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Abstract - The robustified numerical technique for real-time 
sensor array reconstructive image processing is developed as 
required for remote sensing imaging with large scale 
array/synthesized array radars. The addressed technique is 
designed via performing the regularized robustification of 
the fused Bayesian-regularization imaging method 
aggregated with the efficient real-time numerical 
implementation scheme that employs the neural network 
computing.   
       
Keywords: Image reconstruction, regularization, neural 
networks. 
 
 

I. INTRODUCTION 
 

Modern applied theory of reconstructive image 
processing is now a mature and well developed research 
field, presented and detailed in many works [AST, 
97]…[WEH, 94]. Although the existing theory offers a 
manifold of statistical and descriptive regularization 
techniques for reconstructive imaging in many application 
areas there still remain some unresolved crucial 
theoretical and processing problems related to large scale 
sensor array real-time reconstructive image processing.  
 
In this study, as a particular application area, we consider 
the reconstructive remote sensing (RS) imaging with the 
use/fusion of array sensor systems, e.g. array radars 
[SHK, 02], [HEN, 98] or synthetic aperture radars (SAR) 
[SHK, 2-04], [CUT, 90]. The particular problems that we 
are going to detail and treat in this paper relate to 
substantial reduction of the computational load of the 
recently developed optimal/suboptimal nonlinear 
Bayesian/regularization image reconstruction procedures 
[SHK, 1-04], [HAY, 92] via performing their 
robustification aggregated with efficient real-time 
numerical implementation that employs the neural 
network (NN) computing.  
 
Two principal algorithmic-level and NN computational-
level developments constitute major innovative 
contributions of this study, namely:  
 
1) Development of the robustified version of the fused 
Bayesian-regularization (FBR) method [SHK, 1-04], 
[SHK, 02] for reconstruction of the power spatial 
spectrum pattern (SSP) of the wave field scattered from 

the remotely sensing scene (that is referred to as a desired 
RS image [FAL, 89]) given a finite set of array radar/SAR 
signal recordings. Since this is in essence a nonlinear 
numerical inverse problem, we propose to alleviate the 
problem ill-poseness by robustification of the Bayesian 
estimation strategy [FAL, 89], [HAY, 92] via performing 
the non adaptive approximations of the reconstructive 
operators that incorporate the non trivial metrics 
considerations for designing the proper solution space and 
different regularization constraints imposed on a solution. 
Pursuing such an approach we develop the family of 
robustified versions of the FBR method of different 
computational complexity that we address as the 
robustified real-time RS image reconstruction algorithms. 
 
2) Design of numerical techniques for efficient real-time 
computational implementation of such robustified RS 
image reconstruction/enhancement algorithms that 
employ the NN computing. In particular, we propose to 
employ the general Li’s architecture of the Hopfield-type 
dynamic NN detailed in [SHK, 01] but modify the 
specifications of the NN’s parameters (i.e. synaptic 
weights and bias inputs in all the NN’s loops, as well as 
the NN’s state update rule) to enable such the modified 
NN to perform the real-time robust image 
reconstruction/enhancement tasks. Also, we propose a 
method to perform such a reconstruction with controllable 
balance between the achievable spatial resolution and 
admissible noise level in the resulting image.  
 

II. PROBLEM MODEL 
 

Consider the measurement data wavefield  u(y) = s(y) + 
n(y) modeled as a superposition of the echo signals  s  and 
additive noise  n  and is assumed to be available for 
observations and recordings within the prescribed  time-
space observation domain Y ∋ y,  where y = (t, p)T  defines 
the time-space points in the observation domain Y = T×P.  
 
