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ABSTRACT 
 
A comparison between two different methods of 
multiplication of two 8-bit numbers is presented. This 
methods are the Booth’s algorithm and the algorithm 
proposed by Kiamal Z. Pekmestzi [1]. The general objective 
is to show the benefits and the advantages obtained if it’s 
used one of this algorithms over the other. This multipliers 
have low circuit complexity permitting high-speed operations 
and the interconnections of the cells are regular. This is the 
reason why the results shown was obtained using VHDL 
realization on a FPGA XC4010XL by Xilinx. 
 
 

1. INTRODUCTION 
 
Multiplication is the most critical operation in every 
computational system. Innumerable schemes have been proposed 
for the realization of this operation. In the early multiplier 
schemes proposed by Hoffman [2], Burton and Noaks [3], De 
Mori [4] and Guilt [5] for positive numbers, and by Baugh and 
Wooley [6] and Hwang [7] for numbers in two’s complement 
form, the effort was on implementations using iterative circuits 
with uniform interconnections pattern. Also, on the same base, 
schemes using Booth’s algorithm [8], [9] were presented. 
 

The Booth's algorithm serves two purposes: 
1. Fast multiplication (when there are consecutive 0's or 

1's in the multiplier). 
2. Signed multiplication. 

 
The Pekmestzi’s multiplication algorithm is based on a 

different mechanism. At each step, one bit of the multiplier and 
one bit of the multiplicand are processed. So, the algorithm is 
symmetric; this means that multiplier and multiplicand can be 
interchanged. 

 
The main objective of this investigation is to find which of 

those algorithms provides the best results under a VHDL 
implementation in a FPGA XC4010XL of Xilinx©, and with this, 
ensure the best option at the moment of its use on a certain 
application. 

2. BOOTH’S ALGORITHM 

 
The goal of the algorithm is to recode the multiplier to reduce 
the number of additions done. The key idea is that when we have 
a string of 1's in the multiplier, representing a string of 
multiplicand adds, we can get the same effect with a single add 
and subtract. This is because: 

 
2m  + 2m-1    + ... + 2n+1    + 2n   = 2m+1    - 2n 

 
For example:  
 

01110  = 10000 - 00010 
         14   =   16  -   2 
 

We can implement the multiplier by looking at the 
least significant 2 bits of Q. If they are:  

 
0 0 we shift only 
0 1 we add M and shift 
1 0 we subtract M and shift 
1 1 we shift only 

 
Let's see how this is done with an example: 9 * 14 (for n = 5): 
 
          M       A     Q   Qprev 
        01001   00000 01110 0            Load 
        01001   00000 00111 0            Shift only 
        01001   11011 10011 1            Subtract and shift 
        01001   11101 11001 1            Shift only 
        01001   11110 11100 1            Shift only 
        01001   00011 11110 0             Add and shift 
 
Booth's algorithm also works with negative numbers like 2 * -3:  
 
          M       A     Q   Qprev 
        00010   00000 11101 0            Load 
        00010   11111 01110 1            Subtract and shift 
        00010   00000 10111 0            Add and shift 
        00010   11111 01011 1            Subtract and shift 
        00010   11111 10101 1            Shift Only 
        00010   11111 11010 1            Shift only 

 
 



3. PEKMESTZI’S ALGORITHM 
 
Consider two positive integer numbers X and Y: 
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We define Xn-1 and Yn-1 as the numbers that remain after 

truncation of bits xn-1 and yn-1. So: 
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The product of the numbers X and Y, according to (3) and 

(4), can be computed as follows: 
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Let us define Pn-1=Xn-1Yn-1 and generally Pj=XjYj (6), 

where Xj and Yj are the numbers formed by the j least significant 
bits of X and Y, respectively. The product Pj can be computed by 
the following recursive equation: 
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According to the above relations, the product P=XY can be 
computed by the equation: 
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The main computation concerns the addition of the terms: 

jjjjj XyYxZ +=  (9) 
 

