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ABSTRACT 
 
An intelligent post-processing paradigm based on the use of 
a dynamical filtering technique modified to enhance the 
reconstruction quality of remote sensing indexes using 
multitemporal images and distributed computing techniques 
is proposed. As a matter of particular study, a robust 
algorithm is reported for the analysis of the dynamic 
behavior of geophysical signatures extracted from remotely 
sensed scenes. The simulation results prove the efficiency of 
the proposed technique along with the computational 
implementation based on a big-data framework using 
distributed processing. 

 
Index Terms – Remote Sensing, Multispectral Imaging, 

Geodynamics, Distributed Computing 
 

1. INTRODUCTION 
 

Intelligent post-processing of environmental data is now a 
mature and developed research field, presented and detailed 
in many works (for example [1] thru [7] and the references 
therein). Although the existing methods offer a manifold of 
efficient statistical and descriptive regularization techniques 
to tackle with the particular environmental monitoring 
problems, in many application areas there still remain some 
unresolved theoretical and data processing problems related 
particularly to the extraction and analysis of the dynamical 
behavior of geophysical characteristics, and its 
implementation using big-data techniques in order to 
improve the processing time and reduce the computational 
resources needed.  

In particular, the crucial data processing aspect is how 
to incorporate a remote sensing signatures (RSS) extraction 
method with a robust dynamic analysis technique for 
evaluation and prediction of the behavior of a particular 
monitored index.  

In this study, a robust filtering method is proposed and 
verified via computational simulations, which provides the 
possibility to track, filter and predict the dynamical behavior 
of the RSS using multitemporal remote sensing (MRS) 
scenes based on SPOT-5 images [9].  

The proposed methodology aggregates the Weighted 
Pixel Statistics (WPS) method [7] with a dynamical filtering 
technique [3] and a framework that allows distributed 
processing of large data sets across clusters of computers [8] 
via the Multitemporal Dynamic Analysis (MDA) model.  

 

2. PROBLEM MODEL 
 

Consider the measurement data wavefield u(y)=s(y)+n(y) 
modeled as a superposition of the echo signals s and additive 
noise n that assumed to be available for observations and 
recordings within the prescribed time-space observation 

domain Y∋y. The model of observation wavefield u is 
specified by the linear stochastic equation of observation 

(EO) of operator form [1] as u=Se+n (e∈E; u,n ∈U; S:E→U) 
in the L2 Hilbert signal spaces E and U [1] with the metric 
structures induced by: 

[e1,e2]E = xxx dfdfefe
XF
∫
×

),(),( *
21 ,  

[u1,u2]U  = 
1 2( ) ( )

Y

u u d∗∫ y y y , 

(1) 

respectively (where * stands for complex conjugate). The 
operator model of the stochastic EO in the conventional 
integral form may be rewritten as [1] 

u(y)  = xxxy dfdfeS
XF
∫
×

),(),( +n(y) , 

e(f,x)  = ;(t
T
∫ε x)exp(–j2πft)dt , 

(2) 

where );( xtε  represents the stochastic backscattered 

wavefield fluctuating in time t, and the functional kernel 
S(y,x) of the signal formation operator (SFO) S in (2) is 
specified by the particular employed MRS signal wavefield 
formation model [2]. The phasor e(f,x) in (2) represents the 
backscattered wavefield e(f) over the frequency-space 

observation domain F×P×Θ [1], in the slant range ρ∈P and 

azimuth angle θ∈Θ domains, x=(ρ,θ)T, X=P×Θ, 
respectively.  



The MRS imaging problem is to find an estimate 
 

of the power spatial spectrum pattern (SSP) B(x) [3] in the 

X∋x environment via processing whatever values of 

measurements of the data wavefield u(y), y∈Y are available.  

Following the MRS methodology [1], any particular 

RSS of interest is to be extracted from the reconstructed 

MRS image  applying the so-called signature 

extraction operator Λ [4].  

The particular RSS is mapped applying Λ to the 

reconstructed image as 

ˆ ˆ( ) ( ( ))BΛΛ =x x . (3) 

Taking into account the RSS extraction model (3), the 

signature reconstruction problem is formulated as follows: to 

map the reconstructed particular RSS of interest 

ˆ ˆ( ) ( ( ))BΛΛ =x x  over the observation scene X∋x via post-

processing whatever values of the reconstructed scene image

ˆ( ),B x  x∈X are available. 

 

3. IMAGE SEGMENTATION AND CLASSIFICATION 
 

The development of a tool for supervised segmentation 

and classification of RSS from MRS scenes is based on the 

analysis of pixel statistics, and is referred to as the WPS 

method [7], where its classification rule is computationally 

simple and provides an optimal level of accuracy compared 

with other more common and computationally intensive 

algorithms [7] for real-time requirements. It is characterized 

by the mean and standard deviation values of the RSS 

signatures (classes) and the Euclidean distances based on the 

Pythagorean theorem. Moreover, the robustness of the WPS 

methodology increases with the use of multispectral images. 