The model of the observation wavefield  u  is specified by 
the linear stochastic equation of observation (EO) of 
operator form  [SHK, 1-04]:  u = Se + n; e ∈ E; u, n ∈ U;  
S: E → U , on the Hilbert signal spaces  E  and  U  with 
the metric structures induced by the inner products,      
[u1, u2]U  and  [e1, e2]E , respectively. The operator model 
of the stochastic EO in the conventional integral form 
may be rewritten as [FAL, 89] 



           u(y) = ∫
X

S ),( xy e(x) dx + n(y)  , ( 1 ) 

 
    e(x) = e(f; ρ, θ) = ∫

F

e(t; ρ, θ) exp (– j2π f t) d t ( 2 ) 

 
where the functional kernel ),( xyS  of the signal 
formation operator (SFO) S  given by (1) defines the 
signal wavefield formation model [WEH, 94]. Following 
the multi-scale array/SAR radar RS problem 
phenomenology [DAD, 84], [CUT, 90] we assume an 
incoherent nature of the backscattered field )(xe  over the 
frequency-space observation domain X = F×R = F×P×Θ; 
in the slant range ρ ∈ P and azimuth angle θ ∈ Θ 
domains, respectively.  
 
When tackling the RS spatial analysis problems, the radar 
engineers typically work in the frequency-space domain, 
x = (f; ρ, θ)T∈ X = F× P×Θ , [SHK, 1-04], [CUT, 90], 
[WEH, 94]. However, because of the one-to-one 
mapping, only the spatial cross range coordinates r = (ρ, 
θ) may be associated with x as well [WEH, 94]. Such 
interpretation is valid if one assumes the narrowband 
system model [HEN, 98] and incoherent nature of the 
backscattered field )(xe [WEH, 94]. This is naturally 
inherent to the RS imaging experiments [WEH, 94], 
[PON, 03] in which case the phasor e(f, r) in (2) is taken 
to be independent random variable at each frequency f , 
and spatial coordinates  r, θ with the zero mean value and 
δ -form  correlation function,  RE( f,  f′ ; r,  r′) =           
<E(f; r)E*(f′, r′)> = B(f, r)δ(f –  f′ )δ(r – r′) that enables 
one to introduce the following definition of the spatial 
spectrum pattern (SSP) of the wavefield sources 
distributed in the observation environment [SHK, 02] 
 

        b(r) = Aver(2){e(r)} 
       = ∫

F

<e(f, r)e*(f, r)> |H(f )|2 d f   ; 

        r ∈ R: ρ ∈ P; θ ∈ Θ. 

( 3 ) 

 
Here, <⋅> represents the ensemble averaging operator, 
while Aver(2)  is referred to as the second order (i.e. 
nonlinear) statistical averaging operator defined by (3). 
Also in (3), H(f) represents the given transfer function of 
the radar receiving channels that we assume to be 
identical for all antenna array elements and impose the 
conventional normalization, |H(f)|2 = 1 for all frequencies 
f ∈ F  in the radar receiver frequency integrating band F, 
[HEN, 98].  
 
The RS imaging problem is to find an estimate b̂ (r) of 
the  SSP  b(r)  in the environment  R ∋ r  by processing 
whatever values of measurements of the data  u(y) ; y ∈ 
Y, are available. For an array with arbitrary sensor 
configuration, the recorded data is traditionally expressed 
as an algebrized version of the EO (1) 
 

            U = SE + N ( 4 ) 
 
where E, N and U define the zero-mean vectors 
composed of the coefficients Ek , Nm , and Um of the 
numerical approximations (decomposition [SHK, 02]) of 
the relevant operator-form EO (1), i.e. E represents the K-
D vector composed with the coefficients {Ek = [e, gk]E , k 
= 1, …, K} of the K-D approximation, e(K)(x) = (PE(K)e)(x) 
= ∑Ekgk(r),  of the initial wavefield  e(x), and  PE(K)  is a 
projector onto the K-D approximation subspace E(K) = 
PE(K)E = Span{gk} spanned by some properly chosen set 
of K basis functions {gk(r)} [SHK, 02], [SHK, 04]. The 
M-by-K matrix S that approximates the SFO in (4) is 
given now by [SHK, 02] 
 
