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Abstract – A new intelligent computational paradigm based on 
the use of dynamical filtering techniques modified to enhance the 
quality of reconstruction of physical characteristics of 
environmental electronic maps extracted from the large scale 
remote sensing imagery is proposed. A robust Kalman filter-
based algorithm is developed for the analysis of the dynamic 
behavior of hydrological indexes extracted from the real-world 
remotely sensed scenes. The simulation results verify the 
efficiency of the proposed approach as required for decision 
support in environmental resources management. 

Keywords – remote sensing; dynamic filtration; classification; 
decision support; environmental resource management 

I.  INTRODUCTION 
Intelligent post-processing of the environmental monitoring 

data is now a mature and well developed research field, 
presented and detailed in many works (see, for example [1] 
thru [9] and references therein). Although the existing methods 
offer a manifold of efficient statistical and descriptive 
regularization techniques to tackle with the particular 
environmental monitoring problems, in many application areas 
there still remain some unresolved theoretical and data 
processing problems related particularly to the extraction and 
analysis of the dynamical behavior of different environmental 
characteristics for decision support applications. In this study, 
we undertake an attempt to develop and verify via 
computational simulations a new robust filtering method that 
provides the possibility to track, filter and predict the 
dynamical behavior of the physical characteristics extracted 
from the real-world remote sensing imagery.  

II. PROBLEM MODEL 
Consider the measurement data wavefield u(y)=s(y)+n(y) 

modeled as a superposition of the echo signals s and additive 
noise n that assumed to be available for observations and 
recordings within the prescribed time-space observation 
domain Y∋y. The model of observation wavefield u is specified 
by the linear stochastic equation of observation (EO) of 
operator form [1] as u=Se+n (e∈E; u,n∈U; S:E→U) in the L2 

Hilbert signal spaces E and U [1] with the metric structures 
induced by inner products, 

[e1,e2]E= xxx dfdfefe
XF
∫
×

),(),( *
21 , 

[u1,u2]U= 1 2( ) ( )
Y

u u d∗∫ y y y , 
(1) 

respectively, where * stands for complex conjugate. The 
operator model of the stochastic EO in the conventional 
integral form may be rewritten as [1] 

u(y)= xxxy dfdfeS
XF
∫
×

),(),( +n(y) , 

e(f,x)= ;(t
T
∫ ε x)exp(–j2πft)dt , 

(2) 

where );( xtε  represents the stochastic backscattered wavefield 
fluctuating in time t, and the functional kernel S(y,x) of the 
signal formation operator (SFO) S in (2) is specified by the 
particular employed remote sensing (RS) signal wavefield 
formation model [2]. The phasor e(f,x) in (2) represents the 
backscattered wavefield e(f) over the frequency-space 
observation domain F×P×Θ [1], in the slant range ρ∈P and 
azimuth angle θ∈Θ domains, x=(ρ,θ)T, X=P×Θ, respectively. 
The RS imaging problem is to find an estimate )(ˆ xB  of the 
power spatial spectrum pattern (SSP) B(x) [3], [4] in the X∋x 
environment via processing whatever values of measurements 
of the data wavefield u(y), y∈Y are available. Following the RS 
methodology [1], any particular physical remote sensing 
signature (RSS) of interest is to be extracted from the 
reconstructed RS image )(ˆ xB  applying the so-called signature 
extraction operator Λ [5]. The particular RSS is mapped 
applying Λ  to the reconstructed image, i.e. 

ˆ ˆ( ) ( ( ))BΛΛ =x x . (3) 
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Taking into account the remote sensing signature (RSS) 
extraction model (3), the signature reconstruction problem is 
formulated as follows: to map the reconstructed particular RSS 
of interest ˆ ˆ( ) ( ( ))BΛΛ =x x  over the observation scene X∋x via 
post-processing (4) whatever values of the reconstructed scene 
image ˆ( ),B x  x∈X are available. 

III. IMAGE SEGMENTATION AND CLASSIFICATION 
For this particular study, covered water, humid and dry 

zones are analyzed as particular RSS of interest.  We consider 
the so-called hydrological electronic maps (HEM), extracted 
via fusion of the weighted order statistics (WOS) method [6] 
with the minimum distance to mean (MDM) methodology [7]. 

The WOS is a methodology that can be considered as a 
generalization of the median filtering, where the information of 
all the order statistics is combined to provide an improved 
estimate of a variable [6]. The MDM decision rule is based on 
minimum distance classification of the mean values of a given 
set of pixels [7]. The fused WOS-MDM algorithm provide an 
accurate segmentation and classification for a particular 
physical index extracted from the reconstructed RSS. 

