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Facultad de Minas
Cr. 80 No. 65 - 223, Medellı́n, Antioquia, Colombia
Email: [japatin0, begiraldoos, habotero]@unal.edu.co

Abstract—In this paper a sliding-mode observer for a class
of non-linear systems is proposed. The observer is based on
the equivalent control method. The mathematical tools required
to design such an observer are also presented. The proposed
scheme can ensure finite time convergence of the observer and
the reduction of chattering effect due to relay-type correction
terms. Several examples are presented to illustrate the proposed
method.

I. I NTRODUCTION

Sliding mode approaches have been widely used for
the problems of dynamic systems control and observation
due to their characteristics of finite time convergence,
robustness to uncertainties and insensitivity to external
bounded disturbances. In addition, the state observers have
another important properties like the possibility of obtaining
a step by step design and working with reduced observation
dynamics [1, Ch. 4], [2] . Often, sliding mode motion is
obtained by means of a discontinuous term depending on
the output error, into the controlling or observing system.
Additionally, by using the sign of the error to drive the sliding
mode observer, the observer trajectories become insensitive to
many forms of noise. Hence, some sliding mode observers
have attractive properties similar to those of the Kalman filter
(i.e. noise resilience) but with simpler implementation [3].

Several researchers have dealt with the issue of designing
sliding-mode observers for different applications [4], [5],
including the classical problem of non-linear state estimation
[6]. Some applications of the sliding mode techniques to
control and robust differentiation are presented in [7]. Note
that the classical sliding modes techniques are a particular
case of the high order sliding mode concept and can be
considered as a first order sliding mode [8]. The high order
sliding modes allow also to take into account the sampling
measurement delays [8]. Some practical examples of the use
high order sliding mode observers can be found in [9], [10].
All of these imply that the high order sliding mode observer
is very convenient for real implantations.

In this work, our purpose is to discuss an observer design
based over the equivalent control method for a class of
observable SISO systems with some matching conditions on
the input. This method has been treated previously in [11] and

[12]. Subsequently, for the calculation of equivalent control,
we propose the use of robust sliding mode differentiators
(see [13], [14]) instead of the common used classic low-
pass filters. In addition, the correction term of the observer is
designed using the super-twisting algorithm, in order to ensure
finite time convergence of the observer and the reduction
of chattering effect due to relay-type correction terms. The
other goal of this paper is to show that the proposed observer
can also be applied to a chemical process system like the
Continuous Stirred Tank Reactor(CSTR).

In the following, in section II some mathematical
preliminaries are given. In section III an observer design based
over the equivalent control method for a class of observable
SISO systems with some matching conditions on the input is
proposed. Two examples of the proposed observer, including
an observer design for a CSTR and the use of an observer
for synchronization of a chaotic system are presented in IV.
Finally, in section V some conclusions are given.

II. M ATHEMATICAL PRELIMINARIES

In this section, we present the mathematical concepts
required to formulate an observer design based over the
equivalent control method. Basic topics of sliding mode
observers based on equivalent control method are given and
also the arbitrary-order differentiator and the super-twisting
algorithm are introduced. These concepts are required for the
observer design (and, by extension, to maintain its properties)
to be proposed in section III. For the calculation of equivalent
control, we employ robust sliding mode differentiators (see
[13], [14]) instead of the commonly used classic low-pass
filters. The super-twisting algorithm is employed in order
to ensure finite time convergence of the observer and the
reduction of chattering effect.

A. Sliding Mode Observers Based on Equivalent Control
Method

Let us consider the following SISO system

ẋ = f (x) + g (x) u (1)

y = h (x)



wherex ∈ R
n is the state,u ∈ R is the input,y ∈ R is

the output andf , g, h are sufficiently differentiable function
vectors.

