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ABSTRACT 
 

The robust numerical technique for high-resolution 
reconstructive imaging and scene analysis is developed as 
required for enhanced remote sensing with large scale 
sensor array radar/synthetic aperture radar. The problem-
oriented modification of the previously proposed fused 
Bayesian-regularization (FBR) enhanced radar imaging 
method is performed to enable it to reconstruct remote 
sensing signatures (RSS) of interest alleviating problem ill-
poseness due to system-level and model-level uncertainties. 
We report some simulation results of hydrological RSS 
reconstruction from enhanced real-world environmental 
images indicative of the efficiency of the developed method. 

 
Index Terms – Signal processing, system fusion, image 

reconstruction, regularization. 
 

1. INTRODUCTION 
 

Modern applied theory of reconstructive image processing is 
now a mature and well developed research field, presented 
and detailed in many works (see, for example [1] thru [11] 
and references therein).  

Although the existing theory offers a manifold of 
statistical and descriptive regularization techniques for 
reconstructive imaging in many application areas there still 
remain some unresolved crucial theoretical and processing 
problems related to large scale sensor array real-time 
reconstructive image processing. In this study, we consider 
the problem of enhanced remote sensing (RS) imaging and 
computational reconstruction of remote sensing signature 
(RSS) fields of the RS scenes with the use of array radars or 
synthetic aperture radars (SAR) as sensor systems. The 
major innovative contributions of this study is the 
development of a robust version of the fused Bayesian-
regularization (FBR) method [1], [2] for reconstruction of 
the power spatial spectrum pattern (SSP) of the wave field 
scattered from the RS scene and related RSS given a finite 
set of SAR signal recordings.  
 

2. PROBLEM MODEL 
 
Consider the measurement data wavefield u(y)=s(y)+n(y) 
modeled as a superposition of the echo signals s and 
additive noise n that assumed to be available for 
observations and recordings within the prescribed time-
space observation domain Y∋y, where y=(t,p)T defines the 
time-space points in the observation domain Y=T×P. The 
model of observation wavefield u is specified by the linear 
stochastic equation of observation (EO) of operator form 
[2]: u=Se+n; e∈E; u,n∈U; S:E→U. The RS imaging 
problem is stated as follows: to find an estimate )(ˆ xB  of the 
SSP B(x) in the environment X∋x by processing whatever 
values of measurements of the data wavefield u(y); y∈Y, are 
available.  

Following the RS methodology [2], [3], any particular 
physical RSS of interest is to be extracted from the 
reconstructed RS image )(ˆ xB  applying some specified 
signature extraction operator Λ [4].  

The particular RSS is mapped applying Λ  to the 
reconstructed image, i.e. 

)(ˆ xΛ =Λ( )(ˆ xB ) . (1) 

Last, taking into account the RSS extraction model of 
Eq. (1), we can reformulate now the signature reconstruction 
problem as follows: to map the reconstructed particular RSS 
of interest )(ˆ xΛ =Λ( )(ˆ xB ) over the observation scene X∋x 
via post-processing whatever values of the reconstructed 
scene image )(ˆ xB ; x∈X are available. 

  
3. GENERALIZATION OF THE FBR METHOD 

 
The estimator that produces the optimal estimate B̂ of the 
SSP vector via processing the M-D data recordings applying 
the FBR estimation strategy that incorporates nontrivial a 
priori geometrical and projection-type model information 
was developed in our previous study [1].  
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Such optimal FBR estimate is given by the nonlinear 
equation 

B̂ =BP+PB0+W( B̂ )(V( B̂ )–Z( B̂ )) . (2) 

In Eq. (2), B0 represents the a priori SSP distribution to 
be considered as a zero step approximation to the desires 
SSP B̂ .  

Note that in this study, we use all the notations from [1] 
for definitions of the sufficient statistics (SS) vector 
V( B̂ )={F( B̂ )UU+F+( B̂ )}diag, the solution-dependent SS 
formation operator  

F=F( B̂ )=D( B̂ )(I + S+ 1−
NR SD( B̂ ))–1S+ 1−

NR  ; (3) 

the SS shift vector Z( B̂ )={F( B̂ )RNF+( B̂ )}diag, and the 
composite solution-dependent smoothing-projection 
window operator 

W( B̂ )=PΩ( B̂ ) (4) 

with the projector 

P=(I–G–G) (5) 

and the solution-dependent regularizing window 

Ω( B̂ )=(diag({S+F+FS}diag)+ἀD2( B̂ )M( B̂ ) )–1 , (6) 

in which the regularization parameter ἀ is to be adaptively 
adjusted using the system calibration data [1].  

