
Instituto Tecnológico y de Estudios Superiores de Occidente

2003

Comparison Among Booth’s and Pekmestzi’s

Algorithms for the Multiplication of Two

Numbers

Rojas-Laguna, Roberto; Villalón-Turrubiates, Iván E.; Serrano-Arellano,

Santiago; Alvarado-Méndez, Edgar; Estudillo-Ayala, Juan M.; Vite-Chávez,

Osvaldo

Iván E. Villalón-Turrubiates et al., “Comparison Among Booth’s and Pekmestzi’s Algorithms for the

Multiplication of Two Numbers”, en Proceedings of the International Conference on Devices, Circuits

and Systems (CIDCSVER), Veracruz México, 2003.

Enlace directo al documento: http://hdl.handle.net/11117/3325

Este documento obtenido del Repositorio Institucional del Instituto Tecnológico y de Estudios Superiores de

Occidente se pone a disposición general bajo los términos y condiciones de la siguiente licencia:

http://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf

(El documento empieza en la siguiente página)

Repositorio Institucional del ITESO rei.iteso.mx

Departamento de Electrónica, Sistemas e Informática DESI - Artículos y ponencias con arbitraje

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional del ITESO

https://core.ac.uk/display/47249363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.iteso.mx
http://rei.iteso.mx
http://hdl.handle.net/11117/3325
http://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf

COMPARISON AMONG BOOTH’S AND PEKMESTZI’S ALGORITHM
FOR THE MULTIPLICATION OF TWO NUMBERS

R. Rojas-Laguna, I. E. Villalón Turrubiates*, S. Serrano-Arellano*, E. Alvarado-Méndez, J. M.

Estudillo-Ayala and O. Vite-Chávez+
Universidad de Guanajuato.

Facultad de Ingeniería Mecánica, Eléctrica y Electrónica.
Maestría en Ingeniería Eléctrica, Opción: Instrumentación y Sistemas Digitales.
Prolongación Tampico No. 912, Tel.: 01 464 6480911 ext. 119, Col. Bellavista.

36730 Salamanca, Gto., México.

* CONACyT Scholarship
+ CONCyTEG Scholarship

ABSTRACT

A comparison between two different methods of
multiplication of two 8-bit numbers is presented. This
methods are the Booth’s algorithm and the algorithm
proposed by Kiamal Z. Pekmestzi [1]. The general objective
is to show the benefits and the advantages obtained if it’s
used one of this algorithms over the other. This multipliers
have low circuit complexity permitting high-speed operations
and the interconnections of the cells are regular. This is the
reason why the results shown was obtained using VHDL
realization on a FPGA XC4010XL by Xilinx.

1. INTRODUCTION

Multiplication is the most critical operation in every
computational system. Innumerable schemes have been proposed
for the realization of this operation. In the early multiplier
schemes proposed by Hoffman [2], Burton and Noaks [3], De
Mori [4] and Guilt [5] for positive numbers, and by Baugh and
Wooley [6] and Hwang [7] for numbers in two’s complement
form, the effort was on implementations using iterative circuits
with uniform interconnections pattern. Also, on the same base,
schemes using Booth’s algorithm [8], [9] were presented.

The Booth's algorithm serves two purposes:
1. Fast multiplication (when there are consecutive 0's or

1's in the multiplier).
2. Signed multiplication.

The Pekmestzi’s multiplication algorithm is based on a

different mechanism. At each step, one bit of the multiplier and
one bit of the multiplicand are processed. So, the algorithm is
symmetric; this means that multiplier and multiplicand can be
interchanged.

The main objective of this investigation is to find which of

those algorithms provides the best results under a VHDL
implementation in a FPGA XC4010XL of Xilinx©, and with this,
ensure the best option at the moment of its use on a certain
application.