The training data for class segmentation requires the 

number of RSS to be classified (c); the means matrix M (c×c 

size) that contains the mean values �cc: (0 ≤ �cc ≤ 255, gray-

level) of the RSS classes for each band; and the standard 

deviations matrix S (c×c size) that contains the standard 

deviations of the RSS classes for each band. The matrix M 
and S represents the weights of the classification process. 

Next, the image is separated in the spectral bands and each (i, 
j)-th pixel is statistically analyzed calculating the means and 

standard deviations from a neighborhood set of 5x5 pixels for 

each band, respectively.  

To compute the output of the classifier, the distances 

between the pixel statistics and the training data is calculated 

using Euclidean distances based on the Pythagorean theorem 

for means and standard deviations, respectively. The decision 

rule used by the WPS method is based on the minimum 

distances gained between the weighted training data and the 

pixel statistics.    

 

4. MULTITEMPORAL DYNAMIC ANALYSIS (MDA) 
FRAMEWORK 

 

4.1 Lineal Dynamic Model 
 

The crucial issue in application of the modern dynamic filter 

theory to the problem of reconstruction of the desired RSS in 

time is related to modeling of the data as a random field 

(spatial map developing in time t) that satisfies a dynamical 

state equation. Following the typical linear assumptions for 

the development of the RSS in time [6] its dynamical model 

can be represented in a vectorized space-time form defined 

by a stochastic differential state equation of the first order  

)()(
)( tt

dt
td GξFzz += ,  )()( tt CzΛ =  (4) 

where z(t) is the so-called model state vector, C defines a 

linear operator that introduces the relationship between the 

RSS and the state vector z(t), and ξ (t) represents the white 

model generation noise vector characterized by the statistics 

0ξ =)(t  and )'()()'()( ttttt T −= δξPξξ  [6]. Here, Pξ(t) is 

referred to as state model disperse matrix [6] that 

characterizes the dynamics of the state variances developing 

in a continuous time t ( tt →
0

) starting from the initial 

instant t0. The dynamic model equation that states the 

relationship between the time-dependent SSP (actual scene 

image) B(t) and the desired RSS map Λ(t) represented as 

ˆ ( ) ( ) ( ) ( )t t t t= +B H z ν ,  ( )tt LCH =)( , (5) 

where L is the linear approximation to the inverse of the RSS 

operator ˆ( ( )).BΛ r  The stochastic differential model (4) and 

(5) allows the application of dynamical filter theory [3] to 

reconstruct the desired RSS in time incorporating the a priori 

model of dynamical information about the RSS.  

The aim of the dynamic filtration is to find an optimal 

estimate of the desired RSS )(ˆ)(ˆ tt zCΛ =  developing in time 

t (t0 → t) via processing the reconstructed image vector )(ˆ tB  

and taking into considerations the a priori dynamic model of 

the desired RSS specified through the state equation (4). In 

other words, the design of an optimal dynamic filter that, 

when applied to the reconstructed image ˆ ( ),tB  provides the 

optimal estimation of the desired RSS map ˆ ( ),tΛ  in which 

the state vector estimate )(ˆ tz  satisfies the a priori dynamic 

behavior modeled by the stochastic dynamic state equation 

(4). The canonical discrete time solution to (4) in state 

variables [6] is described as follows 

( 1) ( ) ( ) ( ) ( )i i i i i+ = +z Φ z Γ x
,  

( ) ( ) ( )i i i=Λ C z
, (6) 

)(ˆ xB

)(ˆ xB



where ( ) ( ) ,ii t t= ∆ +Φ F I  ( ) ( ) ,ii t t= ∆Γ G  and t∆  represents 
the time sampling interval for dynamical modeling of the 
RSS in discrete time.  

The statistical characteristics of the a priori information 
in discrete-time [6] are specified as 

1) Generating noise: 0ξ =)(i ; ( ) ( ) ( , );Ti j i j= ξξ ξ P  

2) Data noise: 0ν =)(k ; ( ) ( ) ( , );Ti j i j= νν ν P   

3) State vector: )0()0( zmz = ; (0) (0) (0).T = zz z P  
The 0 argument implies the initial state for initial time 

instant (i=0). For such model conventions, the disperse 
matrix Pz(0) satisfies the following disperse dynamic 
equation 

( 1) ( ) ( ) ( ) ( ) ( ) ( )T Ti i i i i i i+ = +z z ξP Φ P Φ Γ P Γ . (7) 

 
4.2 Dynamic Reconstruction 

 
The problem is to design an optimal decision procedure that, 
when applied to all reconstructed MRS images ˆ{ ( )}iB  in 
discrete time i (i0 → i), provides an optimal solution to the 
desired RSS represented via the estimate of the state vector 
state vector z(i) subject to the numerical dynamic model (6). 
To proceed with the derivation of such a filter, the state 
equation (4) in discrete time i (i0 → i) is represented as 

