy (t) = y (¢) and
_ N . where z; is the estimation of the true signgl®) (t). The

viti (t) = {m; (2) sign[v; (t) — hi (2)]},, ©)  gifferentiator provides finite time exact estimation(un'dEal
with:i=1,...,n—1, and With{}eq denoting anequivalent condition when neither noise nor sampling are present. The
value operatorof a discontinuous function in sliding modeparameters\g = 1.1, Ay = 1.5, Ao = 2, A3 = 3, Ay = 5,
[16]. In the case of the sliding mode observer for the systels = 8 are suggested for the construction of differentiators up
with input, additional matching conditions are needed fdp the5-th order. For the gair, case, the following condition
the observation error to be independent of the input. S6,provided:
addressing the relationship between system and inputs,

e .. :
following condition is needed. @ondmon 3. The parametelL is selected such that be a upper

bound for|f(*+1)].

Condition 2. For anyx € R, the vector See [14] and [7] for further details on the estimation of time

0H (x) of convergence, the error bounds for the sighé) and their
oz 7 (z) derivatives in presence of noise or discrete sampling amek ot
does not depend on, it means properties and constraints of the differentiator.
9 [8H (z) (I)] _0 C. The Super-Twisting control algorithm
ox ox

An important second order sliding mode algorithm for
for all z € R. control and observation is the so-callé8uper-Twisting



Algorithm [1, Ch. 3]. To introduce it, consider the following Also, the vectodV (¢) is defined as follows:
controlled system

T =u(t)+e(t) ©) W (t) = col (21, ., 20) -
wherez € R, ¢ (t) represents external noise or perturbation
andu has the form
- In addition, the correction term of the observer is designed
w(t) =i () +ua(t) (10) using the super-twisting algorithm (10), in order to ensure
with u; (t) = —aq|z|'/?sign(z) and s, (t) = —asgsign(z), finite time convergence of the observer and the reduction of

wherea; > 0 andas > 0 are the control parameters. Inchattering effect due to relay-type correction terms.

addition, it is supposed (¢) is differentiable andy> (1) | < N, The resultant observer for the system (1) without input,
vt > 0 with N a previously known constant. g = 0, is presented in the following equation:
The stability condition for the system (9) in closed-loop by

(10) can be obtained through the transformation
t &=071 (@) W () + 4 + 4] (12)
y(t) = (6 - aa [ signa () dr
’ where ¢y = M, () |V (t) — H (2)|sign(V () — H (2)),
o = My (2) sign(V (t) — H (&)) and the vectof] (z) is de-
i =y — oy |z|*/?sign(z) (11) fined as in (2), withM, (2) = diag(mi,1 (Z),...,m1n0 (2))
C and M, (&) = diag(maq (£),...,ma, (2)) are twon x n
§ = - assign(z). diagonal matrices with positivelentries which are the gains
In this form, with the Lyapunov function proposed byof the observer. The functio)? is extended to the form
Polyakov and Poznyak in [17], if the parameters and as ¢4 = col 51%’_ ,5:?) for the expressionV’ () — H (z) |
are chosen ass > 5N and 32N < o} < 8(az — N), the

is provided. input fulfilling the Condition 2 and using the measurements

y, the proposed observer has the form:

reducing the system to

IIl. SECOND ORDERSLIDING MODE OBSERVERUSING
ROBUST DIFFERENTIATORS

This section presents an sliding mode observer based on a &=071 (&) [W () + 1 + o] + g (2) u. (13)
robust differentiator and the super twisting algorithmsal
the stability analysis for the observer is presented.