IV. DYNAMICAL HEM COMPUTING 

A. RSS Lineal Dynamic Model 
The crucial issue in application of the modern dynamic 

filter theory to the problem of reconstruction of the desired 
RSS in evolution time is related to modeling of the RS as a 
random field (spatial map developing in evolution time t) that 
satisfies some dynamical state equation. Following the typical 
linear assumptions for the development of the RSS in evolution 
time [8], [9], its dynamical model can be represented in a 
vectorized space-time form defined by a stochastic differential 
state equation of the first order  

)()()(
tt

dt
td GξFzz

+= ,  )()( tt CzΛ =  (4) 

where z(t) is the so-called model state vector, C defines a linear 
operator that introduces the relationship between the RSS and 
the state vector z(t), and ξ (t) represents the white model 
generation noise vector characterized by the statistics 

0ξ =)(t  and )'()()'()( ttttt T −= δξPξξ  [8]. Here, Pξ(t) is 
referred to as state model disperse matrix [8] that characterizes 
the dynamics of the state variances developing in a continuous 
evolution time t ( tt →0 ) starting from the initial instant t0. The 
dynamic model equation that states the relationship between 
the time-dependent SSP (actual scene image) B(t) and the 
desired RSS map Λ(t) can now be represented [8] in the 
following form  

ˆ ( ) ( ) ( ) ( )t t t t= +B H z ν ,  ( )tt LCH =)( , (5) 

where L is the linearized approximation (i.e. first order matrix-
form approximation [9]) to the inverse of the RSS operator 

ˆ( ( )).BΛ r  The stochastic differential model (4) and (5) allows 
the application of dynamical filter theory [8], [9] to reconstruct 
the desired RSS in evolution time incorporating the a priori 
model of dynamical information about the RSS. The aim of the 
dynamic filtration is to find an optimal estimate of the desired 
RSS )(ˆ)(ˆ tt zCΛ =  developing in evolution time t (t0→ t) via 
processing the reconstructed image vector )(ˆ tB  and taking into 
considerations the a priori dynamic model of the desired RSS 
specified through the state equation (4). In other words, the 
design of an optimal dynamic filter that, when applied to the 
reconstructed image ˆ ( ),tB  provides the optimal estimation of 
the desired RSS map ˆ ( ),tΛ  in which the state vector estimate 

)(ˆ tz  satisfies the a priori dynamic behavior modeled by the 
stochastic dynamic state equation (4). The canonical discrete 
time solution to (4) in state variables [9] is described as 
follows, 

( 1) ( ) ( ) ( ) ( )i i i i i+ = +z Φ z Γ x ,  ( ) ( ) ( )i i i=Λ C z , (6) 

where ( ) ( ) ,ii t t= Δ +Φ F I  ( ) ( ) ,ii t t= ΔΓ G  and tΔ  represents 
the time sampling interval for dynamical modeling of the RSS 
in discrete time. The statistical characteristics of the a priori 
information in discrete-time [8] are specified as 

1) Generating noise: 0ξ =)(i ; ( ) ( ) ( , );Ti j i j= ξξ ξ P  
2) Data noise: 0ν =)(k ; ( ) ( ) ( , );Ti j i j= νν ν P   
3) State vector: )0()0( zmz = ; (0) (0) (0).T = zz z P  

The 0 argument implies the initial state for initial time 
instant (i=0). For such model conventions, the disperse matrix 
Pz(0) satisfies the following disperse dynamic equation [9] 

( 1) ( ) ( ) ( ) ( ) ( ) ( )T Ti i i i i i i+ = +z z ξP Φ P Φ Γ P Γ . (7) 

B. Dynamic RSS Reconstruction 
The problem is to design an optimal decision procedure  

that, when applied to all reconstructed images ˆ{ ( )}iB  in 
discrete time i (i0→ i), provides an optimal solution to the 
desired RSS represented via the estimate of the state vector 
state vector z(i) subject to the numerical dynamic model (6). To 
proceed with the derivation of such a filter, the state equation 
(4) in discrete time i (i0→ i) is represented as 

)()()()()1( iiiii ξΓzΦz +=+ , (8) 

according to this dynamical model, the anticipated mean value 
for the state vector can be expressed as 

ˆ( 1) ( 1) ( 1) ( )i i i i+ = + = +zm z z z . (9) 
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The mz(i+1) is considered as the a priori conditional mean-
value of the state vector for the (i+1) estimation step, i.e. 

)()(ˆ),...,1(ˆ),0(ˆ)()1( iiii ξΓBBBzΦmz +=+ )(ˆ izΦ=  (10) 

where the prognosis of the mean-value becomes 
ˆ( 1) ( )i i+ =zm Φz . From (8) thru (10) one may deduce that 

given the fact that the particular reconstructed image )(ˆ iB  is 
treated at discrete time i, it makes the previous reconstructions 

ˆ ˆ ˆ{ (0), (1),..., ( 1)}i −B B B  irrelevant; hence the optimal filtering 
strategy is reduced to the dynamical one-step predictor. Thus, 
using these derivations, the dynamical estimation strategy is 
modified to one-step optimal prediction procedure 

