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Abstract—A Sliding Mode (SM) Block Control is proposed to
control an Antilock Brake System (ABS). The control problem
is to achieve reference tracking for the slip rate, such thatthe (_\
friction between tyre and road surface is good enough to conol
the car. The closed-loop system is robust in presence of méied e brake
and unmatched perturbations. To show the performance of the ] ! -
proposed control strategy, a simulation study is carried on R : T |8
where results show good behavior of the ABS under variations
in the road friction. \
Keywords—Brake Control, Antilock Braking Systems (ABS), .
Sliding Mode Control, Automotive Control.
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I. INTRODUCTION

The ABS control problem consists in imposing a desired
vehicle motion and as a consequence, provides adequat
vehicle stability. The main difficulty arising in the ABS
design is due to its high nonlinearities and uncertainties
presented in the mathematical model. Therefore, the ABS
has become an attractive research area in nonlinear systems
control framework. There are several works reported in the
literature using the sliding mode technique [1], [2], [3],] A- Pneumatic brake system equations
[5]. In this work we design a new controller on the basis The specific configuration of this system considers brake
of sliding mode (SM) [6]. In order to achieve robustnesgisks, which hold the wheels, as a result of the increment of
to matched, and unmatched perturbations, and ensure outpetair pressure in the brake cylinder (Fig. 1). The entrance
tracking. Theorically, this SM control can guarantee thef the air trough the pipes from the central reservoir and
robustness of the system through the entire responsengtarthe expulsion from the brake cylinder to the atmosphere is
from the initial time instance. In spite of the mentionedabo regulated by a common valve. This valve allows only one
works we consider a real situation: the control input car talpipe to be open, when 1 is open 2 is closed and vice versa.
only two values "0” or "1” that corresponds to the controfrhe time response of the valve is considered small, compared
valve position. with the time constant of the pneumatic system.

The work is organized as follows. The mathematical model |ets consider Figure 1, we suppose the brake toffjuis

for the longitudinal movement of a vehicle, including thyroportional to the pressut®, in the brake cylinder
brake system is presented in Section 2. In Section 3 a

SM controller for ABS is designed. The simulation results Ty, = kp P, (1)
are presented in Section 4 to verify the robustness and

performance of the proposed control strategy. Finally, sor#ith &, > 0. For the brake system we use an approximated
conclusions are presented in Section 5. model of pressure changes in the brake cylinder due to the

opening of the valve with a first order relation [7], this
Il. MATHEMATICAL MODEL relation can be represented as
In this section, the dynamic model of a vehicle is showed.
Here we use a quarter of vehicle model, this model considers 7—@ + P, = P (2)
the pneumatic brake system, the wheel motion and the vehicle dt
motion. We study the task of controlling the wheels rotation where = is the time constant of the pipeline&, is the
such that, the longitudinal force due to the contact of th@essure inside the central reservair,is the valve input
wheel with the road, is near from the maximum value in theignal. We suppose that opening and closing of the valve is
period of time valid for the model. This effect is reached asomentary and the parameters of the equation (2) are given
a result of the ABS valve throttling. by the following rules:

Fig. 1. Pneumatic brake system



« When pipe 1 is opened and 2 is closed thes 1 and in general, this model produces a good approximation of

=T the tyre/road friction interface. With the following paratars
o When pipe 2 is opened and 1 is closed thege 0 and B = 10, C = 1.9, D = 1 and E = 0.97 that function
T=Tout represents the friction relation under a dry surface camdit

when pipe 2 is open the pressure into the brake cylind@rplot of this function is shown in Fig. 3
is the atmospheric pressufg which is considered equal to

zero.
B. Wheel motion equations 1
To describe the wheels motion we will use a partial 0.9
mathematical model of the dynamic system [8], [9], [10] and 0.8
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Fig. 3. Characteristic functiog (s)
f = puNm¢ (s) The slip rates is defined as
i V —rw
Fig. 2. Wheel forces and torques s = v (6)

where V' is the longitudinal velocity of the wheel mass

Consider Fig. 2, the dynamics of the angular momentugynter The equations (3)-(5) characterize the wheel motio
change relative to the rotation axis are given by

C. The vehicle motion equation

dw
J% =rf-T ®) The vehicle longitudinal dynamics without lateral motion
where w is the wheel angular velocity/ is the wheel considered are represented as
inertia momenty is the wheel radius and is the contact dV
force of the wheel. M—-=-F-F (1)

