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Abstract. The robust numerical technique for high-resolution reconstructive 
imaging and scene analysis is developed as required for enhanced remote 
sensing with large scale sensor array radar/synthetic aperture radar. First, the 
problem-oriented modification of the previously proposed fused Bayesian-
regularization (FBR) enhanced radar imaging method is performed to enable 
it to reconstruct remote sensing signatures (RSS) of interest alleviating prob-
lem ill-poseness due to system-level and model-level uncertainties. Second, 
the modification of the Hopfield-type maximum entropy neural network 
(NN) is proposed that enables such NN to perform numerically the robust 
adaptive FBR technique via efficient NN computing. Finally, we report 
some simulation results of hydrological RSS reconstruction from enhanced 
real-world environmental images indicative of the efficiency of the devel-
oped method. 

1   Introduction 

Modern applied theory of reconstructive image processing is now a mature and 
well developed research field, presented and detailed in many works (see, for ex-
ample [1] thru [16] and references therein). Although the existing theory offers a 
manifold of statistical and descriptive regularization techniques for reconstructive 
imaging in many application areas there still remain some unresolved crucial theo-
retical and processing problems related to large scale sensor array real-time recon-
structive image processing. 

In this study, we consider the problem of enhanced remote sensing (RS) imag-
ing and reconstruction of remote sensing signature (RSS) fields of the RS scenes 
with the use of array radars or synthetic aperture radars (SAR) as sensor systems. 
Two principal algorithmic-level and computational-level developments constitute 
major innovative contributions of this study, namely:  



1) Development of a robust version of the fused Bayesian-regularization (FBR) 
method [1], [5] for reconstruction of the power spatial spectrum pattern (SSP) of 
the wave field scattered from the RS scene [7] and related RSS given a finite set of 
SAR signal recordings. Since this is in essence a nonlinear numerical inverse prob-
lem, we propose to alleviate the problem ill-poseness via robustification of the 
Bayesian estimation strategy [6], [7] by performing the non adaptive approxima-
tions of the SSP and RSS reconstructive operators that incorporate the non trivial 
metrics considerations for designing the proper solution space and different regu-
larization constraints imposed on a solution. 

2) Design of numerical techniques for efficient real-time computational imple-
mentation of the robust RS image enhancement and RSS field reconstruction algo-
rithms that employ the neural network (NN) computing. In particular, we propose 
to employ the general Li’s architecture of the Hopfield-type dynamic NN detailed 
in [5] and [8] but modify the specifications of the NN’s parameters (i.e. synaptic 
weights and bias inputs in all the NN’s loops, as well as the NN’s state update rule) 
to enable such the modified NN to perform the real-time robust image enhance-
ment and RSS field reconstruction tasks. Also, we propose a method to perform 
such a reconstruction with controllable balance between the achievable spatial 
resolution and admissible noise level in the resulting image/RSS map. 

2   Problem Model 

Consider the measurement data wavefield u(y)=s(y)+n(y) modeled as a 
superposition of the echo signals s and additive noise n that assumed to be 
available for observations and recordings within the prescribed time-space 
observation domain Y∍y, where y=(t,p)T defines the time-space points in the 
observation domain Y=T⋅P. The model of observation wavefield u is specified by 
the linear stochastic equation of observation (EO) of operator form [5]: u=Se+n; 
e∈E; u,n∈U; S:E→U, in the L2 Hilbert signal spaces E and U with the metric struc-
tures induced by inner products,  