2. BOOTH’S ALGORITHM

The goal of the algorithm is to recode the multiplier to reduce
the number of additions done. The key idea is that when we have
a string of 1's in the multiplier, representing a string of
multiplicand adds, we can get the same effect with a single add
and subtract. This is because:

2m + 2m-1 + ... + 2n+1 + 2n = 2m+1 - 2n

For example:

01110 = 10000 - 00010
 14 = 16 - 2

We can implement the multiplier by looking at the
least significant 2 bits of Q. If they are:

0 0 we shift only
0 1 we add M and shift
1 0 we subtract M and shift
1 1 we shift only

Let's see how this is done with an example: 9 * 14 (for n = 5):

 M A Q Qprev
 01001 00000 01110 0 Load
 01001 00000 00111 0 Shift only
 01001 11011 10011 1 Subtract and shift
 01001 11101 11001 1 Shift only
 01001 11110 11100 1 Shift only
 01001 00011 11110 0 Add and shift

Booth's algorithm also works with negative numbers like 2 * -3:

 M A Q Qprev
 00010 00000 11101 0 Load
 00010 11111 01110 1 Subtract and shift
 00010 00000 10111 0 Add and shift
 00010 11111 01011 1 Subtract and shift
 00010 11111 10101 1 Shift Only
 00010 11111 11010 1 Shift only

3. PEKMESTZI’S ALGORITHM

Consider two positive integer numbers X and Y:

∑
−

=
−− ==

1

0
021 2

n

j

j
jnn xx....xxX (1)

∑
−

=
−− ==

1

0
021 2

n

j

j
jnn yy....yyY (2)

We define Xn-1 and Yn-1 as the numbers that remain after

truncation of bits xn-1 and yn-1. So:

∑
−

=
−−− ==

2

0
0321 2

n

j

j
jnnn xx....xxX and

1
1

1 2 −
−

− += n
n

n xXX (3)

∑
−

=
−−− ==

2

0
0321 2

n

j

j
jnnn yy....yyY and

1
1

1 2 −
−

− += n
n

n yYY (4)

The product of the numbers X and Y, according to (3) and

(4), can be computed as follows:

111111
1

11
22 22 −−−−−−

−
−−

− +++= nnnnnn
n

nn
n YX}XyYx{yxP (5)

Let us define Pn-1=Xn-1Yn-1 and generally Pj=XjYj (6),

where Xj and Yj are the numbers formed by the j least significant
bits of X and Y, respectively. The product Pj can be computed by
the following recursive equation:

11111
1

11
22 22 −−−−−

−
−−

− +++== jjjjj
j

jj
j

jjj P}XyYx{yxYXP (7)

According to the above relations, the product P=XY can be
computed by the equation:

j
jjjj

n

j

n

j

j
jj }XyYx{yxP 22

1

1

1

0

2 ++= ∑∑
−

=

−

=

 (8)

The main computation concerns the addition of the terms:

jjjjj XyYxZ += (9)

These terms must be added, properly weighted, and the
product is given by the next relation:

∑∑
−

=

−

=

+=
1

1

1

0

2 22
n

j

j
j

n

j

j
jj ZyxP (10)

The values that quantity Zj can take depend on the values

of the logical variables xj and yj and are shown in table 1. The
only case where Zj requires computation is when the two bits of
the multiplied numbers have value 1. At each step j, only sj and
cj+1 are new. The rest of the bits of Sj have been formed in the
previous j-1 steps according to the relation:

111 −−− ++= jjjj yxSS (11)

The sum S=X+Y can be computed once. During the jth
iteration of the algorithm, the j least significant bits of S with cj
as the most significant bit form the quantity Sj which, in turn, is
used only if xj=yj=1. In this case, however, sj+1=cj and, in the
proposed algorithm, the quantity Sj can be computed
equivalently by both of the following relations:

021 s....sscS jjjj −−= or
021 s....sssS jjjj −−= (12)

TABLE 1

VALUES OF Zj TO DETERMINE THE PRODUCT P=XY
XJ YJ ZJ
0 0 0
0 1 Xj
1 0 Yj
1 1 Xj+Yj=Sj

The proposed multiplexer-based parallel multiplier is

shown in Fig. 1. The cells are described in Fig. 2, 3 and 4. The
implementation of a two’s complement multiplier based on the
proposed technique can be done on an array similar to the array
of Fig. 1. Let us consider two integer numbers X and Y in this
form:

11
1

2

0
1

1
021 222 −−

−
−

=
−

−
−− +−=+−== ∑ nn

n
n

j

j
jn

n
nn Xxxxx....xxX (13)

11
1

2

0
1

1
021 222 −−

−
−

=
−

−
−− +−=+−== ∑ nn

n
n

j

j
jn

n
nn Yyyyy....yyY (14)