The expression for longitudinal component of the contact

force in the motion plane is where M is the vehicle massk, is the aerodynamic drag

force, which is proportional to the vehicle velocity and is
f = vNno (s) (4) defined as

where v is the nomir_1a| friction coefficie_nt betwegn the F, = lpCdAf (V + V)
wheel and the roady,, is the normal reaction force in the 2
wheel where p is the air density(Cy; is the aerodynamic coef-
ficient, Ay is the frontal area of vehicley,, is the wind
Ny =myg velocity; the contact force of the vehiclE is modeled of

with m equal to the mass supported by the wheel andthe form
is the gravity acceleration. The functiaf(s) represents a
friction/slip characteristic relation between the tyrelanad F = uNy
surface. Here, we use the Pacejka model [12], defined aSyhere Nus

is the normal reaction force of the vehicle,
follows

Ny = Mg with M equal to the vehicle mass and =

v (s).

¢ (s) = ) The dynamic equations of the whole system (2)-(7) can be
Dsin (C arctan (Bs — E (Bs — arctan (Bs)))) rewritten using the state variables



whereky > 0, k1 > 0 andey is the integral of the tracking

© =[x, 29, 23" = [w, Py, V]" errore; that is
Wlt.h initial conditionszy = x(0) results the following éo = €1 (11)
form:
) The variablersy,.. s is used to put the desired dynamic for
Ty = ayf — axxs e; and obtain the control aim. Now we define a new error
&y = —azwy + bu (8) variablees = as(z,t) in the form
&3 = —asF — f3(x3) 12
B €y = T i
with output 2T Maref T2 (12)

. Using (8) and (10), straightforward calculations reveal
y=s=h(x)=1—r=
T3 éQ — —Aaseg — bu + fge (I) (13)
wherea; =r/J, as = kp/J, a3 =1/1, a4 = —1/M, b=

P./7 and f3(x3) = dy (a5 + Va)® With dy = 57 (pCaAp).  Where

I1l. SLIDING MODES CONTROL FOR ABS dag(z,t)

Oag(z,t)
(z) = azTores + " on; +oo

8173 3
To induce sliding mode on the sliding manifald = 0 we
choose the control signal as

Based on system (8) the considered problem is to design anf2€
Sliding Mode Block controller that obtains reference tiagk
in despite of the perturbations in the system. Defihas the
desired trajectory of the relative slip, which must maxieniz
the functiong(s).

Throughout the development of the controller, we will
use the following assumption: B. Stability analysis

u = 0.5sign(e2) + 0.5 (14)

. . Using the new variables,, e; ande, the extended closed
Al) All the state variables are available for measurement.lOop system (9), (11) and (13) is presented as

A. Control Design éo = e (15)
Let s*(t) be a twice differentiable function, but with
unknown derivatives, now we define the output tracking error

ase; £ s — s* then its derivative is

él = —koeo — k181 + coea + g1 (I, t) (16)
éy = —ages + fQG(ZC) — O.5b5ign(€2) —0.5b (17)

with g1 (z,t) = fy(x) — $*.
é1=c1(x) + ca(x)z2 + fy(z) — §° 9)
The stability of (16) - (17) can be is studied step by step:
A) SM stability of the projection motion (17);
B) SM stability of the projection motion (15)-(16);

where

ci(x) 2 e =—r (Z—lf + a4Fw_§>

3 3 We use the following assumptions:
co(x) £ e = r22
. 3 - l91(2, 1) < enfea] + P (18)
fy(z) = fy = —T“J“‘3(UC3):C—3 +A(v)
fy(x) will be considered as an unmatched and bounded | f2e(2)] < azlez| + B2 (19)
perturbation term with a; > 0, az > 0, B, > 0, B2 > 0, ag > s and

£y (2, 8) ] < B < o0 b > |fae()| -

The term A(v) contains the variations of the friction) The system (17) can be presented as follows:
parameterw. CAsE1, e; <0, then
Considering the variable, as virtual control in (9) we €2 = —azez + fae() (20)

determinate the desired valug,.s as
CASE 2, e5 > 0, then

1
Toref = _a [Cl + kOeO + klel] (10) é2 = —ages + f2e(x) —b (21)



we use the Lyapunov candidate functign= %e% to analyze wherea = A\,in(Q) — 201 Appae (P) @and 8 = 281 Anaz (P),
the stability conditions. The derivative &% with respect to then

time in Case 1 is Vi <—a(l-96) ||§H§ (28)
Vo =eg (_a362 + f2e(x)) (22) for vV H€”2 > % — 4. .