ˆ ˆˆ ˆ( 1) ( 1) ( ); ( 1) ( 1) ( 1); ( 1)i i i i i i i+ = + + = + + +zz z z B z B m , (11) 

hence, for the evolution (i+1)st discrete-time prediction-
estimation step, the dynamical RSS estimate (5) becomes 

ˆ ( 1) ( 1) ( 1) ( 1)i i i i+ = + + + +B H z ν  (12) 

with the a priori predicted mean (9) for the desired state vector. 
Applying the Wiener minimum risk strategy [9] to solve (12) 
with respect to the state vector z(t) and taking into account the 
a priori information, the dynamic solution for the RSS state 
vector becomes 

ˆˆ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)i i i i i i⎡ ⎤+ = + + + + − + +⎣ ⎦z zz m Σ B H m  (13) 

where the desired dynamic filter operator )1( +iΣ  is defined as  

)1()1()1()1( 1 +++=+ − iiii T
νΣ PHKΣ , 

[ ] 11 )1()1()1(
−− +++=+ iii zΣΣ PΨK , 

)1()1()1()1( 1 +++=+ − iiii T HPHΨ νΣ . 

(14) 

Using the derived filter equations (13) and (14) and the 
initial RSS state model given by (6), the optimal filtering 
procedure for dynamic reconstruction of the desired RSS map 
in the evolution discrete time becomes 

ˆ ˆˆ ˆ( 1) ( ) ( ) ( 1) ( 1) ( 1) ( ) ( )i i i i i i i i⎡ ⎤+ = + + + − +⎣ ⎦Λ Φ z Σ B H Φ z  (15) 

with the initial condition ˆ ˆ(0) { (0)}.= ΛΛ B  The crucial issue to 
note here is related to model uncertainties regarding the 
particular employed dynamical RSS model (6), hence the 
model mismatch uncertainties regarding the overall 
dynamically reconstructed RSS.  

V. SIMULATIONS 
In this section, we present some results of the simulation 

experiment indicative of the enhanced quality of dynamical 
RSS reconstruction with the proposed approach. These are 
reported for RS scene borrowed from the real-world imagery of 
the Metropolitan area of Guadalajara city in Mexico [10].  

Fig. 1 shows the original scene image formed with the high-
resolution synthetic aperture radar (SAR) [10]. Fig. 2 thru Fig. 
4 present the HEMs extracted using the WOS, MDM and the 
fused WOS-MDM algorithms, respectively, applying the 
classification operator (3). Such HEMs are specified as 2-bit 
512x512 pixel hydrological RSS that classify the areas in the 
reconstructed scene images )(ˆ xB  into four classes: areas 
covered with water (black zones in the figures), the humid 
areas (heavy-gray zones), the dry areas (light-gray zones), and 
non classified regions (white zones). The fused WOS-MDM 
algorithm segments and classifies the RS scene and provides a 
HEM that is highly-accurate compared with the in-site a priori 
information model. 

Fig. 5 and Fig. 6 shows the results of the dynamical HEM 
post-processing for two discrete-time evolution models, 
obtained with the application of the derived algorithm (15). 
These simulations present the evolution in time of the physical 
characteristics specified via the HEMs and displayed in Fig. 2 
thru Fig. 4. Darker zones represent the filtered change behavior 
of the HEMs in their discrete-time evolutions. The analysis and 
interpretation of these results require more investigation and 
are the matter of further studies. 

VI. CONCLUDING REMARKS 
In this paper, we have presented the dynamical approach for 

solving the nonlinear inverse problems of high-resolution 
dynamical reconstruction of the RSS of the environmental 
scenes via processing the finite-dimensional space-time 
measurements of the available sensor data. 

We have developed the dynamical RSS post-processing 
scheme that reveals some possible approach toward a new 
dynamic computational paradigm for high-resolution fused 
numerical reconstruction and filtration of different RSS maps 
in evolution time. The presented study establishes the 
foundation to assist in understanding the basic theoretical and 
computational aspects of RS image enhancement, extraction 
of physical scene characteristics and their dynamical post-
processing.  

The study was undertaken in a context of RS data 
processing as required for large scale RS scene analysis, 
although, the results can be extended to other research areas in 
intelligent sensor systems design and applications.  

The reported results of simulation study are indicative of a 
usefulness of the proposed approach for monitoring the 
physical environmental characteristics, and those could be 
addressed for different end-user-oriented environmental 
resource management applications. 
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Figure 1.  Original high resolution SAR scene image. 

 

 
Figure 2.  HEM extracted from the original high resolution SAR scene       

applying the WOS method. 

 
Figure 3.  HEM extracted from the original high resolution SAR scene       

applying the MDM method. 

 
Figure 4.  HEM extracted from the original high resolution SAR scene       

applying the fused WOS-MDM algorithm. 

 
Figure 5.  Dynamics in the HEM evolution filtred from Fig. 2: darker zones 

represents the areas that have been changed with the evolution. 

 
Figure 6.  Dynamics in the HEM evolution filtred from Fig. 3: darker zones 

represents the areas that have been changed with the evolution. 
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