Xn-1 and Yn-1 are the numbers that remain after truncation

of the bits xn-1 and yn-1 from X and Y, respectively. The product
P of the numbers X and Y, according to (13) and (14), is equal
to:

111111
1

11
22 22 −−−−−−

−
−−

− ++−== nnnnnn
n

nn
n YX}XyYx{yxXYP (15)

The above relation differs from the corresponding (5) for

positive numbers only in the sign of the term
11111 −−−−− += nnnnn XyYxZ . Now, the above term must be subtracted

instead of added. The algorithm for all other terms remains
unchanged and the product P=XY can be computed by the next
equation:

1
1

2

1

1

0

2 222 −
−

−

=

−

=

−+= ∑∑ n
n

n

j

j
j

n

j

j
jj ZZyxP (16)

Quantity Zn-1 is generated of the left boundary cells and it

is subtracted by inverting the Sout bits of these cells. Also, the
two additive inputs of the next to the leftmost top cells must be
set to one. The final array implementing the multiplication of
numbers in two’s complement form is shown in Fig. 5.

Fig. 1. General diagram used by the proposed algorithm to calculate the product between two numbers

Fig. 2. Diagram of the rectangular cells (not filled from Fig. 1)

Fig. 3. Diagram of the rectangular cells with a circle inside (see

Fig. 1)

Fig. 4. Diagram of the rectangular cells with a rectangle inside

(see Fig. 1)

4. DESCRIPTION IN VHDL CODE

The Booth’s algorithm proposed in the section 2, as well as the
Pekmestzi’s algorithm for positive numbers and in complement
at two proposed in the section 3, are now coded in the
descriptive language VHDL. These three algorithms are coded
in combinational logic, whose main characteristics are:

1. The exit functions depends only on the state of the

entrances.
2. It doesn't contain memory elements.
3. It has two level realization of logical gates.

5. SYNTHESIS AND SIMULATION

Once compiled the three codes, we proceeds to carry out the
simulation of the same ones. For it, the software Foundation by
Xilinx© is used, carrying out the synthesis in a FPGA
XC4010XL also by Xilinx©.

Fig. 5. General diagram of the proposed multiplexer-based two’s complement parallel multiplier

Fig. 6. Positive numbers multiplication using Booth’s Algorithm

First, we are going to simulate only positive numbers
multiplications. Taking A and B as our inputs numbers (8 bits).
The Fig. 6 shown the results using Booth’s algorithm. We can
see that the results are shown in hexadecimal numbers, and is
divided in two parts (low and high). The final number is the
concatenation of these numbers. The Fig. 7 shown the results
using Pekmestzi’s algorithm. It’s clear that the results are
shown directly by the output P, in decimal numbers. Now, to
show the two’s complement multiplication, let’s use an
example. Let us consider A=-1910 and B=+2210. Now, the
number A in two’s complement is A=111011012, and
B=000101102. The multiplication in decimal of these numbers
is P=-41810, or P=11111110010111102. Changing to
hexadecimal, the product is P=FE5E16. The Fig. 8 shown the
simulation using Booth’s algorithm, where the result is shown
divided in two (high and low) again, but the concatenation of
these values is the expected result. The Fig. 9 shown the
simulation using Pekmestzi’s algorithm. The result is direct
and is equal to the expected value.

6. COMPARISON AMONG THE TWO ALGORITHMS

Now, we proceed to compare the obtained results of the
simulations of both algorithms. Of this comparison, we obtain
the following remarks:

1. Both algorithms carry out the multiplication of
positive numbers and numbers in two’s complement.

2. Both algorithms can be coded in the descriptor

language VHDL in combinational logic.

3. The operation speed is appropriate.

However, certain advantages and disadvantages exist when

using one of these codes instead of the other one:

1. For the Pekmestzi’s algorithm, it is necessary a code
for positive numbers multiplications and other
similar but with certain differences for the
multiplication with numbers in two’s complement,
what takes us to have two extensive codes. For the
Booth’s algorithm, we have a single and smallest
code that carries out both operations.

2. The number of logical gates on the FPGA

XC4010XL is 10,000. The Pekmestzi’s code for
positive numbers (only) uses a total of 1195
equivalent gates for design (11.95%). The
Pekmestzi’s algorithm for numbers in two’s
complement uses a total of 1236 equivalent gates for
design (12.36%). The Booth’s algorithm uses a total
of 1287 equivalent gates for design (12.87%).

