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ABSTRACT 
 

We address a new approach to the problem of 
improvement of the quality of scene images obtained with 
several sensing systems as required for remote sensing 
imagery, in which case we propose to exploit the idea of 
robust regularization aggregated with the neural network 
(NN) based computational implementation of the multi-
sensor fusion tasks. Such a specific aggregated robust 
regularization problem is stated and solved to reach the 
aims of system fusion with a proper control of the NN’s 
design parameters (synaptic weights and bias inputs 
viewed as corresponding system-level and model-level 
degrees of freedom) which influence the overall 
reconstruction performances.  

 
Keywords: Signal processing, image reconstruction, 
system fusion, regularization, neural networks. 

 
 

1. INTRODUCTION 
 

In this paper, the problem of reconstructive imaging with 
system fusion is treated as required for multisensor/ 
multisource remote sensing (RS) imagery [1], [2]. Usually, 
an active or passive RS imaging system (radar, sonar, 
infrared, seismic, etc.) performs specific space-time 
processing of the random electromagnetic or acoustic field 
impinging on the system sensor or array of sensors with 
the purpose of obtaining an estimate of the power pattern 
of wavefield sources distributed in the environment, the 
so-called spatial spectrum pattern (SSP) [7], [10] referred 
to as an image of the environment produced by a system 
[1], [2]. It is clear that in the case of multiple RS systems 
that may employ different imaging methods (linear, 
nonlinear, adaptive and robustified) with different system-
level constraints (e.g. calibration data, noise and signal 
statistical model uncertainties), there are particular 

properties of RS images that demand reconstruction 
techniques different from those recently proposed for 
conventional optical and non fused RS imagery [3], [4], 
[5], [6], [7].  
     The key distinguishing features of the approach 
considered in the present study are as follows:  
     (i) the problem of image reconstruction with system 
fusion is stated and treated as an aggregated ill-
conditioned inverse problem of reconstruction of the 
desired image from the degraded images provided by 
different sensing systems with model uncertainties about 
the signal and noise statistics and uncertain system 
calibration data;  
     (ii) we propose to approach this problem by 
exploitation of nontrivial information on the performances 
of the corresponding systems to be fused combined with 
prior realistic knowledge about the properties of the scene 
contained in the maximum entropy a priori image model 
and robust incorporation of some system-level constrains 
(e.g. in the case of uncertainty, only the robust prior 
information on the bounded total output image variance 
and overall resolution-to-noise balance is to be 
incorporated); 
   (iii) to accomplish the system fusion computationally, 
we investigated the fine structure of the Li’s multistate 
maximum entropy neural network (MENN) [8], and 
propose its robust modification to enable the network to 
solve the aggregate fusion-reconstruction problem. Such 
an intelligent aggregation (not simple compilation) of the 
robust system fusion approach with the NN computational 
paradigm distinguishes the present study from the 
previously proposed image reconstruction and sensor 
fusion techniques reported in [4], [5], [8], [9], [10]. 
  

2. PROBLEM PHENOMENOLOGY 
 
According to the mathematical statement [5], [8] to 
perform the image enhancement via NN-based signal 
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processing of the RS data employing the system/method 
fusion one have to solve the maximum entropy (ME) 
conditional optimization problem   

v̂  =  
v

argmin E (v |λ )                       (1) 

of minimizing the cost (energy) function     
 

E(v|λ) = –  H (v) + (1/2)
m

M
m∑ =1λ Jm(v) 

+ (1/2)λM+1JM+1(v)               (2) 
 

with respect to the desired  K-D image vector  v  for the 
assigned (or adjusted) values of the regularization 
parameters  λ . The proper selection of  λ  is associated 
with parametrical optimization of the fusion process. In 