These terms must be added, properly weighted, and the 
product is given by the next relation: 
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The values that quantity Zj can take depend on the values 

of the logical variables xj and yj and are shown in table 1. The 
only case where Zj requires computation is when the two bits of 
the multiplied numbers have value 1. At each step j, only sj and 
cj+1 are new. The rest of the bits of Sj have been formed in the 
previous j-1 steps according to the relation: 

111 −−− ++= jjjj yxSS  (11) 
 
 
 

 
 

The sum S=X+Y can be computed once. During the jth 
iteration of the algorithm, the j least significant bits of S with cj 
as the most significant bit form the quantity Sj which, in turn, is 
used only if xj=yj=1. In this case, however, sj+1=cj and, in the 
proposed algorithm, the quantity Sj can be computed 
equivalently by both of the following relations: 

021 s....sscS jjjj −−=    or   
021 s....sssS jjjj −−=  (12) 

 
TABLE 1 

VALUES OF Zj TO DETERMINE THE PRODUCT P=XY 
XJ YJ ZJ 
0 0 0 
0 1 Xj 
1 0 Yj 
1 1 Xj+Yj=Sj 

 
The proposed multiplexer-based parallel multiplier is 

shown in Fig. 1. The cells are described in Fig. 2, 3 and 4. The 
implementation of a two’s complement multiplier based on the 
proposed technique can be done on an array similar to the array 
of Fig. 1. Let us consider two integer numbers X and Y in this 
form: 
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Xn-1 and Yn-1 are the numbers that remain after truncation 

of the bits xn-1 and yn-1 from X and Y, respectively. The product 
P of the numbers X and Y, according to (13) and (14), is equal 
to: 
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The above relation differs from the corresponding (5) for 

positive numbers only in the sign of the term 
11111 −−−−− += nnnnn XyYxZ . Now, the above term must be subtracted 

instead of added. The algorithm  for all other terms remains 
unchanged and the product P=XY can be computed by the next 
equation: 
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Quantity Zn-1 is generated of the left boundary cells and it 

is subtracted by inverting the Sout bits of these cells. Also, the 
two additive inputs of the next to the leftmost top cells must be 
set to one. The final array implementing the multiplication of 
numbers in two’s complement form is shown in Fig. 5. 

 



 
Fig. 1. General diagram used by the proposed algorithm to calculate the product between two numbers 

 
 
 

 
Fig. 2. Diagram of the rectangular cells (not filled from Fig. 1) 

 

 
Fig. 3. Diagram of the rectangular cells with a circle inside (see 

Fig. 1) 
 

 
Fig. 4. Diagram of the rectangular cells with a rectangle inside 

(see Fig. 1) 
 
 

4. DESCRIPTION IN VHDL CODE 
 
The Booth’s algorithm proposed in the section 2, as well as the 
Pekmestzi’s algorithm for positive numbers and in complement 
at two proposed in the section 3, are now coded in the 
descriptive language VHDL. These three algorithms are coded 
in combinational logic, whose main characteristics are: 

 
1. The exit functions depends only on the state of the 

entrances. 
2. It doesn't contain memory elements. 
3. It has two level realization of logical gates. 

 
5. SYNTHESIS AND SIMULATION 

 
Once compiled the three codes, we proceeds to carry out the 
simulation of the same ones. For it, the software Foundation by 
Xilinx© is used, carrying out the synthesis in a FPGA 
XC4010XL also by Xilinx©. 

 
 
 



 
Fig. 5. General diagram of the proposed multiplexer-based two’s complement parallel multiplier 

 
 
 

 
Fig. 6. Positive numbers multiplication using Booth’s Algorithm 

 
 

First, we are going to simulate only positive numbers 
multiplications. Taking A and B as our inputs numbers (8 bits). 
The Fig. 6 shown the results using Booth’s algorithm. We can 
see that the results are shown in hexadecimal numbers, and is 
divided in two parts (low and high). The final number is the 
concatenation of these numbers. The Fig. 7 shown the results 
using Pekmestzi’s algorithm. It’s clear that the results are 
shown directly by the output P, in decimal numbers. Now, to 
show the two’s complement multiplication, let’s use an 
example. Let us consider A=-1910 and B=+2210. Now, the 
number A in two’s complement is A=111011012, and 
B=000101102. The multiplication in decimal of these numbers 
is P=-41810, or P=11111110010111102. Changing to 
hexadecimal, the product is P=FE5E16. The Fig. 8 shown the 
simulation using Booth’s algorithm, where the result is shown 
divided in two (high and low) again, but the concatenation of 
these values is the expected result. The Fig. 9 shown the 
simulation using Pekmestzi’s algorithm. The result is direct 
and is equal to the expected value. 
 

