
Instituto Tecnológico y de Estudios Superiores de Occidente

 

2006 

Intelligent Processing for SAR Imagery for

Environmental Management
 

Villalón-Turrubiates, Iván E.
 
Iván E. Villalón-Turrubiates, “Intelligent Processing for SAR Imagery for Environmental Management”,

in Proceedings of the 18th International Conference of the Information Resources Management

Association (IRMA): Emerging Trends and Challenges in Information Technology Management,

Washington D.C. EE.UU., 2006, pp. 981-983.

 

 

Enlace directo al documento: http://hdl.handle.net/11117/3313

 

Este documento obtenido del Repositorio Institucional del Instituto Tecnológico y de Estudios Superiores de

Occidente se pone a disposición general bajo los términos y condiciones de la siguiente licencia:

http://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf

 

(El documento empieza en la siguiente página)

Repositorio Institucional del ITESO rei.iteso.mx

Departamento de Electrónica, Sistemas e Informática DESI - Artículos y ponencias con arbitraje

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Institucional del ITESO

https://core.ac.uk/display/47249341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.iteso.mx
http://rei.iteso.mx
http://hdl.handle.net/11117/3313
http://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf


 
 

Intelligent Processing for SAR Imagery  
for Environmental Management 

 
Ivan E. Villalon-Turrubiates, Member, IEEE 

CINVESTAV, Unidad Guadalajara 
Av. Científica 1145, Colonia El Bajío, C.P. 45010, Zapopan Jalisco, MEXICO 

Telephone: (+5233) 37703700, Fax: (+5233) 37703709, E-mail: villalon@gdl.cinvestav.mx 
 
Abstract – A new intelligent computational paradigm based on the use of Kalman filtering technique [4] modified to reconstruct 
the dynamic behavior of the physical and electrical characteristics provided via reconstructive SAR imagery. As a matter of 
particular study, we develop and report the Kalman filter-based algorithm for high-resolution intelligent filtration of the 
dynamic behavior of the hydrological indexes of the particular tested remotely sensed scenes. The simulation results verify the 
efficiency of the proposed approach as required for decision support in environmental resources management.   

Keywords: Environmental Remote Sensing, Resource Management, Decision Support. 
 

I. INTRODUCTION 
 

Modern applied theory of reconstructive signal and image processing for environmental monitoring and resource 
management [8] is now a mature and well developed research field, presented and detailed in many works ([1], [2], [3] are 
only some indicative examples). Although the existing theory offers a manifold of statistical and descriptive regularization 
techniques to tackle with the particular environmental monitoring problems, in many application areas there still remain 
some unresolved crucial theoretical and data processing problems related particularly to the extraction and enhancement of 
environmental characteristics for decision support in environmental management and end-user computing aspects that 
incorporate the high-precision filtering techniques for evaluation and prediction the dynamic behavior of the particular 
extracted environmental processes.  
 

In this study, we undertake an attempt to develop and verify via computational simulations a new intelligent 
filtering method that provides the possibility to track, filter and predict the dynamical behavior of a physical characteristics 
extracted from the remotely sensed scenes provided with the real-world high-resolution SAR data as it is required for 
decision support in environmental resources management. The proposed methodology aggregates the Kalman filtering 
technique [4] with the high-resolution algorithms for enhanced SAR imagery [1], [5]. In the simulations, we tested the data 
provided with the spaceborne SAR with fractionally synthesized array [1], [2].  
 

II. MATHEMATICAL MODEL OF THE LINEAR DYNAMIC PROBLEM 
 
Consider the following model of the Equation of Observation (EO) in continuous time [6] 

)())(()( tntStu += λ  (1) 
 
where n(t) is the White Gaussian Noise and Tt∈ , starting at t0 (initial instant of time). Regarding the signal process, the 
following linear amplitude-modulated model S(λ(t)) is considered, 
 

)()())(( 0 tSttS λλ =  (2) 
 
where S0(t) is the deterministic “carrier” signal of a given model, and λ(t) is the unknown stochastic information process to 
be estimated via processing (filtration) of the observation data signal u(t). Regarding λ(t), it is considered that it satisfies 
some dynamical model specified by the following linear differential equation 
 