under condition (19) we have Thus, the nominal systegh= A¢ has an exponentially stable
) equilibrium point = 0, the solutior¢(¢) of (24) is ultimately
Vo < lea| (—as[e2] + az ez + B2) bounded and the ultimate bound is given by

In this case, the solution of (17) is ultimately bounded by Noman (P)

[13] ; el < o2 (29)

lea(t)] < 8o, Gp = ——=— (23) -
as = Q2 Finally, considering the absolute value of the wind speed in
that is similar in case 2. (8), the remaining dynamicss is locally stable.
B) To analyze stability of the sliding mode equations IV. SIMULATION RESULTS

(15)-(16) with e = 0, that system can be regarded as a

linear system with nonvanishing perturbation in the form: ~ To show the effectiveness of the proposed control law,
simulations have been carried out on one wheel model design

£=A¢+ D) (24) example, the system parameters used are listed in Table 1.
where
T 0 1 0
e ama=[ 0 L To=[0)]
[ ] —ko —k1 91(t) TABLE 1
Values of Parameters
Now we use the following Lyapunov candidate function: Parameter| Value | Parameter| Value
1 7 Ay 6.6 Vi -6
Vi = 55 3 (25) P. 8 v 05
. " - . . M 1800 B 10
with P positive definite. With the correct selection of the ; 5 - o
elementsky andk; the matrix A is Hurwitz, then exists one . :
unique solution P > 0) to the Lyapunov equation R 0535 P !
m 450 E 0.97
ATP+PA=-Q o 1.225 9 9.81
Ca 0.65 P, 0
where@ = QT, Q > 0.
Lyapunov equation satisfies: In order to maximize the friction force, we suppose that

slip tracks a constant signal during the simulations.

Amin (P12 < €T PE < Amaa(P) IE]2 (26)

oV. Yref = 0.203
e A= —€TQE < —Anin Q) [E]l3 | |
3 which produces a value close to the maximum of the
and the perturbation term is bounded ) (¢)|| < function ¢(s). The parameters used in the control law are

o ||§||2 + ﬂl- ko = 700 andk; = 120.

Derivating (25) we obtain On the other hand, to show robustness property of the
. T T control algorithm in presence of parametric variations we
Vi=—-8Q¢-26 PD(S) (27) introduce a change of the friction coeficientvhich produces

substituting the bounds (26) in (27), we have diferent contact forces, namely and f. Then,v = 0.5 for

. t<1ls,v=052forte[l,2.5)s, andv =0.5fort > 25

Vi =—€£TQ¢ — 26T PD(¢) s. It is worth mentioning that just the nominal values were

< Amin(Q) Hf”g + 2 maw (P) €]l (a1 [I€]l, + B1) considered in the control design.

5 In Figure 4 the slip performance trough the simulation is
< (FAmin(Q) + 201 Amaw (P)) [€ll2 + 281 Amax (P) [€lla - showed, Figure 5 shows the friction function behavigs)
=—a(1-0)|€]Z - ab i€ + B, during the braking process
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Fig. 5. Performance of(s) in the braking process

Fig. 8. Longitudinal speed” (solid) and linear wheel speetv (dashed)

In Figure 8 the longitudinal spedd and the linear wheel
L . _ speed-w are showed; it is worth noting that the slip controller
while Figures 6 and 7 summarize the behavior of the errgEould be turn off when the longitudinal spe€ds close to

variablese; andes respectively. zero. Figure 9 the control action is shown.
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Fig. 6. Tracking errore; = s — s* Fig. 9. Control inputu



Finally, in Figure 10 the nominaF’, and the " contact [12] E. Bakker, H. Pacejka, and L. Lidner, “A new tire modetiwapplica-
force are shown.

Fig. 10.
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NominalF (solid) and£' (dashed) vehicle contact forces

V. CONCLUSION

In this work an sliding mode block control for ABS has
been proposed. The simulation results show good perfor-
mance and robustness of the closed-loop system in presence
of both the matched and unmatched perturbations, namely,
parametric variations and neglected dynamics.
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