)()()()()1( iiiii ξΓzΦz +=+  (8) 

According to this dynamical model, the anticipated mean 
value for the state vector can be expressed as 

ˆ( 1) ( 1) ( 1) ( )i i i i+ = + = +zm z z z
, (9) 

where the mz(i+1) is considered as the a priori conditional 
mean-value of the state vector for the (i+1) estimation step 

)()(ˆ),...,1(ˆ),0(ˆ)()1( iiii ξΓBBBzΦmz +=+
)(ˆ izΦ=  

(10) 

and the prognosis of the mean-value becomes 
ˆ( 1) ( )i i+ =zm Φz . From (8) thru (10) is possible to deduce 

that given the fact that the particular reconstructed image 
)(ˆ iB  is treated at discrete time i, it makes the previous 

reconstructions ˆ ˆ ˆ{ (0), (1),..., ( 1)}i −B B B  irrelevant; hence the 
optimal filtering strategy is reduced to the dynamical one-
step predictor. Thus, the dynamical estimation strategy is 
modified to one-step optimal prediction procedure 

ˆ ˆˆ ˆ( 1) ( 1) ( ); ( 1) ( 1) ( 1); ( 1)i i i i i i i+ = + + = + + +zz z z B z B m
 (11) 

Hence, for the evolution (i+1)-st discrete time 
prediction/estimation step, the dynamical RSS estimate (5) 
becomes 

ˆ ( 1) ( 1) ( 1) ( 1)i i i i+ = + + + +B H z ν  (12) 

with the a priori predicted mean (9) for the desired state 
vector. Applying the Wiener minimum risk strategy [6] to 
solve (12) with respect to the state vector z(t) and taking into 
account the a priori information, the dynamic solution for the 
RSS state vector becomes 

ˆˆ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)i i i i i i⎡ ⎤+ = + + + + − + +⎣ ⎦z zz m Σ B H m  (13) 

where the desired dynamic filter operator )1( +iΣ  is  

)1()1()1()1( 1 +++=+ − iiii T
νΣ PHKΣ , 

[ ] 11 )1()1()1(
−− +++=+ iii zΣΣ PΨK , 

)1()1()1()1( 1 +++=+ − iiii T HPHΨ νΣ . 

(14) 

Using the derived filter equations (13) and (14) and the 
initial RSS state model given by (6), the optimal filtering 
procedure for dynamic reconstruction becomes 

ˆ ˆˆ ˆ( 1) ( ) ( ) ( 1) ( 1) ( 1) ( ) ( )i i i i i i i i⎡ ⎤+ = + + + − +⎣ ⎦Λ Φ z Σ B H Φ z
 

(15) 

Here, the initial condition ˆ ˆ(0) { (0)}.= ΛΛ B  The crucial issue 
to note here is related to model uncertainties regarding the 
particular employed dynamical RSS model (6), hence the 
model mismatch uncertainties regarding the overall 
dynamically reconstructed RSS.  
 
4.3 Big-Data Technique 

 
The optimal filtering procedure for dynamic reconstruction 
described by (15) will be implemented for MRS scenes using 
the Apache Hadoop software library [8], which is a 
framework that allows distributed processing of large data 
sets across clusters of computers using simple programming 
models. 
 

5. SIMULATIONS 
 
A RSS map is extracted from a set of multitemporal SPOT-5 
images using the WPS method. Three level of RSS are 
selected: 
██ – Black regions represents the RSS that relate to the 
humid zones of the MRS image. 
██ – Dark-gray regions represents the RSS that relate to the 
dry zones of the MRS image. 
██ – Light-gray regions represents the RSS that relate to 
the wet zones of the MRS image. 

Figure 1 shows the original high-resolution scene 
(1024x1024-pixels, RGB image) corresponding to a dam 
within the State of Jalisco in Mexico. Figure 2 shows the 
RSS map obtained with the WPS method for the adopted 
ordered weight vector. 



Figure 1. Original MRS scene. Figure 2. RSS map extracted with WPS for MDA analysis.
 
 

6. CONCLUDING REMARKS 
 
A dynamical approach for solving the inverse problems of 
high-resolution dynamical reconstruction of MRS images is 
presented via processing the finite-dimensional and space-
time measurements of the available sensor data. The 
dynamical RSS post-processing scheme reveals a possible 
approach toward a dynamic computational paradigm for 
numerical reconstruction and filtration of different RSS 
maps in discrete time. The presented study establishes the 
foundation to assist in understanding the basic theoretical 
and computational aspects of remote sensing image 
enhancement, extraction of physical scene characteristics, 
the dynamical post-processing and the employment of big-
data techniques for processing. The results are indicative of 
a usefulness of the proposed approach for monitoring 
physical environmental characteristics, and those could be 
addressed for different environmental resource management 
applications. Nevertheless, the processing of several RSS 
maps extracted from MRS scenes with the application of the 
derived MDA framework in order to increase its accuracy is 
a matter of further analysis. 
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