[e1,e2]E= xxx dfdfefe
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respectively. The operator model of the stochastic EO in the conventional integral 
form may be rewritten as [1] 

u(y)= xxxy dfdfeS
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∫
×
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where );( xtε  represents the stochastic backscattered wavefield fluctuating in time 
t, and the functional kernel S(y,x) of the signal formation operator (SFO) S in (2) is 
specified by the particular employed RS signal wavefield formation model [1]. The 
phasor e(f,x) in (1), (2) represents the backscattered wavefield e(f,ρ,θ) over the 
frequency-space observation domain F⋅P⋅Θ; in the slant range ρ∈P and azimuth 
angle θ∈Θ domains, respectively. When considering the RS spectral analysis prob-
lems, the radar engineers typically work in the frequency-space domain, 
(f;ρ,θ)T∈F⋅P⋅Θ, however, because of the one-to-one mapping [4], [9] only the spa-
tial cross range coordinates (ρ,θ)T are usually associated with the RS scene [9], i.e. 
x=(ρ,θ)T∈X=P⋅Θ. This is valid for any narrowband RS system model [13] and 
incoherent nature of the backscattered wavefield e(f,x) that is naturally inherent to 
the RS imaging experiments [4], [9], [13]. Following such model assumptions, the 
phasor e(f,x) in (2), (3) is taken to be an independent random variable at each fre-
quency f, and spatial coordinates x with the zero mean value and δ-form correlation 
function, Re(f,f′;x,x′)=<e(f,x)e*(f′,x′)>=b(f,x)δ(f – f′)δ(x – x′) that enables one to 
introduce the following definition of the spatial spectrum pattern (SSP)  

B(x)=Aver(2){e(x)}= *( , ) ( , )
F

e f e f∫ x x |H(f )|2df ;   x∈X . (4) 

Here, <⋅> represents the ensemble averaging operator, while Aver(2) is referred to 
as the second order statistical averaging operator defined by (4), H(f) represents the 
given transfer function of the radar receiving channels that we assume to be identi-
cal for all antenna array elements and impose the conventional normalization, 
|H(f)|2=1 for all frequencies f∈F in the radar receiver frequency integrating band F. 
The RS imaging problem is stated as follows: to find an estimate )(ˆ xB  of the SSP 
B(x) in the environment X∍x by processing whatever values of measurements of 
the data wavefield u(y); y∈Y, are available. Following the RS methodology [5], 
any particular physical RSS of interest is to be extracted from the reconstructed RS 
image )(ˆ xB  applying the so-called signature extraction operator Λ. Hence, the 
particular RSS is mapped applying Λ to the reconstructed image, i.e. 

)(ˆ xΛ =Λ( )(ˆ xB ) . (5) 

Last, taking into account the RSS extraction model (5), we can reformulate now 
the signature reconstruction problem as follows: to map the reconstructed particu-
lar RSS of interest )(ˆ xΛ =Λ( )(ˆ xB ) over the observation scene X∍x via post-
processing (5) whatever values of the reconstructed scene image )(ˆ xB ; x∈X are 
available. For an RS system with an arbitrary sensor configuration, the recorded 
data is traditionally expressed as a discrete-form version of the EO (1) 

U=SE+N (6) 



where E, N and U define the zero-mean vectors composed of the coefficients Ek , 
Nm , and Um of the numerical approximations of the relevant operator-form EO (1), 
i.e. E represents the K-D vector composed with the coefficients             {Ek=[e,gk]E, 
k=1,…,K} of the K-D approximation, e(K)(x)=(PE(K)e)(x)=∑Ekgk(x), of the backscat-
tered wavefield e(x) integrated over the receiver frequency integration band F, and 
PE(K) is a projector onto the K-D approximation subspace E(K)=PE(K)E=Span{gk} 
spanned by some chosen set of K basis functions {gk(x)}. The M-by-K matrix S 
that approximates the SFO in (6) is given now by [3] 

Smk=[Sgk,ϕm]U ;   m=1,…,M ;   k=1,…,K (7) 

where the set of the base functions {ϕm(y)} that span the finite-dimensional spatial 
observation subspace U(M)=PU(M)U=Span{ϕm} defines the corresponding projector 

PU(M) induced by the specified array spatial response characteristics {ϕm(y)} [1]. 
The vectors E, N and U in the EO (6) are characterized by the correlation matrices 
RE=D=D(B)=diag(B), RN, and RU=SRES++RN, respectively, where diag(B) defines 
a diagonal matrix with vector B at its principal diagonal. Superscript + defines the 
adjoint operator [5] that becomes the Hermitian conjugate. The vector B is com-
posed of the elements Bk=<EkEk