For the system (1), let us define the vector of output
derivatives,H (x), as follows:

H (x) =











h1 (x)
h2 (x)

...
hn (x)











=











h (x)
Lfh (x)

...
Ln−1
f h (x)











, (2)

and theObservability matrix, O (x), as:

O (x) =
∂H (x)

∂x
=











dh (x)
dLfh (x)

...
dLn−1

f h (x)











(3)

whereLi
fh (x) represents thei-th Lie derivative ofh (x) in

the f vector field direction.
In addition, let us suppose the following condition:

Condition 1. In other words, the system (1) is observable, in
the sense that the observability rank condition

rank(O (x)) = n. (4)

is fulfilled [15].

For the case of systems without input,g ≡ 0, to estimate
the state variables of the system (1) using the measurements
y, an observer of the form

˙̂x = O−1 (x̂)Msign(V (t)−H (x̂)) (5)

is proposed in [11], [4]. In (5), the function sign(•) is
extended to the form sign(ξ) = col(sign(ξ1) , . . . , sign(ξn)),
M (x̂) = diag(m1 (x̂) , . . . ,mn (x̂)) is an×n diagonal matrix
with positive entries which are the gains of the observer,
V (t) = col(v1 (t) , . . . , vn (t)) with v1 (t) = y (t) and

vi+i (t) = {mi (x̂) sign[vi (t)− hi (x̂)]}eq (6)

with i = 1, . . . , n − 1, and with{}eq denoting anequivalent
value operatorof a discontinuous function in sliding mode
[16]. In the case of the sliding mode observer for the system
with input, additional matching conditions are needed for
the observation error to be independent of the input. So,
addressing the relationship between system and inputs, the
following condition is needed.

Condition 2. For anyx ∈ R, the vector

∂H (x)

∂x
g (x)

does not depend onx, it means

∂

∂x

[

∂H (x)

∂x
g (x)

]

= 0

for all x ∈ R.

Under Condition 2, to estimate the state variables of the
system (1) using the measurementsy, an observer of the form

˙̂x = O−1 (x̂)Msign(V (t)−H (x̂)) + g (x) u (7)

is used.
Drakunov [11] showed that using a suitable choice of

M (x̂), mi (x̂) as a upper bound ofhi+1 (x) with i =
1, . . . , n−1 andmn (x̂) of Ln

fh (x), the observers in equations
(5) and (7) converge in finite time.

B. Arbitrary-order exact robust differentiator

Real-time differentiation is a well-known problem, and
several approaches have been proposed to obtain time
derivatives for a given signal. Between these all solutions,
sliding mode based methods have demonstrated high accuracy
and robustness. For the calculation of higher order exact
derivatives, successive implementation of a first order
differentiator with finite time convergence is used in [13].
For the same objective, an arbitrary-order exact robust
differentiator based in a recursive scheme and which provides
the best possible asymptotic accuracy in presence of input
noises and discrete sampling is proposed in [14]. Letf (t) ∈
C k̄ [0,∞) be a function to be differentiated and letk ≤ k̄,
then thek-th order differentiator is defined as follows:

ż0 = ζ0,

ζ0 = −λkL
1

k+1 |z0 − f (t)|
k

k+1 sign(z0 − f (t)) + z1

ż1 = ζ1,

ζ1 = −λk−1L
1
k |z1 − ζ0|

k−1

k sign(z1 − ζ0) + z2

... (8)

żk−1 = ζk−1,

ζk−1 = −λ1L
1
2 |zk−1 − ζk−2|

1
2 sign(zk−1 − ζk−2) + zk

żk = −λ0Lsign(zk − ζk−1)

where zi is the estimation of the true signalf (i) (t). The
differentiator provides finite time exact estimation underideal
condition when neither noise nor sampling are present. The
parametersλ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 = 5,
λ5 = 8 are suggested for the construction of differentiators up
to the5-th order. For the gainL case, the following condition
is provided:

Condition 3. The parameterL is selected such that be a upper
bound for|f (k+1)|.

See [14] and [7] for further details on the estimation of time
of convergence, the error bounds for the signalf (t) and their
derivatives in presence of noise or discrete sampling and other
properties and constraints of the differentiator.