3. The VHDL code for the Pekmestzi’s algorithm is of

around 300 lines, while for the Booth’s algorithm
decreases to only 100.

4. The Pekmestzi’s algorithm gives us an alone number

as a result. However, the Booth’s algorithm gives us
two numbers that should be concatenated to obtain
the result.

Fig. 7. Positive numbers multiplication using Pekmestzi’s Algorithm

Fig. 8. Two’s complement multiplier using Booth’s Algorithm

Fig. 9. Two’s complement multiplier using Pekmestzi’s Algorithm

7. CONCLUSION

The multiplication is one of the most critical operations in
every computational systems. In this work two different
algorithms are shown for the calculation of multiplications
between positive numbers and two’s complement numbers,
which are the Booth’s algorithm and the Pekmestzi’s
algorithm.

Once we carries out the comparison between both

methods, can conclude that these algorithms complete their
multiplicative work indeed. However, some advantages exist
of using one of them instead of the other one, like it was
described in section 6.

If is needed to use this multiplier in a complex circuit, it is

convenient to use the Booth's algorithm, because the code is
less extensive and it carries out both operations. However, if
only multiplications are going to be carried out, the
Pekmestzi’s algorithm is effective because in spite of being
extensive in code is simple of to understand and to use.

Something very important is the number of gates used for

design. It is possible to see that the Pekmestzi’s algorithm for
positive numbers (only) is the best choice, because it uses less
quantity of gates. However, the algorithm has limitations (no

negative numbers). In the end, the selection of the best option
will depend on the application in which will be used.

As a personal opinion, the Booth's algorithm can provide

good results on a small code and using a very similar number
of gates to those that are used by the Pekmestzi's algorithms.
So, Booth's algorithm is a very good choice for application
problems.

It is necessary to point out that the Foundation software
by Xilinx© did not allow to carry out a single code that carried
out both operations in the case of the Pekmestzi’s algorithm
(due to the extensive code). Also, it didn't allow to carry out
the direct concatenation of the exit in the case of the Booth's
algorithm.

8. ACKNOWLEDGEMENTS

This work was supported by CONACyT under projects
J35313-A, J32018-A, J35303-E and the project “Apoyo a
Actividades Académicas de los Progrmas de Postgrado de
Excelencia de CONACyT”.

This project was also supported by Xilinx©, providing
the software and hardware (FPGA XC4010XL) for the
realization, under their "University Program" for support.

9. REFERENCES

[1] K. Z. Pekmestzi, “Multiplexer-Based Array
Multipliers”, IEEE Trans. Computers, vol. 48, no. 1,
pp. 15-23, Jan. 1999.

[2] J. Hoffman, G. Lacaze, P. Csillag, “Iterative
Logical Network for Parallel Multiplication”,
Electronics Letters, vol. 4, p. 178, 1986.

[3] P. Burton, D. R. Noaks, “High-Speed Iterative
Multiplier”, Electronics Letters, vol. 4, p. 262, 1968.

[4] R. De Mori, “Suggestion for an IC Fast Parallel
Multiplier”, Electronics Letters, vol. 5, pp. 50-51,
Feb. 1969.

[5] H. Guilt, “Fully Iterative Fast Array for Binary
Multiplication”, Electronics Letters, vol. 5, p. 269,
1969.

[6] R. Baugh, B. A. Wooley, “A Two’s Complement
Parallel Array Multiplication Algorithm”, IEEE
Trans. Computers, vol. 22, no. 12, pp. 1045-1059,
Dec. 1973.

[7] K. Hwang, “Global and Modular Two’s
Complement Array Multipliers”, IEEE Trans.
Computers, vol. 28, no. 4, pp. 300-306, Apr. 1979.

[8] A. Booth, “A Signed Binary Multiplication
Technique”, Quarterly J. Mechanics of Applied
Math, vol. 4, pp. 236-240, 1951.

[9] L. MacSorley, “High Speed Arithmetic in Binary
Computers”, Proc. IRE, vol. 49, Jan. 1961.

[10] http://ivs.cs.uni-
magdeburg.de/EuK/Lehre/booth.html, “Booth’s
Algorithm”.