*>; k=1,…,K, and is referred to as a  K-D vector-
form approximation of the SSP. The RSS reconstruction problem is reformulated 
as follows: to derive an estimator for reconstructing the K-D approximations 

)(ˆ )( xKΛ =Λ( )(ˆ )( xKB ))=Λ(∑ =
K
k kB1 ˆ |gk(x)|2)=Λ(gT(x)diag( B̂ )g(x)) (8) 

of the relevant RSS distribution in the environment X∍x via post-processing (5) 
whatever values of the reconstructed scene image )(ˆ xB ; x∈X are available. The 
experiment design (ED) aspects of the SSP estimation problem involving the anal-
ysis of how to choose the basis functions {gk(x)} that span the signal representation 
subspace E(K)=PE(K)E=Span{gk} for a given observation subspace U(M)=Span{ϕm} 
were investigated in more details in the previous studies [7], [16]. Here, we employ 
the pixel-format basis [10] and the ED considerations [1] for inducing the metrics 
structure in the solution space defined by the inner product 

||B||2B(K)=[B,MB] (9) 

where M is referred to as the metrics inducing operator [1]. Hence, the selection of 
M provides additional geometrical degrees of freedom of the problem model. In 
this study, we incorporate the model of M that corresponds to a matrix-form ap-
proximation of the Tikhonov’s stabilizer of the second order that was numerically 
designed in [1]. Also, following [1] we incorporate the projection-type a priori 
information requiring that the SSP vector B satisfies the linear constraint equation  

GB=C ,   i.e. G–GB=BP (10) 

where BP=G–C and G– is the Moore-Penrose pseudoinverse of a given constraint  
operator G:B(K)→B(Q), and the constraint vector C∈B(Q) and the constraint subspace 
B(Q)(Q < K) are assumed to be given. In (10), the constraint operator G projects the 



portion of the unknown SSP onto the subspace where the SSP values are fixed by 
C. 

3   Generalization of the FBR Method 

The estimator that produces the optimal estimate B̂ of the SSP vector via pro-
cessing the M-D data recordings U applying the FBR estimation strategy that in-
corporates nontrivial a priori geometrical and projection-type model information 
(9), (10) was developed in our previous study [1]. Such optimal FBR estimate of 
the SSP is given by the nonlinear equation [1] 

B̂ =BP+PB0+W( B̂ )(V( B̂ )–Z( B̂ )) . (11) 

In (11), BP is defined by (10) and B0 represents the a priori SSP distribution to 
be considered as a zero step approximation to the desires SSP B̂ . In this study, we 
use all the notations from [1] for definitions of the sufficient statistics (SS) vector 
V( B̂ )={F( B̂ )UU+F+( B̂ )}diag ({⋅}diag defines a vector composed of the principal 
diagonal of the embraced matrix), the solution-dependent SS formation operator  

F=F( B̂ )=D( B̂ )(I + S+ 1−
NR SD( B̂ ))–1S+ 1−

NR  ; (12) 

the SS shift vector Z( B̂ )={F( B̂ )RNF+( B̂ )}diag [1], and the composite solution-
dependent smoothing-projection window operator [1] 

W( B̂ )=PΩ( B̂ ) (13) 

with the projector 

P=(I–G–G) (14) 

and the solution-dependent regularizing window 

Ω( B̂ )=(diag({S+F+FS}diag)+α D2( B̂ )M( B̂ ) )–1 , (15) 

in which the regularization parameter α is to be adaptively adjusted using the sys-
tem calibration data (10). The generalization of the FBR estimator (11) for the case 
of RSS reconstruction in the K-D solution space can now be performed applying 
the mapping (8) to (11) and taking into account the pixel format of the basis 
{gk(x)} spanning the RSS solution space that yields  