)(...)()(...)()(
01

1

101

1

1 tx
dt

txdt
dt

td
dt
td

N

N

NN

N

NN

N

ββλαλαλ ++=+++
−

−

−−

−

− . (3) 

 
The stochastic model can be redefined as follows: the differential equation (3) may be transformed into a system of Linear 
Differential Equations of order 1 via performing replacement of variables [6], and may be represented in a canonical vector-
matrix form 

)()()( tt
dt
td GxFzz +=    ,        )()( tt Czλ =  . (4) 
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Considering that ξ(t)=x(t) is white noise, the statistics are 0)( =tξ  and )'()()'()( tttPtt −=∗ σξξ ξ  [6], where Pξ(t) is the 
Disperse Function that represents the dynamics of the process variance developed in a continuous time. Accepting the 
model of the information process and output of a Linear Dynamic formation system defined above, the Equation of 
Observation can be defined as follows 
 

)()()()()()()()( tttttttt nzHnzCSu 0 +=+=  (5) 
 
where )()()( ttt CSH 0= . This model allows formal generalization of an arbitrary m-channel observation u(t). The aim of 
the Linear Dynamic Filtration is to find an optimal estimate of the information process λ(t) in current time t ( tt →0 ) via 
processing the information data vector z(t) taking in account the a-priori dynamic model of λ(t). In other words, one have to 
design the optimal dynamic filter that when applied to the observation vector u(t) provides the optimal estimation of the 
desired process that satisfies the a-priori dynamic model specified by the stochastic dynamic state equation [6] 
 

)(ˆ)()(ˆ ttt zCλ = . (6) 
 
The Canonical Discrete Form of a LDS represented in state variables is [6] 
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where IFΦ +Δ= ttk k )()(  and ttk k Δ= )()( GΓ . In this case, the Eq. (5) in discrete time becomes 
 

)()()()( kkkk nzHu += . (8) 
 
The statistical characteristics of the a-priori information in discrete time are [6] 
- Model Noise (initializing or generating model) {ξ(k)}: 0ξ =)(k ; ),()()( jkjk ξPξξ =∗ . 

- Observation Noise {n(k)}: 0n =)(k ; ),()()( jkjk nPnn =∗ . 

- Random State Vector {z(k)}: )0()0( zmz = ; )0()0()0( zPzz =∗ . 

 
The Disperse Matrix Pz(0) (initial state) satisfies the following Disperse Dynamic equation 
 

)()()()()()()1()1()1( kkkkkkkkk ++∗ +=++=+ ΓPΓΦPΦzzP ξzz . (9) 
  

III. STRATEGY OF THE OPTIMAL DYNAMIC KALMAN FILTER 
 
The Kalman filter is an estimator used to estimate the state of a Linear Dynamic System (LDS) perturbed by white Gaussian 
noise using measurements that are linear functions of the system state corrupted by additive white Gaussian noise. The 
mathematical model used in the derivation of the Kalman filter is a reasonable representation for many problems of 
practical interest, including control problems as well as estimation problems. The Kalman filter model is also used for the 
analysis of measurements and estimation problems [4]. The optimal strategy is to design an optimal decision procedure 
(optimal filter) that, when applied to all registered observations, provides an optimal solution to the state vector z(k) 
subjected to it’s a-priori defined dynamic model given by the Statistic Dynamic Equation (SDE). The Optimal Estimate is 
defined as optimal in the sense of the Bayesian Minimum Risk Strategy (BMR) [6] 
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In discrete time, the design procedure is based on the concept of mathematical induction, that is, suppose that after k 
observations )}(),...,1(),0({ kuuu , one had produced the desired optimal estimate defined for the ultimate step 
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The problem is as follows: using this estimate 

opt
k)(ẑ  is necessary to design the algorithm for producing the optimal estimate 

z(k+1) incorporating new measurements u(k+1) according to the State Dynamic Equation (SDE), this estimate must 
satisfy the dynamic equation 
 