(2), H(v) = –∑ =
K
k kv1 lnvk  is the image entropy [4] 

computed for all image pixels vk,; k = 1, …, K;  Jm(v) = 
||u(m) – F(m)v||2 represent the partial error functions for 
corresponding M RS systems, m = 1, …, M; and JM+1(v) 
represents the conventional Tikhonov’s stabilizer [11]. 
The data acquisition model is defined, as in [8], by the set 
of equations,  u(m) = F(m) v + n(m) ; m = 1, …, M, where 
F(m) represents the corresponding mth system degradation 
operator usually referred to as the imaging system point 
spread functions (PSF) [4] and  n(m) represents the noise 
in the actually acquired corresponding mth image, 
respectively. In our previous study [8], the aggregate 
regularization-based method for proper selection of  λ  
was proposed, which guarantees the optimal resolution-
to-noise balance when the optimal enhancement-fusion 
problem (1) is solved. It is important to note that the ME 
solution v̂  exists and is guaranteed to be unique for a 
given λ because the surfaces of all functions that 
compose E(v|λ) given by (2) are convex. Furthermore, 
the entropy is defined only for the positive values, hence, 
the ME solution is guaranteed to be positive. But one can 
deduce from an analysis of problem (1), (2) that due to 
the non-linearity of the objective function the solution of 
the parametrically controlled enhancement-fusion 
problem (1) will require extremely complex 
computations and will result in the technically intractable 
fusion scheme if solve this problem employing the 
standard direct minimization techniques [3], [12]. For 
this reason, we propose here to apply the NN-based 
computing paradigm for solving the aggregate 
enhancement-fusion problem (1). Because of the specific 
computational capabilities the framework of such the 
intelligent NNs is very convenient for fusion design [4], 
[5], [8].   

 

3. MENN FOR MULTISENSOR IMAGE FUSION 

The dynamic NN which we propose to solve the problem 
(1) is a further modification of the Li´s maximum entropy 

NN (MENN) [5] originally modified in [8] to enable that 
to perform the system fusion tasks. Changing the rule for 
computing the states of the MENN performs the 
modification. Instead of the empiric calibration-based 
adjustment of the parameters λ, those are now adaptively 
controlled using the aggregation method developed in 
[8].   
     Consider the multistate Hopfield-type (i.e. dynamic) 
NN [3], [4] with the K-D state vector  x  and  K-D output 
vector z = sgn (Wx + θ), where W  and  θ  are the matrix 
of synaptic weights and the vector of bias inputs of the 
NN, respectively. The energy function of the NN is 
expressed as [8] 

E  = – (1/2)∑ ∑= =

K
k

K
m mkkm xxW1 1 – ∑ =

K
k kk x1θ .    (3) 

The idea of solving the image enhancement problem (1) 
with system fusion using the dynamic NN is based on the 
following proposition [8]: if the energy function of the 
NN represents the function of a mathematical 
minimization problem over a parameter space, then the 
state of the NN would represent the parameters and the 
stationary point of the network would represent a local 
minimum of the original minimization problem. Hence, 
utilizing the concept of the dynamic NN, we may 
translate our image reconstruction/enhancement inverse 
problem with RS system fusion to the corresponding 
problem of minimization of the energy function of a 
modified MENN. Therefore, we define now the 
parameters of the modified MENN in such a fashion that 
to aggregate the corresponding parameters of the imaging 
RS systems to be fused, 

Wki = –∑ =

M
m 1[λ m∑ =

K
j jijk FF

1
)m()m( ] – λ M+1Pki ;    

     θk  = – lnvk  +∑ =

M
m 1[ ∑ =

K
j jjkm F

1
)m()m( uλ ]         (4) 

for all   k, i = 1, …, K .  
     To find a minimum of the energy function (3), the 
states of the network should be updated from iteration to 
iteration x//=x/+∆x using some properly designed update 
rule ℜ(z) where the superscripts  '  and '' correspond to the 
state values before and after network state updating (at 
each iteration), respectively, and ∆x defines a change in 
the MENN´s state vector. In this study, we employ the rule 
developed in our previous paper [8] that guarantees the 
nonpositive values of the energy changes ∆E, i.e.   