)(ˆ )( xKΛ =gT(x)diag(Λ( B̂ ))g(x)=∑ = ΛK
k kB1 )ˆ( |gk(x)|2 ;   x∈X . (16) 

Hence, in the adapted pixel-format solution space, the vector Λ̂ =Λ( B̂ ) com-
posed of pixels {Λ( kB̂ );k=1,…,K} represents the desired pixel-format map of the 
high-resolution RSS reconstruction. Because of the complexity of the solution-



dependent K-D operator inversions needed to be performed to compute the SS, 
V( B̂ ), and the window, W( B̂ ), the computational complexity of such generalized 
optimal algorithm (16) is extremely high. Hence, the (16) could not be addressed 
as a practically realizable estimator of the RSS (i.e. high-resolution RSS mapping 
technique realizable via performing polynomial-complex computations [12]).  

4   R-FBR Technique for RSS Reconstruction 

We propose the robustification scheme for quasi-real-time implementation of the 
generalized FBR estimator that reduces drastically the computation load of the 
RSS formation procedure (16) without substantial degradation in the SSP resolu-
tion and overall RSS map performances. The robust version of the FBR estimator 
(referred to as R-FBR method) is proposed via roughing P=I and performing the 
robustification of both the SS formation operator F( B̂ ) and the smoothing window 
Ω( B̂ ) in (11) by roughing D( B̂ )≈D=βI, where β represents the expected a priori 
image gray level [1]. Thus, the robust SS formation operator  

F=A–1(ρ)S+   with   A(ρ)=S+S+ρ–1I (17) 

becomes a regularized inverse of the SFO S with regularization parameter ρ–1, the 
inverse of the signal-to-noise ratio (SNR) ρ=β/N0 for the adopted white observation 
noise model, RN=N0I. The robust smoothing window  

W=Ω=(w0I+M)–1 (18) 

is completely defined now by matrix M that induces the metrics structure (9) in the 
solution space with the scaling factor w0=tr{S+F+FS}/K [1]. Here, we adopt practi-
cal constraints of high SNR operational conditions [7], [9] ρ>>1, in which case one 
can neglect also the constant bias Z=Z0I in (11) because it does not affect the pat-
tern of the SSP estimate. Following these practically motivated assumptions, we 
derive the resulting R-FBR estimator  

)(ˆ xRFBRΛ =gT(x)diag(Λ(B0+ΩV))g(x) (19) 

where V={FUU+F+}diag represents now the robust (solution independent) SS vector. 
Thus, the principal computational load of the R-FBR estimator (19) is associated 
now with the operator inversions required to compute the solution operator (18) for 
adaptively adjusted regularization parameter ρ–1. Next, the simplest rough RSS 
estimator can be constructed as further simplification of (19) adopting the trivial 
prior model information (P=I and B0=0I) and roughly approximation the SS for-
mation operator F by the adjoint SFO, i.e. F≈γ0S+ [1] (the normalizing constant γ0 
provides the balance of the operator norms, 2

0γ =tr–1{S+SS+S}tr{FSS+F+}). In this 
case, the (19) is simplified to its rough version 



)(ˆ xMSFΛ =gT(x)diag(Λ(Ω H))g(x) (20) 

referred to as matched spatial filtering (MSF) algorithm where the rough SS 
H= 2

0γ {S+UU+S}diag is now formed applying the adjoint operator S+, and the win-
dowing of the rough SS is performed applying the smoothing filter Ω=(w0I+M)–1 

with nonnegative entry, the same one as was constructed numerically in [1].  