A. Observer Design B. Observer Convergence

For the system (1), with reference to the equations (5) and _ _ _
(7), we propose an observer based on an arbitrary-ordet exadOr the observer (12), under the diffeomorphism defined by
robust differentiator (8) for the calculation of the vecior¢) the observability matrb®, the modified observation errar,

robust diff can be written in the transformed states- H (z) — H (&),
1% (t) = col (ya RBlye - ,anl) " partICU|ar
with . '
é=H(xz)—-H (&) (14)
2.50 - COv
n-1
o= =ML |20 —y|"™ sign(zo —y) + 21 i
: leading to
1 = Cl7

1 n—=2
G =—Ap—1 L7 |21 — Co| "7 sign(z1 — (o) + 22

Zp_1 = Cnfla
Cnfl - _)\IL% |Zn71 - <n72|% Sign(znfl - <n72) + Zn 6 = hi (.I') — [W (t) + 7/)1 —+ 1ﬁ2] (15)
Zn = —AoLsign(z,, — (u—1)

instead of the recursive form (6) which generally use ctassi P (x)
low-pass filters for the definition of thg}_, operator. '




that is A. Rossler chaotic system synchronization

- g, T The problem of synchronization of chaotic systems can be
€1 1 () seen as an observer design problem [18], [19]. Full order
€2 ha (2) observer needs to estimate the unmeasurable states and the

: : measurable states at the same time, increasing the comyplexi

é; - h; (z) _ of the task. TheRossler systenfi21] is a system conformed

by three non-linear ordinary differential equations. Tehes

. . differential equations define a continuous-time dynamical

€n—1 hn—1 (z) system that exhibits chaotic behavior. The set of equations

L €én | hy () (17) shows a state representation of the Rossler system.

: () wl,_l —ma1 (Z) Y21
22 —M1.2 (55) 7/)1.,2 —m22 (55) 7/)2.,2

T, = axy + 29
i?Q = —I1 — T3 (17)

j73:b+$3($2—0)

zi —ma; (&) Y1, — ma; (£) Yo (16)
s () n.,l s () o Assuming the stater; as the output, the SISO system
2 — Map (B) Y1y — Mg (2) Yon representation of the Rossler system in the way of (1) is
. ar, + o
where 1/1171' = |Ui (t) — h; (f)|§ Sign(vi (t) — h; (i‘)) and f (I) = —T1 — X3 (18)
a,; = sign(v; (t) — h; (£)). b+ x3 (2 — )
The convergence df (¢) does not depend on the observer,
but in Condition 3, which for this case establishes that the _
h (CL‘) = X1. (19)

n+ 1-th Lie derivative ofh (z) in the f vector field direction,

Ly*'h(z), must be bounded by.. Therefore, under the From (18) and (19) the Lie derivatives of the output are:
fulfilment of this condition, there is a timed > 0 such as

if t >ty thenV (¢) = H (z) andW () = H (). h =
Then, fort > t4, Eq. (16) becomes L¢h = axy + x2 (20)
) ) _ R R ; L?h:a(axl +x2) — a1 — a3
€1 —mi,1 (CC) P11 — Mo (CC) a1 . - .
) =i (2) 1,2 — Mo (8) o, and the corresponding observability matrix is
: : 1 0 0
& | = —ma ;i (2) P10 — mai (2) 2 0= a 10 . (21)
: . a>-1 a -1
én._l —m1n—1 (2) ¥1.n1 _ Mam—1 (%) Yan_1 Using the equations (20) and (21), we designed and observer
én iy (2) Y1 — Mo (£) Yan with the form shown in (13). The values of the system
- - ’ ’ ’ ’ © constants aree = 02,b = 02andc = 5.7. The
where v1, = |hi(2) = hs (i:)|% sign(hs (z) — hi (2)) = parameter values for the differentiator dre= 455, \; = 1.1,

1 . Ao = 1.5, and 4 = 3.
le:|2 sign(e;) andipe ; = sign(h; (x) — h; (£)) = sign(e;). 2 and

Therefore, with a suitable choice of the gainand the
matricesM;, M, according on (8) and (11) respectively, the
convergence of the observation error to zero is achieved in
finite time.

IV. APPLICATION CASE

1 (solid) and 2 (dashed;

We highlight in this section the utility and the advantages o
the observer design based over the equivalent control etho
of the previous recalls in the resolution of the observation
problem.

At first, we use a system an observer for synchronization of
a chaotic system previously treated in the literature [[18)].