C. The Super-Twisting control algorithm

An important second order sliding mode algorithm for
control and observation is the so-calledSuper-Twisting



Algorithm [1, Ch. 3]. To introduce it, consider the following
controlled system

ẋ = u (t) + ϕ (t) (9)

wherex ∈ R, ϕ (t) represents external noise or perturbation
andu has the form

u (t) = u1 (t) + u2 (t) (10)

with u1 (t) = −α1|x|
1/2sign(x) and u̇2 (t) = −α2sign(x),

whereα1 > 0 and α2 > 0 are the control parameters. In
addition, it is supposedϕ (t) is differentiable and|ϕ̇ (t) | < N ,
∀t > 0 with N a previously known constant.

The stability condition for the system (9) in closed-loop by
(10) can be obtained through the transformation

y (t) = ϕ (t)− α2

t
∫

0

sign(x (τ)) dτ

reducing the system to

ẋ = y − α1|x|
1/2sign(x) (11)

ẏ = ϕ̇− α2sign(x) .

In this form, with the Lyapunov function proposed by
Polyakov and Poznyak in [17], if the parametersα1 andα2

are chosen asα2 > 5N and 32N < α2
1 < 8 (α2 −N), the

finite-time convergence of the system (11) to the origin(0, 0)
is provided.

III. SECOND ORDER SLIDING MODE OBSERVERUSING

ROBUST DIFFERENTIATORS

This section presents an sliding mode observer based on a
robust differentiator and the super twisting algorithm. Also,
the stability analysis for the observer is presented.

A. Observer Design

For the system (1), with reference to the equations (5) and
(7), we propose an observer based on an arbitrary-order exact
robust differentiator (8) for the calculation of the vectorV (t)
as follows:

V (t) = col(y, z1, . . . , zn−1)

with

ż0 = ζ0,

ζ0 = −λnL
1
n |z0 − y|

n−1

n sign(z0 − y) + z1

ż1 = ζ1,

ζ1 = −λn−1L
1

n−1 |z1 − ζ0|
n−2

n−1 sign(z1 − ζ0) + z2

...

żn−1 = ζn−1,

ζn−1 = −λ1L
1
2 |zn−1 − ζn−2|

1
2 sign(zn−1 − ζn−2) + zn

żn = −λ0Lsign(zn − ζn−1)

instead of the recursive form (6) which generally use classic
low-pass filters for the definition of the{}eq operator.

Also, the vectorW (t) is defined as follows:

W (t) = col(z1, . . . , zn) .

In addition, the correction term of the observer is designed
using the super-twisting algorithm (10), in order to ensure
finite time convergence of the observer and the reduction of
chattering effect due to relay-type correction terms.

The resultant observer for the system (1) without input,
g ≡ 0, is presented in the following equation:

˙̂x = O−1 (x̂) [W (t) + ψ1 + ψ2] (12)

where ψ1 = M1 (x̂) |V (t) − H (x̂) |
1
2 sign(V (t)−H (x̂)),

ψ̇2 =M2 (x̂) sign(V (t)−H (x̂)) and the vectorH (x̂) is de-
fined as in (2), withM1 (x̂) = diag(m1,1 (x̂) , . . . ,m1,n (x̂))
andM2 (x̂) = diag(m2,1 (x̂) , . . . ,m2,n (x̂)) are twon × n

diagonal matrices with positive entries which are the gains
of the observer. The function(•)

1
2 is extended to the form

ξ
1
2 = col

(

ξ
1
2

1 , . . . , ξ
1
2
n

)

for the expression|V (t)−H (x) |
1
2 .

To estimate the state variables of the system (1) with the
input fulfilling the Condition 2 and using the measurements
y, the proposed observer has the form:

˙̂x = O−1 (x̂) [W (t) + ψ1 + ψ2] + g (x)u. (13)

B. Observer Convergence

For the observer (12), under the diffeomorphism defined by
the observability matrixO, the modified observation error,e,
can be written in the transformed statese = H (x) −H (x̂),
in particular

ė = Ḣ (x)− Ḣ (x̂) (14)

leading to

ė =



























ḣ1 (x)

ḣ2 (x)
...

ḣi (x)
...