5   NN for Implementing the R-FBR Method 

Now, we propose a NN for efficient quasi-real-time computational implementation 
of the presented above R-FBR method. The main idea is to aggregate the robust 
regularization with the NN-based computing to reduce the computational load of 
the R-FBR technique. We approach this goal by performing the modifications of 
the multistate Hopfield-type NN originally developed in [5] and modified in [8]. 
Borrowing from [8] we define the Hopfield-type multistate NN as a massive inter-
connection of formal neurons, i.e. basic processing units. The outputs of all K neu-
rons compose the output vector, z=sgn(Qv+Θ), where, Q represents the KxK ma-
trix of the interconnection strengths of the NN, and Θ defines the Kx1 bias vector 
of the NN [8]. The output vector z is used to update the state vector v of the net-
work: v′′=v′+Δv where, Δv=ℜ(z) is a change of the state vector v computed apply-
ing the state update rule ℜ(z) and the superscripts ′′ and ′ correspond to the state 
values before and after network state updating, respectively. We employ the same 
state update rule ℜ(z) that was designed previously in [8] that guarantees that the 
energy function of the overall NN 

ENN(v)= E T T( ) ( )x x W G x x= − + +
1
2

λ Θ vTQv–ΘTv (21) 

is decreased at each updating step, i.e. ENN(v′′)≤ENN(v′), until the NN reaches its 
stationary state related to the state vopt at which the minimum of the NN energy 
(21) is attained, i.e. ( ) min ( )NN opt NNE E=

v
v v . Next, we associate the NN’s station-

ary state with the solution to a hypothetical inverse problem (IP) of minimization 
of the following composite cost function 

EIP(Y|λ)= E T T( ) ( )x x W G x x= − + +
1
2

λ Θ ||U–SY||2+ E T T( ) ( )x x W G x x= − + +
1
2

λ Θ ||Y||2 . (22) 

If the regularization parameters in (22) are adjusted as λ1=1, λ2=ρ–1 and the 
NN’s stationary state is associated with the solution to (22) than the minimization 
of EIP(Y|λ) provides the robust constraint least square estimate Ŷ =FU that unique-
ly defines the desired high-resolution RSS vector Λ̂ =Λ(B0+ΩV) with SS 



V= diag}ˆˆ{ +YY . Hence, the cumbersome operator inversions needed to compute the 
SS and reconstruct the RSS are translated now into the relevant problem of recur-
rent minimization of the energy function (21) of the NN and derivation of Ŷ =vopt 
via specification of the NN’s parameters as follows: 

*
1 2

1

K

ki jk ji ki
j

Q S Sλ λ δ
=

= − −∑  ;   for all  k, I=1,…,K . (23) 

1
1

K

k jk j
j
S Uλ

=

Θ = ∑  ;                  for all  k=1,…,K . (24) 

where kiQ  and kΘ  represent the elements of the interconnection strengths matrix 
Q and bias vector Θ of the modified NN, respectively. Because of the exclusion of 
the solution-dependent operator inversions (17) via translations of the SS formation 
procedure into the relevant recurrent problem of minimization of the NN’s energy 
function (21), the computational load of such R-FBR technique (19) is drastically 
decreased in comparison with the original FBR method (16).  

6   Simulations 

In the simulations, we considered the SAR with partially synthesized aperture as an 
RS imaging system [4], [13]. The SFO was factorized along two axes in the image 
plane: the azimuth and the range. Following the common practically motivated 
technical considerations [4], [9], [11] we modeled a triangular shape of the SAR 
range ambiguity function of 3 pixels width, and a |sinc|2 shape of the side-looking 
SAR azimuth ambiguity function (AF) for two typical scenarios of fractionally 
synthesized apertures: (i) azimuth AF of 10 pixels width at the zero crossing level 
associated with the first system model and (ii) azimuth AF of 20 pixels width at the 
zero crossing level associated with the second system model, respectively. We 
examined the behavior and corresponding performance quality metrics of the de-
rived above R-FBR estimator of the SSP and relevant 2-bit RSS [2], [15] for two 
different simulated scenes and two specified above fractional SAR models. The 
results of the simulation experiment indicative of the enhanced quality of SSP and 
RSS reconstruction with the proposed approach are reported in Figures 1 to 4 for 
two different RS scenes borrowed from the real-world RS imagery of the Metro-
politan area of Guadalajara city, Mexico [16], [17]. Figures 1.a. thru 4.a show the 
original super-high resolution test scenes (not observable in the simulation experi-
ments with partially synthesized SAR system models). Figures 1.b thru 4.b present 
the results of SSP imaging with the conventional MSF algorithm (20). Figures 1.c 
thru 4.c present the SSP reconstructed applying the proposed R-FBR method (19) 
implemented using the modified NN computing technique developed in the previ-