The generalization of the FBR estimator of Eq. (2) for 
the case of RSS reconstruction in the K-D solution space can 
now be performed taking into account the pixel format of 
the basis {gk(x)} spanning the RSS solution space that yields  

)(ˆ )( xKΛ = ∑ = ΛK
k kB1 )ˆ( |gk(x)|2 ;   x∈X . (7) 

Hence, in the adapted pixel-format solution space, the 
vector Λ̂ =Λ( B̂ ) composed of pixels {Λ( kB̂ );k=1,…,K} 
represents the desired pixel-format map of the high-
resolution RSS reconstructed over the observed scene.  

Because of the complexity of the solution-dependent K-
D operator inversions needed to be performed to compute 
the SS, V( B̂ ), and the window, W( B̂ ), the computational 
complexity of such generalized optimal algorithm of Eq. (7) 
is extremely high. Hence, the Eq. (7) can not be addressed 
as a practically realizable estimator of the RSS.  
 

4. ROBUSTIFIED FBR TECHNIQUE 
 
Here we propose the robustification scheme for quasi-real-
time implementation of the generalized FBR estimator (7) 
that reduces drastically the computation load of the RSS 
formation procedure without substantial degradation in the 
SSP resolution and overall RSS map performances.  

We propose the robust version of the FBR estimator 
(referred to as RFBR method) via roughing P=I and 
performing the robustification of both the SS formation 
operator F( B̂ ) and the smoothing window Ω( B̂ ) in Eq. (2) 
by roughing D( B̂ )≈D=βI, where β represents the expected 
a priori image gray level [1]. Thus, the robust SS formation 
operator  

F=A–1(ρ)S+   with   A(ρ)=S+S+ρ–1I (8) 

becomes an inverse of the SFO S with regularization 
parameter ρ–1, the inverse of the signal-to-noise ratio (SNR) 
ρ=β/N0 for the adopted white observation noise model, 
RN=N0I.  

The robust smoothing window  

W=Ω=(w0I+M)–1 (9) 

is completely defined now by matrix M that induces the 
metric structure in the solution space with the scaling factor 
w0=tr{S+F+FS}/K [2].  

Note that such robustified W can be pre-computed a 
priori for a family of different admissible ρ as it was 
performed in the previous studies [1], [2].  

Here, we adopt practical constraints of high SNR 
operational conditions [5], [6] ρ>>1, in which case one can 
neglect also the constant bias Z=Z0I in Eq. (2) because it 
does not affect the pattern of the SSP estimate.  

Following these practically motivated assumptions, the 
resulting RFBR estimator is 

)(ˆ xRFBRΛ =gT(x)diag(Λ(B0+ΩV))g(x) (10) 

where V={FUU+F+}diag represents now the robust (solution 
independent) SS vector.  

The principal computational load of the RFBR 
estimator of Eq. (10) is associated now with the operator 
inversions required to compute the solution operator of Eq. 
(9) for adaptively adjusted regularization parameter ρ–1.  

Next, the simplest rough RSS estimator can be 
constructed as further simplification of Eq. (10) adopting the 
trivial prior model information (P=I and B0=0I) and roughly 
approximation the SS formation operator F by the adjoint 
SFO, i.e. F≈γ0S+ [1].  

In this case, the Eq. (10) is simplified to its rough 
version 

)(ˆ xMSFΛ =gT(x)diag(Λ(Ω H))g(x) (11) 

referred to as matched spatial filtering (MSF) algorithm 
where the rough SS H= 2

0γ {S+UU+S}diag is now formed 
applying the adjoint operator S+, and the windowing of the 
rough SS is performed applying the smoothing filter 
Ω=(w0I+M)–1 with nonnegative entry, the same one as was 
constructed numerically in [1].  
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a. Original super-high 

resolution scene 
b. Low-resolution image 

formed with the MSF 

  
c. Scene image reconstructed  

with the R-FBR method 
d. HEM extracted from the 

original scene 

  
e. HEM extracted from the 

MSF image 
f. HEM extracted from the   

R-FBR reconstructed image 
Figure 1. Simulation results for the first operation scenario 

 
 

5.  SIMULATIONS 
 
In the simulations, we considered the SAR with partially 
(fractionally) synthesized aperture as an RS imaging system 
[7], [8]. The SFO was factorized along two axes in the 
image plane: the azimuth (horizontal axis) and the range 
(vertical axis).  

