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Abstract—A Sliding Mode (SM) Block Control is proposed to
control an Antilock Brake System (ABS). The control problem
is to achieve reference tracking for the slip rate, such that, the
friction between tyre and road surface is good enough to control
the car. The closed-loop system is robust in presence of matched
and unmatched perturbations. To show the performance of the
proposed control strategy, a simulation study is carried on,
where results show good behavior of the ABS under variations
in the road friction.

Keywords—Brake Control, Antilock Braking Systems (ABS),
Sliding Mode Control, Automotive Control.

I. I NTRODUCTION

The ABS control problem consists in imposing a desired
vehicle motion and as a consequence, provides adequate
vehicle stability. The main difficulty arising in the ABS
design is due to its high nonlinearities and uncertainties
presented in the mathematical model. Therefore, the ABS
has become an attractive research area in nonlinear systems
control framework. There are several works reported in the
literature using the sliding mode technique [1], [2], [3], [4],
[5]. In this work we design a new controller on the basis
of sliding mode (SM) [6]. In order to achieve robustness
to matched, and unmatched perturbations, and ensure output
tracking. Theorically, this SM control can guarantee the
robustness of the system through the entire response starting
from the initial time instance. In spite of the mentioned above
works we consider a real situation: the control input can take
only two values ”0” or ”1” that corresponds to the control
valve position.

The work is organized as follows. The mathematical model
for the longitudinal movement of a vehicle, including the
brake system is presented in Section 2. In Section 3 a
SM controller for ABS is designed. The simulation results
are presented in Section 4 to verify the robustness and
performance of the proposed control strategy. Finally, some
conclusions are presented in Section 5.

II. MATHEMATICAL MODEL

In this section, the dynamic model of a vehicle is showed.
Here we use a quarter of vehicle model, this model considers
the pneumatic brake system, the wheel motion and the vehicle
motion. We study the task of controlling the wheels rotation,
such that, the longitudinal force due to the contact of the
wheel with the road, is near from the maximum value in the
period of time valid for the model. This effect is reached as
a result of the ABS valve throttling.

Fig. 1. Pneumatic brake system

A. Pneumatic brake system equations

The specific configuration of this system considers brake
disks, which hold the wheels, as a result of the increment of
the air pressure in the brake cylinder (Fig. 1). The entrance
of the air trough the pipes from the central reservoir and
the expulsion from the brake cylinder to the atmosphere is
regulated by a common valve. This valve allows only one
pipe to be open, when 1 is open 2 is closed and vice versa.
The time response of the valve is considered small, compared
with the time constant of the pneumatic system.

Lets consider Figure 1, we suppose the brake torqueTb is
proportional to the pressurePb in the brake cylinder

Tb = kbPb (1)

with kb > 0. For the brake system we use an approximated
model of pressure changes in the brake cylinder due to the
opening of the valve with a first order relation [7], this
relation can be represented as

τ
dPb

dt
+ Pb = Pcu (2)

where τ is the time constant of the pipelines,Pc is the
pressure inside the central reservoir,u is the valve input
signal. We suppose that opening and closing of the valve is
momentary and the parameters of the equation (2) are given
by the following rules:



• When pipe 1 is opened and 2 is closed thenu = 1 and
τ = Tin

• When pipe 2 is opened and 1 is closed thenu = 0 and
τ = Tout

when pipe 2 is open the pressure into the brake cylinder
is the atmospheric pressurePa which is considered equal to
zero.

B. Wheel motion equations

To describe the wheels motion we will use a partial
mathematical model of the dynamic system [8], [9], [10] and
[11].

b

Nm = mg

f = µNmφ (s)

V

Tb ω

Fig. 2. Wheel forces and torques

Consider Fig. 2, the dynamics of the angular momentum
change relative to the rotation axis are given by

J
dω

dt
= rf − Tb (3)

where ω is the wheel angular velocity,J is the wheel
inertia moment,r is the wheel radius andf is the contact
force of the wheel.

The expression for longitudinal component of the contact
force in the motion plane is

f = νNmφ (s) (4)

where ν is the nominal friction coefficient between the
wheel and the road,Nm is the normal reaction force in the
wheel

Nm = mg

with m equal to the mass supported by the wheel andg
is the gravity acceleration. The functionφ(s) represents a
friction/slip characteristic relation between the tyre and road
surface. Here, we use the Pacejka model [12], defined as
follows

φ (s) =

D sin (C arctan (Bs− E (Bs− arctan (Bs))))
(5)

in general, this model produces a good approximation of
the tyre/road friction interface. With the following parameters
B = 10, C = 1.9, D = 1 and E = 0.97 that function
represents the friction relation under a dry surface condition.
A plot of this function is shown in Fig. 3
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Fig. 3. Characteristic functionφ (s)

The slip rates is defined as

s =
V − rω

V
(6)

whereV is the longitudinal velocity of the wheel mass
center. The equations (3)-(5) characterize the wheel motion.

