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Abstract ─ A new intelligent computational paradigm based 

on filtering techniques modified to enhance the quality of 
reconstruction of the physical characteristics of environmental 
electronic maps extracted from the large scale remote sensing 
imagery is proposed. First, the problem-oriented modification of 
the previously proposed fused Bayesian-regularization enhanced 
radar imaging method is performed to enable it to reconstruct 
remote sensing signatures of interest. Second, the extraction of 
the so-called hydrological electronic maps and the analysis of its 
dynamics are proposed. Finally, simulation results of 
hydrological remote sensing signatures reconstruction from 
enhanced real-world environmental images are reported to 
verify the efficiency of the proposed approach. 

 

I. INTRODUCTION 

 Modern applied theory of reconstructive image processing 
is now a mature and well developed research field, presented 
and detailed in many works (see, for example [1] thru [11] 
and references therein). Although the existing theory offers a 
manifold of statistical and descriptive regularization 
techniques for reconstructive imaging in many application 
areas there still remain some unresolved crucial theoretical 
and processing problems related to large scale sensor array 
real-time reconstructive image processing.  
 In this study, we consider the problem of enhanced remote 
sensing (RS) imaging and reconstruction of remote sensing 
signature (RSS) fields of the RS scenes with the use of array 
radars or synthetic aperture radars (SAR) as sensor systems. 
Two principal developments constitute the major innovative 
contributions of this study, namely:  
 1) The development of a robust version of the fused 
Bayesian-regularization (FBR) method [1] for reconstruction 
of the power spatial spectrum pattern (SSP) of the wavefield 
scattered from the RS scene and related RSS given a finite set 
of SAR signal recordings. Since this is in essence a nonlinear 
numerical inverse problem, the ill-poseness problem can be 
alleviated via the robustification of the Bayesian estimation 
strategy [2], [3] by performing the non adaptive 
approximations of the SSP and RSS reconstructive operators 
that incorporate the non trivial metrics considerations for 
designing the proper solution space and different 
regularization constraints imposed on a solution. 

2) The development of a new robust filtering method that 
provides the possibility to track, filter and predict the 
dynamical behavior of the physical characteristics extracted 

from the real-world RS imaging provided with the use of 
segmentation and classification methodologies for feature 
extraction to generate the so-called hydrological electronic 
maps (HEM).  

II. PROBLEM MODEL 

Consider the measurement data wavefield u(y)=s(y)+n(y) 
modeled as a superposition of the echo signals s and additive 
noise n that assumed to be available for observations and 
recordings within the prescribed time-space observation 
domain Y∋y. The model of observation wavefield u is 
specified by the linear stochastic equation of observation (EO) 
of operator form [1] as u=Se+n (e∈E; u,n∈U; S:E→U) in the 
L2 Hilbert signal spaces E and U [1] with the metric structures 
induced by inner products, 

[e1,e2]E= xxx dfdfefe
XF
∫
×

),(),( *
21 , 

[u1,u2]U= 1 2( ) ( )
Y

u u d∗∫ y y y , 
(1) 

respectively, where * stands for complex conjugate. The 
operator model of the stochastic EO in the conventional 
integral form may be rewritten as [1] 

u(y)= xxxy dfdfeS
XF
∫
×

),(),( +n(y) , 

e(f,x)= ;(t
T
∫ ε x)exp(–j2πft)dt , 

(2) 

where );( xtε  represents the stochastic backscattered 
wavefield fluctuating in time t, and the functional kernel S(y,x) 
of the signal formation operator (SFO) S in Eq. (2) is specified 
by the particular employed RS signal wavefield formation 
model [4]. The phasor e(f,x) in Eq. (2) represents the 
backscattered wavefield e(f) over the frequency-space 
observation domain F×P×Θ [1], in the slant range ρ∈P and 
azimuth angle θ∈Θ domains, x=(ρ,θ)T, X=P×Θ, respectively. 
The RS imaging problem is to find an estimate )(ˆ xB  of the 
power SSP B(x) [2], [3] in the X∋x environment via processing 
whatever values of measurements of the data wavefield u(y), 
y∈Y are available.  