   Smk  =  [ Sgk, ϕm ]U ;  m = 1, …, M  ;  k = 1, …, K ( 5 ) 
 
where the set of the base functions {ϕm(y)} that span the 
finite-dimensional spatial observation subspace U(M) = 
PU(M)U = Span{ϕm} defines the corresponding projector 
PU(M) induced by these array spatial response 
characteristics {ϕm(y)} [14]. Following the radar 
array/SAR processing terminology [FAL, 89], [CUT, 90] 
we refer to the kth column vector  sk  of the SFO matrix  

 
           S = (s1 …  sk  …  sK ) ( 6 ) 

 
as the corresponding array directional vector. The vectors 
E, N and U are characterized by the correlation matrices 
RE = D = D(B) = diag(B)  (a diagonal matrix with vector  
B  at its main diagonal), RN, and RU = S0RES0

+ + RN, 
respectively. (Recall that superscript + defines the adjoint 
operator [SHK, 1-04] that becomes the Hermitian 
conjugate when stands with matrix or vector). The vector, 
B, is composed of the elements  Bk = <EkEk

*>; k = 1, …, 
K, and is referred to as a  K-D vector-form approximation 
of the SSP. In the array finite-dimensional formalism, the 
RS imaging problem is to derive an estimator for 
reconstructing the  K-D approximation 
 

      b̂ (K)(r)  = 
∧

2
)( )(rKe  

=∑ =
K
k kB1

ˆ | gk(r) |2  = gT(r) diag ( B̂ )g(r) ;    r ∈ R 

( 7 ) 

 
of the SSP distribution b(r)  in the environment R ∋ r . 
Here g(r) denotes the vector composed of the basis 
functions {gk(r)} and B̂  represents the estimate of the 
SSP vector B. The experiment design (ED) aspects of this 
problem involving the analysis of how to choose (finely 
adjust) the basis functions {gk(r)} that span the signal 
representation subspace E(K) = PE(K)E = Span{gk} for a 
given observation subspace  U(M)  = Span{ϕm} were 
investigated in more details in our previous studies [SHK, 
02], [SHK, 1-04]. Also, we employ here the ED 
considerations regarding the metrics structure in the 
solution space defined by the inner product [SHK, 1-04] 
 



           ||B||2B(K) = [B, MB] ( 8 ) 
 
where M is referred to as the metrics inducing operator. 
Hence, the selection of M provides the additional 
geometrical degrees of freedom of the problem model. In 
this paper, we incorporate the model of M that 
corresponds to the numerical approximation of the 
Tikhonov’s stabilizer of the second order that was 
numerically designed in [SHK, 02]. Also, following 
[SHK, 1-04] we incorporate the projection-type a priori 
information requiring that the SSP vector B satisfies the 
linear constraint equation 
 

           GB = C, i.e.  G–GB = BP ( 9 ) 
 
where BP = G–C and  G– is the Moore-Penrose 
pseudoinverse of a given projection operator G: B(K)  → 
B(Q), and the constraint vector C ∈ B(Q)  and the constraint 
subspace B(Q) (Q < K) are assumed to be given. In (9), the 
constraint operator G projects the portion of the unknown 
SSP onto the subspace where the SSP values are fixed by 
C. In practice, such limitations may specify the system 
calibration [WEH, 94].  
 
The main purpose of this paper is to present the efficient 
real-time implementation techniques for the robustified 
(suboptimal) versions of the fused Bayesian-
regularization (FBR) optimal estimator derived 
previously in [SHK, 02], [SHK, 1-04] via performing the 
relevant array data processing. Thus we limit our study 
here to the implementation aspects of the SSP estimation 
problem via performing the robustification of the FBR 
method [SHK, 2-04] for the generalized model  (3) of the 
SSP of the wavefield sources collected (integrated) over 
the prescribed frequency observation band. Such a 
generalization distinguishes the present study from the 
frequency independent SSP estimation that was 
considered in [SHK, 02], [SHK, 2-04].  
 