)()()()()1( kkkkk ξΓzΦz +=+ . (12) 
 
According to the dynamicl model, the anticipated mean value becomes 
 

)(ˆ)1()1()1( kkkk zzzmz +=+=+ . (13) 
 
Thus, mz(k+1) must be considered as a-priori conditional mean-value of the stat vector for the next (k+1) estimation step, 
according to the z(k+1) model 
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That is why the prognosis of the mean-value of the next step becomes )(ˆ)1( kk zΦmz =+ . Now it is possible to reduce the 
estimate strategy to the one-step optimization procedure: 
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For the ultimate (k+1) step of measurements, the Equation of Observation becomes [6] 
 

)1()1()1()1( ++++=+ knkkku zH  (16) 
 
with the summarized a-priori information given by Eq. (14). Applying the Bayesian-Wiener time [6], 
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where the Dynamic Filter Operator is specified as follows, 
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The Figure 1 shows the Optimal Procedure of the discrete Kalman filter technique in a flow diagram form. The Optimal 
Procedure is defined by the Stochastic Dynamic State Equation [6] 
 

[ ])(ˆ)()1()1()1()(ˆ)()1(ˆ kkkkkkkk zΦHuWzΦz +−+++=+  (19) 
 
The model of the problem is applied considering that H(k) is the Signal Formation Operator (SFO) that corresponds to the 
SAR imaging system [1]. The particular SFO was modeled by the sinc-type spectral ambiguity function [9]. The z(k) is the 
observation data vector from the image, u(k) is the observation data vector contaminated by additive Gaussian noise, and 
λ(k) is the dynamically filtered information process.  
 
 
 



 
Fig. 1: Implementation Signal Flow Diagram 

 
0 10 20 30 40 50 60 70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (pixeled virtual months)

No
rm

ali
ze

d H
yd

rol
og

ica
l In

de
xe

s

Original
Estimated

 

Fig. 2. Tested SAR image Fig. 3. Dynamics of hydrological indexes (in the normalized virtual time) 
 
The data dynamics was approximated by the following model 
 

0z =)0( ; 
ΙNP 0z =)0( ; 
IFΦ +Δ= ttk k )()( ; 
ttk k Δ= )()( GΓ . 

(20) 

 
IV. SIMULATIONS AND CONCLUDING REMARKS 

 
In the simulations, we considered the SAR with partially/fractionally synthesized array [1], [2] as a prime remote sensing 
imaging system. Figure 2 shows the 2-D 256-by-256 pixel format original scene image provided by the carrier SAR sensor 
system in 2005. This data was borrowed from the real-world remotely sensed SAR imagery of the tested scene of the 
Guadalajara region (Forest of Primavera) in Mexico. To study the dynamics of the particular hydrological indexes [3] of 
these scenes that were considered as the particular physical characteristics of interest, the experimental data covered the 
period of expertise from the year 2000 up to the year 2005, respectively. Figure 3 shows the results obtained with the 
application of the Kalman technique algorithm summarized in the previous section for enhanced filtering of the dynamics of 
the hydrological indexes [3] of the tested scenes, studied in the normalized virtual time [7] related to the physical time of the 
dynamics of the characteristics under our particular study. In the reported simulations we applied the a priori dynamic scene 
information modeled by Eq. (19).  
 

This study intends to establish the foundation to assist in understanding the basic theoretical aspects of how to 
aggregate the enhanced SAR imaging techniques with Kalman filtering for high-precision intelligent filtration of the 
dynamical behavior of the physical characteristics of the remotely monitored scenes for decision support in environmental 
resources management. In our particular study, the dynamics of the hydrological indexes of the SAR maps of the particular 
tested terrestrial zones (Guadalajara region) were processed. The reported results can be also expanded to other fields 
related to the study of the dynamical behavior of different physical characteristics provided by remote sensing systems of 
other particular applications. The reported results of simulation study are indicative of a usefulness of the proposed 
approach for monitoring the physical environmental characteristics, and those could provide a valuable support in different 
environmental resource management applications. 
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