Following the RS methodology [1], any particular physical 
RSS of interest is to be extracted from the reconstructed RS 
image )(ˆ xB  applying the so-called signature extraction 
operator Λ [5]. The particular RSS is mapped applying Λ  to 
the reconstructed image, i.e. 

1-4244-0846-6/07/$20.00 ©2007 IEEE.



 

ˆ ˆ( ) ( ( ))BΛΛ =x x . (3) 
Taking into account the RSS extraction model of Eq. (3), 

the signature reconstruction problem is formulated as follows: 
to map the reconstructed particular RSS of interest 
ˆ ˆ( ) ( ( ))BΛΛ =x x  over the observation scene X∋x via post-

processing Eq. (3) whatever values of the reconstructed scene 
image ˆ( ),B x  x∈X are available. The experiment design (ED) 
considerations for inducing the metrics structure in the 
solution space are defined by the inner product [1] 

||B||2B(K)=[B,MB] , (4) 
where M is referred to as the metrics inducing operator [1]. 
Hence, the selection of M provides additional geometrical 
degrees of freedom of the problem model. The model of M 
incorporated corresponds to a matrix-form approximation of 
the Tikhonov’s stabilizer of the second order that was 
numerically designed in [1]. Also, following [1] the 
projection-type a priori information incorporated requires that 
the SSP vector B satisfies the linear constraint equation  

GB=C ,  i.e. G–GB=BP , (5) 
where BP=G–C and G– is the Moore-Penrose pseudoinverse 
of a given constraint  operator G:B(K)→B(Q) [1], and the 
constraint vector C∈B(Q) and the constraint subspace B(Q)      
(Q<K) are assumed to be given. In Eq. (5), the constraint 
operator G projects the portion of the unknown SSP onto the 
subspace where the SSP values are fixed by C.  

The algorithmic-level purpose is to develop a 
generalization of the FBR estimator [2], [3] for the problem 
of high-resolution RSS reconstruction incorporating the 
descriptive robustification of the fused Bayesian-
regularization technique (RFBR) to alleviate the problem ill-
poseness. 

III. GENERALIZATION OF THE FBR METHOD 

The estimator that produces the optimal estimate B̂ of the 
SSP vector applying the FBR estimation strategy that 
incorporates nontrivial a priori geometrical and projection-
type model information [2], [3] was developed in a previous 
study [1]. Such optimal FBR estimate of the SSP is given by 
the nonlinear equation [1] 

B̂ =BP+PB0+W( B̂ )(V( B̂ )–Z( B̂ )) . (6) 
In Eq. (6), BP is defined by Eq. (5) and B0 represents the a 

priori SSP distribution to be considered as a zero step 
approximation to the desires SSP B̂ . The sufficient statistics 
(SS) vector is V( B̂ )={F( B̂ )UU+F+( B̂ )}diag ({⋅}diag defines a 
vector composed of the principal diagonal of the embraced 
matrix), the solution-dependent SS formation operator  

F=F( B̂ )=D( B̂ )(I + S+ 1−
NR SD( B̂ ))–1S+ 1−

NR  , (7) 

the SS shift vector Z( B̂ )={F( B̂ )RNF+( B̂ )}diag [1], and the 
composite solution-dependent smoothing-projection window 
operator [1] is defined as 

W( B̂ )=PΩ( B̂ ) (8) 
with the projector 

P=(I-G–G) (9) 
and the solution-dependent regularizing window 

Ω( B̂ )=(diag({S+F+FS}diag)+ αD2( B̂ )M( B̂ ) )–1 , (10) 
in which the regularization parameter α is to be adaptively 
adjusted using the system calibration data from Eq. (5). The 
generalization of the FBR estimator of Eq. (6) for the case of 
RSS reconstruction can now be performed as [2], [3] 

)(ˆ )( xKΛ =∑ = ΛK
k kB1 )ˆ( |gk(x)|2 . (11) 

Hence, in the adapted pixel-format solution space, the vector 
ˆ ˆ( )BΛΛ =  composed of pixels {Λ( kB̂ );k=1,…,K} represents 

the desired pixel-format map of the high-resolution RSS 
reconstructed over the observed scene.  

Because of the complexity of the solution-dependent 
operator inversions needed to be performed to compute the 
SS, the computational complexity of such generalized optimal 
algorithm of Eq. (11) is extremely high. Hence, Eq. (11) 
could not be addressed as a practically realizable estimator of 
the RSS. 