III. SUMMARY OF THE FBR METHOD 
 

The estimator that produces the optimal estimate B̂ of the 
SSP vector via processing the M-D data recordings U 
applying the FBR estimation strategy that incorporates 
nontrivial a priori geometrical and projection-type model 
information was developed in our previous study [SHK, 
1-04]. Such optimal FBR estimate of the SSP is given by 
the nonlinear equation [SHK, 04] that we generalize here 
for the case of the integrated SSP model as follows, 
 
         B̂  = BP + PB0 + W( B̂ ){V( B̂ ) – Z( B̂ )}. ( 10 ) 
 
In (10), BP is defined by (9) and B0 represents the a priori 
SSP distribution to be considered as a zero step 
approximation to the desires SSP B̂ . Note that in this 
paper, we use all the notations from [SHK, 1-04] for 
definitions of the sufficient statistics (SS) vector V( B̂ ) = 
{F( B̂ )UU+F+( B̂ )}diag ({⋅}diag determines a vector 
composed of the principal diagonal of the embraced 
matrix), the solution-dependent SS formation operator  

           F  =  F( B̂ )  
          = D( B̂ )(I + S+ 1−

NR SD( B̂ ))–1 S+ 1−
NR ; 

( 11 ) 

 
the SS shift vector Z( B̂ ) [SHK, 1-04], and the composite 
solution-dependent smoothing-projection window 
operator [SHK, 2-04] 

 
            W( B̂ ) = PΩ( B̂ ) ( 12 ) 

 
with the projector 
 

            P = (I – G–G) ( 13 ) 
  
and the solution-dependent smoothing window 
 

            Ω( B̂ ) = (diag{{S+F+FS}diag}  
             + α̂ D2( B̂ )M( B̂ ) )–1 

( 14 ) 
                 
in which the regularization parameter α̂  is to be 
adaptively adjusted using the system calibration data 
[SHK, 2-04].  
 
As it was analyzed in [SHK, 2-04], because of the 
complexity of the solution dependent  K-D operator 
inversions needed to be performed to compute the SS 
V( B̂ ), the window W( B̂ ) and SS shift Z( B̂ ), the 
computational load of the original optimal FBR estimator 
(10) is extremely high to address that as a practically 
realizable estimator of the SSP (i.e. practical high-
resolution RS radar imaging technique realizable in a 
real-time mode). 

 
IV. ROBUSTIFIED FBR TECHNIQUES   

 
A. FBR-Robustified  Estimator 
 
In this subsection, we propose the robustification scheme 
for real-time implementation of the FBR estimator (10) 
that enables one to reduce drastically the computation 
load of the image formation procedure without substantial 
degradation in the resolution and overall image 
performances. We propose the robustified version of the 
FBR estimator (referred to as R-FBR method) via 
roughing P = I and performing the robustification 
(nonadaptive approximation) of both the SS formation 
operator F( B̂ ) and the smoothing window Ω( B̂ ) in (10) 
by roughing D( B̂ ) ≈ D = βI, where β represents the 
expected a priori image gray level [SHK, 02]. Hence, the 
robustified SS formation operator 
 
          F = A–1(ρ)S+    with    A(ρ) = S+S + ρ–1I ( 15 ) 

 
becomes the regularized inverse of the SFO S with 
regularization parameter ρ–1, the inverse of the signal-to-
noise ratio (SNR) ρ = β/N0 for the adopted white noise 
model, RN = N0I. The robust smoothing window 
 

              W = Ω = (w0I + M)–1 ( 16 ) 



is completely defined now by the matrix M that induces 
the metrics structure (8) in the solution space [PON, 03] 
with the scaling factor w0 = tr{S+F+FS}/K. Note that such 
robustified W can be pre-computed a priori for a family 
of different admissible ρ as it was performed in the 
previous study [SHK, 02]. Here, we adopt practical 
constraints of high SNR operational conditions [STA, 
98], [GAL, 04] ρ >> 1, in which case one can neglect also 
the constant bias Z = Z0I in (10) because it does not affect 
the pattern of the SSP estimate (it influences only the 
constant gray level in the resulting solution but Z0 << β 
for ρ >> 1). Following these practically motivated 
assumptions, the resulting R-FBR estimator becomes 
 