Following the common practically motivated technical 
considerations [6], [7], [9] we modeled a triangular shape of 
the SAR range ambiguity function of 3 pixels width, and a 
|sinc|2 shape of the side-looking SAR azimuth ambiguity 
function (AF) for two typical scenarios of fractionally 
synthesized apertures: (i) azimuth AF of 10 pixels width at 
the zero crossing level associated with the first system 
model and (ii) azimuth AF of 20 pixels width at the zero 
crossing level associated with the second system model, 
respectively.  

The RS scenes are borrowed from the real-world RS 
imagery of the Metropolitan area of Guadalajara city in 
Mexico [10], [11]. 

  
a. Original super-high 

resolution scene 
b. Low-resolution image 

formed with the MSF 

  
c. Scene image reconstructed  

with the R-FBR method 
d. HEM extracted from the 

original scene 

  
e. HEM extracted from the 

MSF image 
f. HEM extracted from the   

R-FBR reconstructed image 
Figure 2. Simulation results for the second operation scenario 

 
 
 

Figures 1.a. and 2.a show the original super-high 
resolution test scenes.  

Figures 1.b and 2.b present scene images formed with 
the conventional MSF algorithm of Eq. (11).  

Figures 1.c and 2.c present the SSP reconstructed 
applying the proposed RFBR method of Eq. (10).  

The particular reconstructed RSS reported in the 
simulations in Figures 1.(d,e,f) and 2.(d,e,f) represent the so-
called hydrological electronic maps (HEMs) [3], [4] 
extracted from the relevant SSP images applying the 
weighted order statistics (WOS) classification operator 
Λ( B̂ (x)) detailed in [4].  

Such HEMs are specified as 2-bit hydrological RSS [3], 
[4] that classify the areas in the reconstructed scene images 
B̂ (x) into four classes: areas covered with water (black 
zones in the figures), the high-humidity areas (dark-gray 
zones), the low-humidity areas (light-gray zones), and dry 
areas/non classified regions (white zones).  
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Table 1. IOSNR values provided with the R-FBR method. Results 
are reported for different SNRs for two different simulated SAR 

systems 
SNR 
[dB] 

IOSNR 
First System 

IOSNR 
Second System 

μ SSP HEM SSP HEM 
10 2.35 2.24 2.42 3.20 
15 5.15 3.34 5.56 4.32 
20 8.24 5.20 8.72 5.12 
25 17.54 13.48 17.91 14.89 

 
 

The quantitative measure of the improvement in the 
output signal-to-noise ratio (IOSNR) quality metric [7] 
gained with the enhanced SSP and HEM imaging methods 
for two simulated scenarios are reported in Table 1. All 
reported simulations were run for the same 512x512 pixel 
JPEG image format. The computation load of the enhanced 
RSS reconstruction with the RFBR algorithm (10) applying 
the proposed computational scheme in comparison with the 
original FBR method (7) was decreased approximately 105 

times and required 0.38 seconds of the overall 
computational time using a personal computer with a 
2.8GHz Pentium4© processor and 512MB of random access 
memory (RAM). 
 

6. CONCLUDING REMARKS 
 

We have developed and presented the RFBR method for 
high-resolution SSP estimation and RSS mapping as 
required for reconstructive RS imagery although it may also 
be applied to other fields. The developed technique performs 
the balanced aggregation of the data and model prior 
information to perform the enhanced image reconstruction 
and RSS mapping with improved spatial resolution and 
noise reduction. The presented simulation examples 
illustrate the overall imaging performance improvements 
gained with the proposed approach. The simulation 
experiment verified that the RSS extracted applying the 
RFBR reconstruction method provide more accurate 
physical information about the content of the RS scenes in 
comparison with the conventional MSF and previously 
proposed descriptive regularization techniques [2], [4], [10].  

The presented study establishes the foundation to assist 
in understanding the basic theoretical and computational 
aspects of multi-level adaptive RS image formation, 
enhancement and extraction of physical scene 
characteristics. The study was undertaken in a context of RS 
data processing as required for large scale SAR imagery and 
RS scene analysis, although, the results can be extended to 
other research areas in intelligent sensor systems design and 
applications. 
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