IV. RFBR TECHNIQUE FOR RSS RECONSTRUCTION 

The robustification scheme for implementation of the 
generalized FBR estimator reduces drastically the 
computation load of the RSS formation procedure from Eq. 
(11) without substantial degradation in the SSP resolution and 
overall RSS map performances, via roughing P=I and 
performing the robustification (nonadaptive approximation) 
of both the SS formation operator F( B̂ ) and the smoothing 
window Ω( B̂ ) in Eq. (6) by roughing D( B̂ )≈D=βI, where β 
represents the expected a priori image gray level [1]. Thus, 
the robust SS formation operator  

F=A–1(ρ)S+  with  A(ρ)=S+S+ρ–1I (12) 
becomes a regularized inverse of the SFO S with 
regularization parameter ρ–1, the inverse of the signal-to-noise 
ratio (SNR) ρ=β/N0 for the adopted white observation noise 
model, RN=N0I. The robust smoothing window  

W=Ω=(w0I+M)–1 (13) 
is completely defined now by matrix M that induces the 
metrics structure from Eq. (4) in the solution space with the 
scaling factor w0=tr{S+F+FS}/K [1]. The resulting RFBR 
estimator is defined as [2], [3] 

)(ˆ xRFBRΛ =gT(x)diag(Λ(B0+ΩV))g(x) (14) 
where V={FUU+F+}diag represents the robust SS vector. Thus, 
the principal computational load of the RFBR estimator of 
Eq. (14) is associated now with the operator inversions 
required to compute the solution operator of Eq. (13) for 
adaptively (recurrently) adjusted regularization parameter ρ–1. 

V. RSS SEGMENTATION AND CLASSIFICATION 

For this particular study, covered water, humid and dry 
zones are analyzed as particular RSS of interest.  We consider 
the HEMs extracted via fusion of the weighted order statistics 
(WOS) method [6] with the minimum distance to mean 
(MDM) methodology [7]. 

The WOS is a methodology that can be considered as a 
generalization of the median filtering, where the information 
of all the order statistics is combined to provide an improved 
estimate of a variable [6].  



 

The MDM decision rule is based on minimum distance 
classification of the mean values of a given set of pixels [7].  

The fused WOS-MDM algorithm provide an accurate 
segmentation and classification for a particular physical index 
extracted from the reconstructed RSS. 

VI. DYNAMIC RSS RECONSTRUCTION 

The crucial issue in application of the modern dynamic 
filter theory to the problem of reconstruction of the desired 
RRS in current time is related to modeling of the RSS as a 
random field (spatial map developing in evolution time) that 
satisfies  the dynamical difference state equation [8], [9] 
described as follows 

( 1) ( ) ( ) ( ) ( )i i i i i+ = +z Φ z Γ x ,  ( ) ( ) ( )i i i=Λ C z , (15) 
and specified by the linear dynamic model formation 
operators (matrices) )(iΦ , )(iΓ  and C(i), respectively [9]. 
The dynamical estimation strategy for such optimal RSS 
prediction procedure can now be defined as follows  

ˆ ˆˆ ˆ( 1) ( 1) ( ); ( 1) ( 1) ( 1); ( 1)i i i i i i i+ = + + = + + +zz z z B z B m , (16) 
routinely solving the dynamical RSS filtration problem of Eq. 
(16) for the current (i+1)st discrete-time prediction-estimation 
step, the desired technique becomes 

ˆˆ ( 1) ( 1) ( 1) ( 1) ( 1)i i i i i⎡ ⎤= + + + + − + +⎣ ⎦z zz m Σ B H m  (17) 

where )1( +izm represents the predicted mean vector and the 
optimal dynamic filter operator )1( +iΣ is defined as  

)1()1()1()1( 1 +++=+ − iiii T
νΣ PHKΣ , 

[ ] 11 )1()1()1(
−− +++=+ iii zΣΣ PΨK , 

)1()1()1()1( 1 +++=+ − iiii T HPHΨ νΣ . 