ous section. The particular reconstructed RSS reported in the simulations in Fig-
ures 1.(d,e,f) thru 4.(d,e,f) represent the so-called hydrological electronic maps 
(HEMs) [2], [15] extracted from the relevant SSP images (grouped in the corre-
sponding upper rows of the figures) applying the weighted order statistics (WOS) 
classification operator Λ( B̂ (x)) detailed in [15]. Such HEMs are specified as 2-bit 
hydrological RSS [2], [15] that classify the areas in the reconstructed scene images 
B̂ (x) into four classes: areas covered with water (black zones in the figures), the 
high-humidity areas (dark-gray zones), the low-humidity areas (light-gray zones), 
and dry areas/non classified regions (white zones). 

Table 1. IOSNR values provided with the R-FBR method. Results are reported for different 
SNRs for two test scenes and two different simulated SAR systems 

SNR First Scene Second Scene 
[dB] IOSNR: System1 IOSNR: System2 IOSNR: System1 IOSNR: System2 

µ SSP HEM SSP HEM SSP HEM SSP HEM 
10 2.35 2.24 2.42 3.20 19.49 16.48 20.26 17.59 
15 5.15 3.34 5.56 4.32 20.42 19.45 21.83 18.63 
20 8.24 5.20 8.72 5.12 21.25 20.76 22.66 19.42 
25 12.71 9.55 13.19 10.24 21.13 21.52 22.54 21.36 
 
The quantitative measure of the improvement in the output signal-to-noise ratio 

(IOSNR) quality metric [4] gained with the enhanced SSP and HEM imaging 
methods for two simulated scenarios are reported in Table 1. All reported simula-
tions were run for the same 512x512 pixel image format. The computation load of 
the enhanced RSS reconstruction with the R-FBR algorithm (19) applying the 
proposed above NN computational scheme in comparison with the original FBR 
method (16) was decreased approximately 105 times and required 0.38 seconds of 
the overall computational time for the NN-based implementation of the R-FBR 
technique (19) using a 2.8GHz Pentium4© computer with 512MB of memory. 

7   Concluding Remarks 

We have developed and presented the R-FBR method for high-resolution SSP 
estimation and RSS mapping as required for reconstructive RS imagery. The de-
veloped R-FBR method was implemented in a quasi-real-time mode utilizing the 
proposed NN computational technique. The interconnection strengths and bias 
inputs of the designed multistate Hopfield-type NN were specified in such a way 
that enabled the NN to perform the solution of the aggregated inverse problem of 
high-resolution SSP estimation and corresponding HEM-RSS reconstruction from 
the available data recordings required to implement the overall R-FBR method. 
The developed technique performs the balanced aggregation of the data and model 
prior information to perform the enhanced image reconstruction and RSS mapping 



with improved spatial resolution and noise reduction. The presented simulation 
examples illustrate the overall imaging performance improvements gained with the 
proposed approach. The simulation experiment verified that the RSS extracted 
applying the R-FBR reconstruction method provide more accurate physical infor-
mation about the content of the RS scenes in comparison with the conventional 
MSF and previously proposed descriptive regularization techniques [15], [16]. The 
presented study establishes the foundation to assist in understanding the basic theo-
retical and computational aspects of multi-level adaptive RS image formation, 
enhancement and extraction of physical scene characteristics that aggregates the 
robust regularization with NN-computing paradigms. 
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Fig. 1. Simulation results for the firs scene: first system model 
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Fig. 2. Simulation results for the firs scene: second system model 
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Fig. 3. Simulation results for the second scene: first system model 
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