C. The vehicle motion equation

The vehicle longitudinal dynamics without lateral motion
considered are represented as

M
dV

dt
= −F − Fa (7)

whereM is the vehicle mass;Fa is the aerodynamic drag
force, which is proportional to the vehicle velocity and is
defined as

Fa =
1

2
ρCdAf (V + Vw)

2

whereρ is the air density,Cd is the aerodynamic coef-
ficient, Af is the frontal area of vehicle,Vw is the wind
velocity; the contact force of the vehicleF is modeled of
the form

F = µNM

whereNM is the normal reaction force of the vehicle,
NM = Mg with M equal to the vehicle mass andµ =
νφ (s).

The dynamic equations of the whole system (2)-(7) can be
rewritten using the state variables



x = [x1, x2, x3]
T = [ω, Pb, V ]T

with initial conditions x0 = x(0) results the following
form:

ẋ1 = a1f − a2x2

ẋ2 = −a3x2 + bu

ẋ3 = −a4F − f3(x3)

(8)

with output

y = s = h(x) = 1− r
x1

x3

wherea1 = r/J , a2 = kb/J , a3 = 1/τ , a4 = −1/M , b =
Pc/τ andf3(x3) = d1 (x3 + Vw)

2 with d1 = 1

2M
(ρCdAf ).

III. SLIDING MODES CONTROL FOR ABS

Based on system (8) the considered problem is to design an
Sliding Mode Block controller that obtains reference tracking
in despite of the perturbations in the system. Defines∗ as the
desired trajectory of the relative slip, which must maximize
the functionφ(s).

Throughout the development of the controller, we will
use the following assumption:

A1) All the state variables are available for measurement.

A. Control Design

Let s∗ (t) be a twice differentiable function, but with
unknown derivatives, now we define the output tracking error
ase1 , s− s∗ then its derivative is

ė1 = c1(x) + c2(x)x2 + fy(x)− ṡ∗ (9)

where

c1(x) , c1 = −r

(

a1
x3

f + a4F
x1

x2
3

)

c2(x) , c2 = r
a2
x3

fy(x) , fy = −rf3(x3)
x1

x3

+∆(ν)

fy(x) will be considered as an unmatched and bounded
perturbation term

‖fy (x, t) ‖ < β < ∞

The term ∆(ν) contains the variations of the friction
parameterν.

Considering the variablex2 as virtual control in (9) we
determinate the desired valuex2ref as

x2ref = −
1

c2
[c1 + k0e0 + k1e1] (10)

wherek0 > 0, k1 > 0 ande0 is the integral of the tracking
error e1 that is

ė0 = e1 (11)

The variablex2ref is used to put the desired dynamic for
e1 and obtain the control aim. Now we define a new error
variablee2 , α2(x, t) in the form

e2 = x2ref − x2 (12)

Using (8) and (10), straightforward calculations reveal

ė2 = −a3e2 − bu+ f2e(x) (13)

where

f2e(x) = a3x2ref +
∂α2(x, t)

∂x1

ẋ1 + · · ·+
∂α2(x, t)

∂x3

ẋ3

To induce sliding mode on the sliding manifolde2 = 0 we
choose the control signal as

u = 0.5sign(e2) + 0.5 (14)

B. Stability analysis

Using the new variablese0, e1 ande2 the extended closed
loop system (9), (11) and (13) is presented as

ė0 = e1 (15)

ė1 = −k0e0 − k1e1 + c2e2 + g1(x, t) (16)

ė2 = −a3e2 + f2e(x) − 0.5bsign(e2)− 0.5b (17)

with g1(x, t) = fy(x) − ṡ∗.

The stability of (16) - (17) can be is studied step by step:
A) SM stability of the projection motion (17);
B) SM stability of the projection motion (15)-(16);

We use the following assumptions:

|g1(x, t)| 6 α1 |e1|+ β1 (18)

|f2e(x)| 6 α2 |e2|+ β2 (19)

with α1 > 0, α2 > 0, β1 > 0, β2 > 0, a3 > α2 and
b > |f2e(x)| .

A) The system (17) can be presented as follows:
CASE 1, e2 < 0, then

ė2 = −a3e2 + f2e(x) (20)

CASE 2, e2 > 0, then

ė2 = −a3e2 + f2e(x) − b (21)



we use the Lyapunov candidate functionV2 = 1

2
e2
2

to analyze
the stability conditions. The derivative ofV2 with respect to
time in Case 1 is

V̇2 = e2 (−a3e2 + f2e(x)) (22)

under condition (19) we have

V̇2 ≤ |e2| (−a3 |e2|+ α2 |e2|+ β2)

In this case, the solution of (17) is ultimately bounded by
[13]

|e2(t)| 6 δ0, δ0 =
β2

a3 − α2

(23)

that is similar in case 2.