ḣn−1 (x)

ḣn (x)



























− [W (t) + ψ1 + ψ2] (15)



that is

























ė1
ė2
...
ėi
...

ėn−1

ėn

























=



























ḣ1 (x)

ḣ2 (x)
...

ḣi (x)
...

ḣn−1 (x)

ḣn (x)



























−

























z1 −m1,1 (x̂)ψ1,1 −m2,1 (x̂)ψ2,1

z2 −m1,2 (x̂)ψ1,2 −m2,2 (x̂)ψ2,2

...
zi −m1,i (x̂)ψ1,i −m2,i (x̂)ψ2,i

...
zn−1 −m1,n−1 (x̂)ψ1,n−1 −m2,n−1 (x̂)ψ2,n−1

zn −m1,n (x̂)ψ1,n −m2,n (x̂)ψ2,n

























(16)

where ψ1,i = |vi (t)− hi (x̂)|
1
2 sign(vi (t)− hi (x̂)) and

ψ2,i = sign(vi (t)− hi (x̂)).
The convergence ofV (t) does not depend on the observer,

but in Condition 3, which for this case establishes that the
n+1-th Lie derivative ofh (x) in thef vector field direction,
Ln+1
f h (x), must be bounded byL. Therefore, under the

fulfilment of this condition, there is a timetd > 0 such as
if t > td, thenV (t) ≡ H (x) andW (t) ≡ Ḣ (x).

Then, fort > td, Eq. (16) becomes

























ė1
ė2
...
ėi
...

ėn−1

ėn

























=

























−m1,1 (x̂)ψ1,1 −m2,1 (x̂)ψ2,1

−m1,2 (x̂)ψ1,2 −m2,2 (x̂)ψ2,2

...
−m1,i (x̂)ψ1,i −m2,i (x̂)ψ2,i

...
−m1,n−1 (x̂)ψ1,n−1 −m2,n−1 (x̂)ψ2,n−1

−m1,n (x̂)ψ1,n −m2,n (x̂)ψ2,n

























where ψ1,i = |hi (x)− hi (x̂)|
1
2 sign(hi (x)− hi (x̂)) =

|ei|
1
2 sign(ei) and ψ̇2,i = sign(hi (x)− hi (x̂)) = sign(ei).

Therefore, with a suitable choice of the gainL and the
matricesM1, M2 according on (8) and (11) respectively, the
convergence of the observation error to zero is achieved in
finite time.

IV. A PPLICATION CASE

We highlight in this section the utility and the advantages of
the observer design based over the equivalent control method
of the previous recalls in the resolution of the observation
problem.

At first, we use a system an observer for synchronization of
a chaotic system previously treated in the literature [18],[19].
At last, we apply the same procedure to a CSTR system [20].

A. Rössler chaotic system synchronization

The problem of synchronization of chaotic systems can be
seen as an observer design problem [18], [19]. Full order
observer needs to estimate the unmeasurable states and the
measurable states at the same time, increasing the complexity
of the task. TheRössler system[21] is a system conformed
by three non-linear ordinary differential equations. These
differential equations define a continuous-time dynamical
system that exhibits chaotic behavior. The set of equations
(17) shows a state representation of the Rössler system.

ẋ1 = ax1 + x2

ẋ2 = −x1 − x3 (17)

ẋ3 = b+ x3 (x2 − c)

Assuming the statex1 as the output, the SISO system
representation of the Rössler system in the way of (1) is

f (x) =





ax1 + x2
−x1 − x3

b+ x3 (x2 − c)



 (18)

and
h (x) = x1. (19)

From (18) and (19) the Lie derivatives of the output are:

h = x1

Lfh = ax1 + x2 (20)

L2
fh = a (ax1 + x2)− x1 − x3

and the corresponding observability matrix is

O =





1 0 0
a 1 0

a2 − 1 a −1



 . (21)

Using the equations (20) and (21), we designed and observer
with the form shown in (13). The values of the system
constants area = 0.2, b = 0.2 and c = 5.7. The
parameter values for the differentiator areL = 455, λ1 = 1.1,
λ2 = 1.5, andλ4 = 3.