6. COMPARISON AMONG THE TWO ALGORITHMS 
 
Now, we proceed to compare the obtained results of the 
simulations of both algorithms. Of this comparison, we obtain 
the following remarks: 
 

1. Both algorithms carry out the multiplication of 
positive numbers and numbers in two’s complement. 

 
2. Both algorithms can be coded in the descriptor 

language VHDL in combinational logic. 

3. The operation speed is appropriate. 
 
However, certain advantages and disadvantages exist when 

using one of these codes instead of the other one: 
 

1. For the Pekmestzi’s algorithm, it is necessary a code 
for positive numbers multiplications and other 
similar but with certain differences for the 
multiplication with numbers in two’s complement, 
what takes us to have two extensive codes. For the 
Booth’s algorithm, we have a single and smallest 
code that carries out both operations. 

 
2. The number of logical gates on the FPGA 

XC4010XL is 10,000. The Pekmestzi’s code for 
positive numbers (only) uses a total of 1195 
equivalent gates for design (11.95%). The 
Pekmestzi’s algorithm for numbers in two’s 
complement uses a total of 1236 equivalent gates for 
design (12.36%). The Booth’s algorithm uses a total 
of 1287 equivalent gates for design (12.87%). 

 
3. The VHDL code for the Pekmestzi’s algorithm is of 

around 300 lines, while for the Booth’s algorithm 
decreases to only 100. 

 
4. The Pekmestzi’s algorithm gives us an alone number 

as a result. However, the Booth’s algorithm gives us 
two numbers that should be concatenated to obtain 
the result. 

 



 
Fig. 7. Positive numbers multiplication using Pekmestzi’s Algorithm 

 
 
 

 
Fig. 8. Two’s complement multiplier using Booth’s Algorithm 

 
 
 

 
Fig. 9. Two’s complement multiplier using Pekmestzi’s Algorithm 

 
 
 
 
 

7. CONCLUSION 
 

The multiplication is one of the most critical operations in 
every computational systems. In this work two different 
algorithms are shown for the calculation of multiplications 
between positive numbers and two’s complement numbers, 
which are the Booth’s algorithm and the Pekmestzi’s 
algorithm. 

 
Once we carries out the comparison between both 

methods, can conclude that these algorithms complete their 
multiplicative work indeed. However, some advantages exist 
of using one of them instead of the other one, like it was 
described in section 6. 

 
If is needed to use this multiplier in a complex circuit, it is 

convenient to use the Booth's algorithm, because the code is 
less extensive and it carries out both operations. However, if 
only multiplications are going to be carried out, the 
Pekmestzi’s algorithm is effective because in spite of being 
extensive in code is simple of to understand and to use. 

 
Something very important is the number of gates used for 

design. It is possible to see that the Pekmestzi’s algorithm for 
positive numbers (only) is the best choice, because it uses less 
quantity of gates. However, the algorithm has limitations (no 

negative numbers). In the end, the selection of the best option 
will depend on the application in which will be used. 

 
As a personal opinion, the Booth's algorithm can provide 

good results on a small code and using a very similar number 
of gates to those that are used by the Pekmestzi's algorithms. 
So, Booth's algorithm is a very good choice for application 
problems. 
 

It is necessary to point out that the Foundation software 
by Xilinx© did not allow to carry out a single code that carried 
out both operations in the case of the Pekmestzi’s algorithm 
(due to the extensive code). Also, it didn't allow to carry out 
the direct concatenation of the exit in the case of the Booth's 
algorithm. 
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