           RFBRB̂ = B0 + ΩV ( 17 ) 
 
where V = {FUU+F+}diag  represents now the robust 
(solution independent) SS vector. Thus, the principal 
computational load of the R-FBR estimator (17) is 
associated now with the operator inversions required to 
compute the solution operator (15) for adaptively 
(recurrently) adjusted regularization parameter ρ.  
 
B. Matched Spatial Filtering Estimator    
 
The simplest rough SSP estimator can be constructed as 
further simplification of (17) if we adopt the trivial a 
priori model information (P = I and B0 = 0I) and roughly 
approximate the SS formation operator F by the adjoint 
SFO, i.e. F ≈ γ0S+  [SHK, 2-04] (where the  normalizing  
constant  γ0  provides  balance  of  the  operator norms 2

0γ  
= tr-1{S+SS+S}tr{FSS+F+}). In that case, the estimator 
(17) is simplified to its rough version 

 
             MSFB̂  = Ω H ( 18 ) 

 
where the rough SS H = 2

0γ {S+UU+S }diag  is now formed 
applying the adjoint operator S+, and the windowing of 
the rough SS H is performed applying the smoothing 
filter Ω = (w0I + M)–1 with the nonnegative entry, the 
same one as was constructed numerically in [SHK, 02]. 
The (18) can be referred to as matched estimator of the 
SSP. This definition will become apparent from the 
following explanation.   
 
C. Remark 1  
 
Observe, that (18) is recognized to be a vector-form 
representation of the conventional kernel SSP estimation 
algorithm [SHK, 04], in which the SS is formed as the 
squared modulus of the outcomes of the matched spatial 
filter applied to the recorded data signal (trajectory signal 
in the SAR terminology [SHK, 2-04], [CUT, 90]). Thus, 
in the framework of the FBR inference-based approach to 
RS imaging [SHK, 1-04], the traditional matched filtering 
technique (18) can be viewed as a rough simplified 
version of the developed above R-FBR method. In view 
of this, in the presented family of the SSP estimators, we 

specify (18) as the rough matched spatial filtering (MSF) 
method for SSP estimation, whereas we refer to (17) as 
the robustified FBR (R-FBR) enhanced RS imaging 
method and (10) as the complete FBR-optimal SSP 
reconstruction technique, respectively. 

 
V. NN FOR IMPLEMENTING THE R-FBR METHOD 

 
In this Section, we propose the NN for efficient real-time 
computational implementation of the above presented R-
FBR method. The main idea is to aggregate the robust 
regularization with the NN-based computing to reduce the 
computational load of the R-FBR method. We approach 
this goal by performing the modifications of the 
multistate Hopfield-type modified NN originally 
developed in [SHK, 01]. The modification that we 
perform is aimed at enabling such the NN to implement 
computationally the R-FBR algorithm (17). Borrowing 
from [SHK, 01] we define the Hopfield-type NN as a 
massive interconnection of formal neurons, i.e. basic 
processing units. The outputs of all K neurons compose 
the output vector, z = sgn(Qv + Θ), where, Q represents 
the KK ×  matrix of the interconnection strengths of the 
NN, and Θ defines the 1×K  bias vector of the NN [SHK, 
01]. The output vector z is used to update the state vector 
v of the network: vvv ∆+= '''  where, ( )zv ℜ=∆  is a 
change of the state vector v computed applying the state 
update rule ( )zℜ  [SHK, 01] and the superscripts ′′ and ′ 
correspond to the state values before and after network 
state updating, respectively. The state update rule ( )zℜ  is 
designed in such a way [SHK, 01] that the energy 
function of the overall NN 
 

                   ENN(v) =
2
1

− vTQv –  ΘTv ( 19 ) 

 
is decreased at each updating step, i.e. 