Fig. 1. Realx1 and observed̂x1(- -) states for system (17)



Fig. 2. Realx2 and observed̂x2(- -) states for system (17)

Fig. 3. Realx3 and observed̂x3(- -) states for system (17)

Figures 1, 2 and 3 show the simulation results for the
system (18). The initial conditions for this system were
x (0) = [1 3 4]T and x̂ (0) = [−1 − 1 5]T . The statex̂1
converges tox1 in finite time of0.1 seconds. Then̂x2 reaches
to x2 in finite time of about1.5 seconds. Note that̂x2 reaches
x2 only after x̂1 converges to its state. Finally, at a time of
2.5 second,̂x3 converges tox3.

B. CSTR Application

The CSTR process is a recognized benchmark frequently
used for controller proofs [20] and represents many processes
typically employed in industry. The model of the CSTR is
described by the set of equations (22). See [20] for a more
in-depth description and modeling of the process and its
parameters. The simulation values for the system were also
extracted from the same reference, and they are summarized
in Table I.

TABLE I
NOMINAL PARAMETERS OFCSTR

Parameter Value Unit

F 0.1605 m3
·min−1

V 2.4069 m3

Cin 2114.5 gmol ·m−3

k0 2.8267·1011 min−1

E 75361.14 J · gmol−1

R 8.3174 J · gmol−1K−1

Tin 295.22 K

∆H -9.0712·104 J · gmol−1

ρ 1000 kg ·m−3

Cp 3571.3 J · kg−1

U 2.5552·104 J · (s ·m2
·K)−1

A 8,1755 m−2

Tj 279 K

dT

dt
=
F

V
(Tin − T )−

∆H

ρCp
k0CAe

−

E
RT +

UA

ρCpV
(Tj − T )

dCA

dt
=
F

V
(Cin − CA)− k0CAe

−

E
RT . (22)

Assuming as the state variables the temperatureT of
the reactive mass and the concentrationCA of the reactant
respectively, the model in space-state representation is shown
in the set of equations (23). We suppose thatT can be
measured and acts as the model outputy. The goal is the
estimation ofCA (denoted byx2) from T (denoted byx1).

ẋ1 =
F

V
(Tin − x1)−

∆H

ρCp
k0x2e

−

E
Rx1 +

UA

ρCpV
(Tj − x1)

ẋ2 =
F

V
(Cin − x2)− k0x2e

−

E
Rx1 (23)

y = h (x) = x1

let

f (x) = (24)
(

F
V (Tin − x1)−

∆H
ρCp

k0x2e
−

E
Rx1 + UA

ρCpV
(Tj − x1)

F
V (Cin − x2)− k0x2e

−

E
Rx1

)

and
h (x) = x1 (25)

from (24) and (25) the Lie derivatives of the output are:

h = x1 (26)

Lfh =
F

V
(Tin − x1)−

∆H

ρCp
k0x2e

−

E
Rx1 +

UA

ρCpV
(Tj − x1)

and the corresponding observability matrix is

O (x) = (27)
(

1 0

−F
V − UA

V ρCp
− E∆H

RρCp

x2

x2
1

k0e
−

E
Rx1 −∆H

ρCp
k0e

−

E
Rx1 .

)



The proposed observer has been tested by simulation with
the initial conditions x (0) = [283.225 2005.838]T and
x̂ (0) = [300 2100]T . In Figure 4, we can seêx1 reaching
the real temperature value in about0.5 minutes.

Fig. 4. Temperaturex1

In Figure 5, we see that̂x2 also converges to the real value
of the concentration in finite time after2 minutes.

Fig. 5. Concentrationx2

V. CONCLUSION

We show in this paper the design of a high order sliding
mode observer for nonlinear systems using the equivalent
control method. The super-twisting algorithm was employedin
order to ensure finite time convergence of the observer and the
reduction of chattering effect. Moreover, we also showed the
application of the proposed schemes to a real process model
like the CSTR. This model is a well documented benchmark
that includes many dynamical processes; in this regard, the
results of this work can be expanded towards a plethora of
different application cases.
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