At last, we apply the same procedure to a CSTR system [20].  Fig. 1. Realx; and observed: (- -) states for system (17)




TABLE |

NOMINAL PARAMETERS OFCSTR

Parameter Value Unit
F 0.1605 m3 - min~1
1% 2.4069 m3
Cin 21145 gmol - m~—3
ko 2.8267101 min~ 1
’ E 75361.14 J - gmol~!
R 8.3174 J-gmol~ 1K1
Tin 295.22 K
AH -9.071210% J - gmol~1
p 1000 kg-m~3
Cp 3571.3 J kg1
Fig. 2. Realzo and observed: (- -) states for system (17) U 25552104 J-(s-m2.K)"!
A 8,1755 m=2
T; 279 K
dl  F AH I A
Sﬂriq E = V (Tzn - T) — p—C'Z,kOCAeiﬁ + p[(]jﬁ (Tj — T)
% _ g (Cin — Cua) — koClae—Tr (22)
1 ? Assuming as the state variables the temperatiireof
‘ the reactive mass and the concentrati@an of the reactant
= respectively, the model in space-state representationoars
L in the set of equations (23). We suppose tliatcan be
e measured and acts as the model outpuffhe goal is the
estimation ofC4 (denoted byzs) from 7' (denoted byz,).
Fig. 3. Realzs and observed:(- -) states for system (17) By = é (Tm - Il) _ pA—CZkOIQS% + pg:lv (Tj _ 501)
F __B_
To = — (Cz — .’L‘g) — koxoe Eo1 (23)
Figures 1, 2 and 3 show the simulation results for the 14
system (18). The initial conditions for this system were y=h()=1
2(0) = [134" and#(0) = [-1 —15]". The statei; et
converges tar; in finite time of 0.1 seconds. Theti; reaches
to x5 in finite time of aboutl.5 seconds. Note that, reaches f(z)= (24)
z, only afterz; converges to its state. Finally, at a time of ( LTy — 1) — %%9626_% + 24 (T) — 1) )
2.5 second,ts converges tacs. % (Cin — 22) — komae™ 7o
and
h(z) =z (25)

B. CSTR Application from (24) and (25) the Lie derivatives of the output are:

h=ux (26)
The CSTR process is a recognized benchmark frequently , _ I*\, AH, e = UA .
used for controller proofs [20] and represents many pr@asess V (Tin = 1) pCyp 0%2¢ + pCpV (T = 1)
typically employed in industry. The model of the CSTR is and the corresponding observability matrix is
described by the set of equations (22). See [20] for a more
in-depth description and modeling of the process and itsO (z) = (27)

parameters. The simulation values for the system were also 1 0
extracted from the same reference, and they are summarized r pya EAH vy 1 ~7r _AHL —78:
in Table I. V — VpC, ~ RpCp2:"0 oCp 0 :



The proposed observer has been tested by simulation with] S. V. Drakunov, “An adaptive quasioptimal filter with dintinuous

the initial conditions = (O) _ [283.225 2005.838]T and parameter,”Automation and Remote Contralol. 44, no. 9, pp. 1167—
. T . . 1175, 1983.
€ (0) = [300 2100] - In Figure 4, we can see; reaCh'ng [4] S. V. Drakunov and V. Utkin, “Sliding mode observers.atigl,” in Proc.