)'()''( vv NNNN EE ≤ , until the NN reaches its stationary 
state (saddle point)  related to the state vopt  at which the 
minimum of the NN energy (19) is attained, 
i.e. )(min)( vv NNvoptNN EE = . Analyzing now the 

behavior of such the NN we may associate the NN’s 
stationary state with the solution to the hypothetical 
inverse problem (IP) of minimization of the composite 
cost function 
 

           EIP(Y|λ) = 12
1 λ ||U – SY||2 + 22

1 λ || Y ||2. ( 20 ) 

 
If the regularization parameters in (20) are adjusted as 

1λ = 1, 2λ = ρ–1 and the NN’s stationary state is 
associated with the solution to (20) than minimization of 
EIP(Y|λ) provides the robust constraint least square (CLS) 
estimate Y = FU that uniquely defines the desired high-
resolution SSP  vector V = {YY+}diag. Hence, the 
cumbersome operator inversions needed to compute the 
SS formation operator (15) can be translated into the 



relevant problem of recurrent minimization of the energy 
function (19) of the NN and derivation of Y = vopt via 
specification of the NN’s parameters as follows: 
 

            ∑
=

−−=
K

j
kijijkki SSQ

1
2

*
1 δλλ   ; 

            for all  k, I = 1, …, K. 
( 21 ) 

 

            ∑
=

=Θ
K

j
jjkk US

1
1λ   ; 

             for all  k = 1, …, K. 

( 22 ) 

 
where  kiQ  and kΘ  represent the elements of the 
interconnection strengths matrix Q and bias vector Θ of 
the modified NN, respectively.  
 
A. Remark 2 
 
Observe that because of the exclusion of the solution-
dependent operator inversions (15) via translations (21), 
(22) of the SS formation procedure into the relevant 
recurrent problem of minimization of the NN’s energy 
function (19) associated with the relevant EIP(Y|λ) (20) 
the computational load of the R-FBR procedure (17) is 
drastically decreased in comparison with the fully optimal 
FBR algorithm (10).  
 
In the simulation applications (reported in the subsequent 
Section) related to the 512×512 pixel image format, the 
computation load of the RS enhanced imaging with the R-
FBR algorithm (17) applying the proposed above NN 
computational scheme in comparison with the original 
FBR method (10) was decreased approximately 105  times 
and required 0.38 sec of the overall computational time 
(i.e. real-time mode) for implementing the R-FBR 
technique (17) with the SONY VGN-A190 PC.    
 

VI. SIMULATIONS 
 
In the simulations, we assumed the SAR with 
partially/fractionally synthesized array as an RS imaging 
system [SHK, 2-04]. The SFO was factorized along two 
axes in the image plane: the azimuth (horizontal axis) and 
the range (vertical axis).  
 
Following the common practically motivated technical 
considerations [WEH, 94] we modeled a triangular shape 
of the SAR range ambiguity function of 3 pixels width, 
and a |sinc| shape of the side-looking radar antenna 
radiation pattern of 10 pixels width at the zero crossing 
level for the first scenario of fractionally synthesized 
array (System 1), and 20 pixels width for the second 
scenario of fractionally synthesized array (System 2), 
respectively.   
 
We examined the behavior and performance indices of 
the derived above estimators for different simulated 
scenes of the SSPs and two RS system configurations.  

  
 

Fig. 1. Simulation results for 1-D scenario: 1st system model.  
(a) Original scene. (b) Point Spread Function. (c) Noised MSF image. 

(d)  CLS reconstructed image. (e) FBR reconstructed image. (f) R-FBR 
reconstructed image. 

 
 

 
 

Fig. 2. Simulation results for 1-D scenario: 2nd system model.  
(a) Original scene. (b) Point Spread Function. (c) Noised MSF image. 

(d)  CLS reconstructed image. (e) FBR reconstructed image. (f) R-FBR 
reconstructed image. 