   ⎧   0   if     zk  = 0 , 

               ∆xk  = ℜ(zk ) = ⎨   ∆   if     zk  > 0 ,                  (5) 

⎩– ∆   if     zk  < 0 , 
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where  ∆  is the preassigned step-size parameter [8]. 
     While implementing the MENN algorithm, the values 
of the regularization parameters in (4) may be chosen 
empirically [5] or controlled applying the aggregation 
schemes proposed in our previous study [8]. Hence, via 
integrating the aggregation method [8] with the NN given 
by (4), (5), we propose the following scheme for adaptive 
adjustment of the MENN´s weighting parameters in (4) 
as follows, 

mm πωλ ˆˆˆ 1−=  ,      mπ̂ =  
1∑ =

M
i i

m

r
r ,            (6) 

where rm = trace }){( -2)(mF  is the corresponding system’s 
resolution factor, and ω̂  is to be found as a solution to the 
noise-to-resolution balance equation (equation (13) from 
[8]). Thus, the idea of computational implementation of 
the proposed aggregated fusion method using a NN is 
based on the modification of the Li´s MENN algorithm [8] 
without complicating the NN’s computational structure 
independent on a number of systems to be fused. To 
accomplish this we redefine the NN’s operation 
parameters  W ,  θ   in such the fashion (4) that the new 
MENN algorithm integrates the model parameters of all  
M  systems that enables the network to perform the fusion.      
Note that via integrating the presented above MENN 
algorithm with two optimization methods for system-
oriented or problem-oriented data aggregation [8], other 
different modifications of the developed here MENN-
based system fusion technique can also be proposed. 
  

3. NUMERICAL SIMULATIONS 
 

The computer simulations of the proposed here method 
were carried out in two dimensions for the case of two 
RS imaging systems, i.e. M = 2. We tested two different 
models of the symmetric system point spread functions 
(PSFs): PSF1  of a a Gaussian "bell" shape of 20 pixels 
width at half maximum, and  PSF2  of a squared "sinc" 
shape of 10 pixels width at half maximum, in the 
horizontal direction of the 2-D scene. The original image 
was of 512-by-512 pixel format in size. The chi-squared 
random additive noise was aggregated to the images to 
emphasize the performance of the fusion method. Its 
variance was 5% of the image average gray level for the 
first system model and 10% for the second system model, 
respectively. The simulation results are shown in Figures 
1 - 5. Also, we tested the results of image enhancement 
without system fusion which employed the inverse 
filtering techniques [2], [11] but all those provided 
unsatisfactory poor quality of restoration even for the low 
noise levels. Some of the results of simulations carried 
out in one and two dimensions without optimal data 
aggregation were also reported in our previous work [8].   

 
 

Fig. 1. Initial radar image provided with the 1st system (SAR with the 
fractionally synthesized aperture) 

 
 

 
 

Fig. 2. Initial radar image provided with the 2nd system (SAR with the 
fractionally synthesized aperture) 

 
 

 
 

Fig. 3. MENN-reconstructed image of the 1st system (without system 
fusion) 
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Fig. 4. MENN-reconstructed image of the 2nd system (without system 
fusion) 

 
 

 
 

Fig. 5. Fused image reconstructed from the images of Fig.1 and Fig. 2; 
the fusion was performed applying the developed MENN technique 

 
4. CONCLUDING REMARKS 

 
The aggregated multisensor/multisource digital imaging 
problem was stated and solved numerically via NN 
computing to reach the aims of system fusion with control 
of the system-level and model-level design parameters 
(degrees of freedom) which influence the overall 
reconstruction performances as required for the 
multisensor/multisource remote sensing imagery, although 
the developed methodology could be addressed also for 
other fields.    
     The principal result of the undertaken research can be 
summarized as follows: due to the unified architecture and 
computational parallelism, the developed MENN is able to 
perform the system fusion tasks without cardinal 
complication of its structure independent on the number of 
systems to be fused. Only the proper readjustment of the 
MENN’s computational parameters (i.e. synaptic weights 

and bias inputs) must be accomplished in each particular 
case to enable the MENN to perform the developed fusion 
method. 
          As a final point of study, we presented some 
simulation examples indicative of the enhancement of the 
overall performances of the aggregated image 
reconstruction with sensor fusion achieved with the 
developed MENN method in its application to 
reconstructive imaging with the real-world RS data 
provide by two SAR imaging systems. 
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