B) To analyze stability of the sliding mode equations
(15)-(16) with e2 = 0, that system can be regarded as a
linear system with nonvanishing perturbation in the form:

ξ̇ = Aξ +D(ξ) (24)

where

ξ =
[

e1 e2
]T

;A =

[

0 1
−k0 −k1

]

;D =

[

0
g1(t)

]

Now we use the following Lyapunov candidate function:

V1 =
1

2
ξTPξ (25)

with P positive definite. With the correct selection of the
elementsk0 andk1 the matrix A is Hurwitz, then exists one
unique solution (P > 0) to the Lyapunov equation

ATP + PA = −Q

whereQ = QT , Q > 0.

Lyapunov equation satisfies:

λmin(P ) ‖ξ‖2
2
≤ ξTPξ ≤ λmax(P ) ‖ξ‖2

2
(26)

∂V1

∂ξ
Aξ = −ξTQξ ≤ −λmin(Q) ‖ξ‖

2

2

and the perturbation term is bounded by‖D(ξ)‖ ≤
α1 ‖ξ‖2 + β1.
Derivating (25) we obtain

V̇1 = −ξTQξ − 2ξTPD(ξ) (27)

substituting the bounds (26) in (27), we have

V̇1 = −ξTQξ − 2ξTPD(ξ)

≤ −λmin(Q) ‖ξ‖2
2
+ 2λmax(P ) ‖ξ‖

2
(α1 ‖ξ‖2 + β1)

≤ (−λmin(Q) + 2α1λmax(P )) ‖ξ‖2
2
+ 2β1λmax(P ) ‖ξ‖

2

= −α (1− θ) ‖ξ‖2
2
− αθ ‖ξ‖2

2
+ β ‖ξ‖

2

whereα = λmin(Q)− 2α1λmax(P ) andβ = 2β1λmax(P ),
then

V̇1 ≤ −α (1− θ) ‖ξ‖
2

2
(28)

for ∀ ‖ξ‖
2
> β

αθ
= δ.

Thus, the nominal systeṁξ = Aξ has an exponentially stable
equilibrium pointξ = 0, the solutionξ(t) of (24) is ultimately
bounded and the ultimate bound is given by

‖ξ‖
2
≤ δ

√

λmax(P )
√

λmin(P )
(29)

Finally, considering the absolute value of the wind speed in
(8), the remaining dynamicsx3 is locally stable.

IV. SIMULATION RESULTS

To show the effectiveness of the proposed control law,
simulations have been carried out on one wheel model design
example, the system parameters used are listed in Table 1.

TABLE 1

Values of Parameters

Parameter Value Parameter Value

Af 6.6 Vw -6

Pc 8 v 0.5

M 1800 B 10

J 18.9 C 1.9

R 0.535 D 1

m 450 E 0.97

ρ 1.225 g 9.81

Cd 0.65 Pa 0

In order to maximize the friction force, we suppose that
slip tracks a constant signal during the simulations.

yref = 0.203

which produces a value close to the maximum of the
function φ(s). The parameters used in the control law are
k0 = 700 andk1 = 120.

On the other hand, to show robustness property of the
control algorithm in presence of parametric variations we
introduce a change of the friction coeficientν which produces
diferent contact forces, namelŷF and f̂ . Then,ν = 0.5 for
t < 1 s, ν = 0.52 for t ∈ [1, 2.5) s, andν = 0.5 for t ≥ 2.5
s. It is worth mentioning that just the nominal values were
considered in the control design.

In Figure 4 the slip performance trough the simulation is
showed, Figure 5 shows the friction function behaviorφ(s)
during the braking process
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while Figures 6 and 7 summarize the behavior of the error
variablese1 ande2 respectively.

0 1 2 3 4
−0.1

−0.05

0

0.05

0.1

t [s]

e
1

Fig. 6. Tracking errore1 = s− s∗

0 1 2 3 4
0

50

300

600

900

t [s]

e
2

Fig. 7. Error variablee2 = x2ref − x2

0 1 2 3 4
0

5

10

15

20

25

t [s]

V,
r
ω

Fig. 8. Longitudinal speedV (solid) and linear wheel speedrω (dashed)

In Figure 8 the longitudinal speedV and the linear wheel
speedrω are showed; it is worth noting that the slip controller
should be turn off when the longitudinal speedV is close to
zero. Figure 9 the control action is shown.
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Finally, in Figure 10 the nominalF , and theF̂ contact
force are shown.
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Fig. 10. NominalF (solid) andF̂ (dashed) vehicle contact forces

V. CONCLUSION

In this work an sliding mode block control for ABS has
been proposed. The simulation results show good perfor-
mance and robustness of the closed-loop system in presence
of both the matched and unmatched perturbations, namely,
parametric variations and neglected dynamics.
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