 
 
The 1-D simulated SSP (for one particular SAR range 
gate) is presented in Fig. 1.a. The other pictures of Fig. 1 
report the formed/reconstructed images obtained with the 
1st simulated system configuration applying three 
different estimators as specified in the figure captions. 
 
The 1-D simulated SSP (for the same particular SAR 
range gate) is presented in Fig. 2.a. The other pictures of 
Fig. 2 report the formed/reconstructed images obtained 
with the 2nd simulated system applying three different 
estimators as specified in the figure captions. 
 
Figures 3.a and 4.a show the 2-D 512-by-512 pixel format 
scene images originally formed via implementing the 
MSF method with the RS imaging system data provided 
by the simulated RS imaging Systems of model 1 and 
model 2, respectively.  



 
( a ) 

 
( b ) 

 
( c ) 

 
( d ) 

 
Fig. 3. Simulation results for System 1: (a) Noised MSF image.  

(b)  CLS reconstructed image. (c) FBR reconstructed image.  
(d) R-FBR reconstructed image. 

 
( a ) 

 
( b ) 

 
( c ) 

 
( d ) 

 
Fig. 4. Simulation results for System 2: (a) Noised MSF image.  

(b)  CLS reconstructed image. (c) FBR reconstructed image.  
(d) R-FBR reconstructed image. 

 



Table 1. IOSNR values provided with the two simulated methods. 
Results are reported for different simulated SNRs for two different 

system models. 
 

SNR System 1 System 2 
(dB) CLS R-FBR FBR CLS R-FBR FBR 
10 2.35 2.42 2.56 19.49 20.26 21.12 
15 5.15 5.56 5.78 20.42 21.83 22.97 
20 8.24 8.72 8.95 21.25 22.66 23.85 
25 12.71 13.19 14.34 21.13 22.54 23.71 
30 17.54 17.91 18.12 22.18 23.59 24.60 

 
 

Figures 3.b and 4.b present the reconstructed (enhanced) 
images formed using the CLS algorithm for System 1 and 
System 2, respectively. Figures 3.c and 4.c present the 
images reconstructed applying the FBR algorithm for 
System 1 and System 2, respectively. Figures 3.d and 4.d 
present the images reconstructed applying the R-FBR 
algorithm for System 1 and System 2, respectively. 
 
These examples of 2-D simulations of two RS imaging 
systems are presented for the same fractional aperture 
synthesis scenarios as in the 1-D cases, respectively. The 
quantitative measure of the improvement in the output 
signal-to-noise ration (IOSNR) [SHK, 02] gained with the 
enhanced imaging methods for the two simulated 
fractional aperture synthesis scenarios are reported in 
Table I. 

 
VII. CONCLUDING REMARKS 

 
We have developed and presented the R-FBR method for 
real-time high resolution SSP estimation as required for 
reconstructive RS imagery although it may also be 
applied to other fields. The developed R-FBR method 
was implemented in real-time mode utilizing the proposed 
Hopfield-type multi-state NN computational technique.  
 
The interconnection strengths and bias inputs of the 
designed NN were specified in such a way that enabled 
the NN to perform solution of the aggregate inverse 
problem of high-resolution SS estimation (i.e. RS image 
reconstruction) from the available array data recordings 
required to implement the overall R-FBR method. The 
developed technique performs the balanced aggregation 
of the data and model information to perform the efficient 
image reconstruction with improved spatial resolution and 
noise reduction in real-time mode.  
 
The presented simulation examples illustrate the overall 
imaging performance improvement gained with the 
proposed approach. The presented study establishes the 
foundation to assist in understanding the basic theoretical 
aspects of the multi-level suboptimal RS image 

processing that aggregates the robust regularization and 
NN-computing paradigms with controllable reduction of 
the computational load of the image reconstruction tasks 
as required for particular applications related to large 
scale array/SAR RS imagery, although, the results can be 
extended to other practical areas in real-time imaging 
systems design and applications.  
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