(18) 

Last, using the derived filter Eq. (16) and Eq. (17), and the 
initial RSS state model given by (15), the optimal filtering 
procedure for dynamic reconstruction of the desired RSS map 
in the evolution discrete time [8], [9] becomes 

ˆ ˆˆ ˆ( ) ( ) ( 1) ( 1) ( 1) ( ) ( )i i i i i i i⎡ ⎤= + + + − +⎣ ⎦Λ Φ z Σ B H Φ z  (19) 

with the initial condition ˆ ˆ(0) { (0)}.= ΛΛ B  The crucial issue 
to note here is related to model uncertainties regarding the 
particular employed dynamical RSS model of Eq. (15), hence 
the corresponding uncertainties regarding the overall 
dynamically reconstructed RSS.  

VII. SIMULATIONS 

For the simulations, a SAR model is considered with 
partially (fractionally) synthesized aperture as an RS imaging 
system [10], [11]. The SFO is factorized along two axes in the 
image plane: the azimuth (horizontal axis) and the range 
(vertical axis). Following the common practically motivated 
technical considerations [10], [11] a triangular shape of the 
SAR range ambiguity function of 3 pixels width, and a |sinc|2 
shape of the side-looking SAR azimuth ambiguity function of 
10 pixels width at the zero crossing level are modelled.  

The results of the simulation experiment are indicative of 
the enhanced quality of SSP and RSS reconstruction with the 
proposed approach, and are reported for a scene borrowed 

from the real-world RS imagery of the Metropolitan area of 
Guadalajara city in Mexico [12].  

Fig. 1 shows the original super-high resolution test scene 
(not observable in the simulation experiment with partially 
synthesized SAR system model).  

Fig. 2 presents the results of SSP imaging with the 
conventional matched spatial filtering algorithm [1].  

Fig. 3 presents the SSP reconstruction applying the 
proposed RFBR method of Eq. (14).  

Fig. 4 presents the HEM extracted using the fused WOS-
MDM algorithm, applying the classification operator defined 
by the Eq. (3). Such HEM is specified as 2-bit 512x512 pixel 
hydrological RSS that classify the areas in the reconstructed 
scene images )(ˆ xB  into four classes: areas covered with 
water (black zones in the figures), the humid areas (heavy-
gray zones), the dry areas (light-gray zones), and non 
classified regions (white zones). The fused WOS-MDM 
algorithm segments and classifies the RS scene and provides 
a HEM that is highly-accurate compared with the in-site a 
priori information model.  

Fig. 5 shows the results of the dynamical HEM post-
processing for a discrete-time evolution model, obtained with 
the application of the derived algorithm defined by the Eq. 
(19). This simulation present the evolution in time of the 
physical characteristics specified by the HEM displayed in 
Fig. 4. Darker zones represent the filtered change behaviour 
of the HEM in its discrete-time evolutions.  

The analysis and interpretation of these results require 
more investigation and are the matter of further studies. 

VIII. CONCLUSIONS 

We have developed and presented the RFBR method for 
high-resolution SSP estimation and RSS mapping as required 
for reconstructive RS imagery although it may also be applied 
to other fields.  

The presented simulation examples illustrate the overall 
imaging performance improvements gained with the proposed 
approach. The simulation experiment verified that the RSS 
extracted applying the RFBR reconstruction method provide 
accurate physical information about the content of the RS 
scenes. 

Also, we have developed the dynamical RSS post-
processing scheme that reveals some possible approach toward 
a new dynamic computational paradigm for high-resolution 
fused numerical reconstruction and filtration of different RSS 
maps in evolution time.  

The presented study establishes the foundation to assist in 
understanding the basic theoretical and computational aspects 
of RS image enhancement, extraction of physical scene 
characteristics and their dynamical post-processing. 

The reported results of simulation study are indicative of a 
usefulness of the proposed approach for monitoring the 
physical environmental characteristics, and those could be 
addressed for different end-user-oriented environmental 
resource management applications. 
 
 



 

 
Fig. 1. Original super-high resolution scene. 

 

 
Fig. 2. Low-resolution image formed with the MSF. 

 

 
Fig. 3. SSP reconstructed with the RFBR method. 

 

 
Fig. 4. HEM extracted from the RFBR reconstructed scene 

applying the fused WOS-MDM method. 

 
Fig. 5. Dynamics in the HEM evolution filtered from Fig. 4: 

darker zones represent the areas that have been changed with the 
evolution. 
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