the real temperature value in abdu$ minutes. 34th IEEE Conf. Decision and Controlol. 4, 1995, pp. 3376-3378.
[5] C. Edwards and S. Spurgeon, “On the development of disuoous
observers,” International Journal of Robust and Nonlinear Control
vol. 59, p. 12111229, 1999.
300+ [6] J.-J. E. Slotine, J. K. Hedrick, and E. A. Misawa, “Nomar state
o1 estimation using sliding observers,” Rroc. 25th IEEE Conf. Decision
§ and Contro] vol. 25, 1986, pp. 332-339.
i [7] M. T. Angulo, L. Fridman, and A. Levant, “Robust exact fatime
204-j; output based control using high-order sliding moddstéern. J. Syst.
. Sci, vol. 0, p. 0, 2011.
li [8] T. Boukhobza and J.-P. Barbot, “High order sliding modeserver,” in
' Proc. 37th IEEE Conf. Decision and Contralol. 2, 1998, pp. 1912—
A 1917.
sl [9] J. Davila, L. Fridman, A. Pisano, and E. Usai, “Finitesg state
observation for non-linear uncertain systems via highdeo sliding
! modes.”Int. J. of Contro| vol. 8, pp. 1564-1564, 2009.
S Y [10] L. Fridman, Y. Shtessel, C. Edwards, and X.-G. Yan., dthér-order
sliding-mode observer for state estimation and input rsgantion
in nonlinear systems,international Journal of Robust and Nonlinear
Control, vol. 18, no. 4/5, pp. 399-413, 2008.
Fig. 4. Temperature:, [11] S. V. Drakunov, “Sliding-mode observers based on etlaivt control
method,” in Proc. 31st IEEE Conf. Decision and Contrdl992, pp.
2368-2369.
In Figure 5, we see that, also converges to the real valud12l S. V. Drakunov and M. Reyhanoglu, “Hierarchical sliginmode

. P . . observers for distributed parameter systendsfirnal of Vibration and
of the concentration in finite time aft@ minutes. Control, vol. 36, no. 1, pp. 1-13, 2010.

[13] A. Levant, “Robust exact differentiation via slidingaae technique,”
Automatica vol. 34, no. 3, pp. 379-384, 1998.

[14] ——, “Higher-order sliding modes, differentiation awdtput-feedback
control,” Int. J. of Contro) vol. 76, no. 9/10, pp. 924-941, 2003, special

i issue on Sliding-Mode Control.

i [15] A. Isidori, Nonlinear Control Systems 3rd ed. Springer

it (Communications and Control Engineering), 1995.

H [16] V. Utkin, J. Guldner, and J. ShiSliding Mode Control in

) and & (dashed;

2, (solid;

2
»
3
&

5000 -
4000 -

3000 -

L Electro-Mechanical Systems, Second Edition (Automatiash Gontrol
; Engineering) 2nd ed. CRC Press, 5 2009.

i [17] A. Polyakov and A. Poznyak, “Reaching time estimatiam fsuper-
|

|

twisting” second order sliding mode controller via Lyapunfonction
designing,”IEEE Transactions on Automatic Contralol. 54, no. 8, pp.
1951-1955, 2009.
000 [18] H. Nijmeijer and |. M. Y. Mareels, “An observer looks at
lmin synchronization,” IEEE Transactions on Circuits and Systems I
Fundamental Theory and Applicatigngol. 44, no. 10, pp. 882—-890,
1997.
[19] G. Zheng and D. Boutat, “Reduced observer and its agpiidic
to synchronization of chaotic systems,” i@ommunication Systems
Networks and Digital Signal Processing (CSNDSP), 2010 7th
International Symposium ofuly 2010, pp. 201 —-207.
H. Botero and H. Alvarez, “Non linear state and paramgetstimation
. . . . .. in chemical processes: Analysis and improvement of thréienaton
We show in this paper the design of a high order sliding  stryctures agplied to a CSYI'RIhtematiopnal Journal of Chemical
mode observer for nonlinear systems using the equivalent Reactor Engineeringvol. 9, no. A6, pp. 1-34, 2011. [Online].
control method. The super-twisting algorithm was emplayed ___ Available: http://www.bepress.comiijcre/vol9/A6

s 1] O. E. Rossler, “An equation for continuous chadgfiysics Lettersvol.
order to ensure finite time convergence of the observer and {% ] 57A, no. 5, p. 397338, 1976. Y

reduction of chattering effect. Moreover, we also showes th
application of the proposed schemes to a real process model
like the CSTR. This model is a well documented benchmark
that includes many dynamical processes; in this regard, the
results of this work can be expanded towards a plethora of
different application cases.

Fig. 5. Concentrationcy

V. CONCLUSION [20]
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