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Abstract.- This study consider the problem of high-resolution imaging of the remote 
sensing (RS) environment formalized in terms of a nonlinear ill-posed inverse problem of 
nonparametric estimation of the power spatial spectrum pattern (SSP) of the wavefield 
scattered from an extended remotely sensed scene (referred to as the scene image) via 
processing the discrete measurements of a finite number of independent realizations of the 
observed degraded radar data signals (one realization of the trajectory signal in the case of 
SAR). However, these remote sensing techniques for reconstructive imaging in many RS 
application areas are relatively unacceptable for being implemented in a (near) real time 
implementation. In this work, we address a new aggregated descriptive-regularization (DR) 
method and the Hardware/Software co-design for SSP reconstruction from the uncertain 
speckle-corrupted measurement data in a computationally efficient parallel fashion that 
meets the (near) real time image processing requirements. The hardware design is 
performed via efficient systolic arrays (SAs) based on a Xilinx Field Programmable Gate 
Array (FPGA) XC4VSX35-10ff668. Finally, the efficiency both in resolution enhancement 
and in computational complexity reduction metrics of the aggregated descriptive-
regularized and the Hardware/Software co-design method is presented via numerical 
simulations and by the performance analysis. 
 
Keywords: Descriptive regularization, remote sensing, image reconstruction, systolic 
arrays, FPGA. 
 
 
1. INTRODUCTION 
Modern applied theory of reconstructive processing of remote sensing (RS) imagery is now 
a mature and well developed research field, presented and detailed in many works, (see for 
example, [1], [2] and the references therein). Although the existing theory offers a manifold 
of statistical and descriptive regularization techniques for reconstructive imaging in many 
RS application areas there still remain some unresolved crucial theoretical and processing 
problems related to the computationally expensive RS applications due to the complex RS 



recently techniques [3]−[5]. These deterministic descriptive-regularization (DR) techniques 
are associated with the unknown random perturbations of the signals in the turbulent 
medium, imperfect array calibration, finite dimensionality of measurements, multiplicative 
signal-dependent speckle noise, uncontrolled antenna vibrations and random carrier 
trajectory deviations in the case of SAR [1], [2]. Moreover, these techniques are not 
suitable for (near) real time implementation with existing digital signal processors (DSP) or 
personal computers (PC). To treat such class of (near) real time implementation, the use of 
specialized arrays of processors will become the real possibility for RS reconstructive 
signal processing (SP) applications in order to achieve the (near) real processing time 
performances. In the early 1980’s, H.T. Kung [8] proposed the concept of systolic array 
(SA) processing. SA denotes a simple class of concurrent processors, in which processed 
data move in a regular and periodic manner, utilizing only a small number of simple 
processing elements with only local communication. Later generalizations of SA have 
relaxed some of these constraints. While the SA concept was originally formulated 
intuitively to perform the correlation of two sequences, systematic design of SA for certain 
class of allowable algorithms (i.e., single assignment algorithms) have been proposed by 
many researchers using various techniques under the general name of dependence graph 
mapping. The challenge, as stated by H. T. Kung, is to ensure that the right data arrive at 
the right cells at the right time. The basic idea to describe a systolic array is by two 
distributions functions [8]−[10]: a timing function that specifies the temporal distribution 
and an allocation function that specifies their spatial distribution such that concurrent 
computations are allocated to different processors. The combinations of the timing function 
and allocation function is called space-time mapping or space-time transformation. 

The innovative idea of this study are related to the substantial reduction of the 
computational load of the Descriptive-Regularized RS image reconstruction technique via 
performing their aggregation with the efficient hardware/software co-design [6], [7] using 
efficient hardware systolic arrays as coprocessors. Two innovative contributions that we are 
going to detail and treat in this study are presented: 
1) At the algorithmic-level, we address the deign of a family of Descriptive-Regularization 
techniques over the range and azimuth coordinates in the RS environment, and provide the 
relevant computational recipes for their application to imaging array radars and fractional 
imaging SAR operating in different scenarios. In the simulated SAR imaging experiments, 
we demonstrated that with the Descriptive-regularized family algorithms, the overall RS 
image enhancement performances can be improved if compared with those obtained using 
the traditional de-speckling filters.  

2) At the systematic-level, we develop the family of Descriptive-Regularization techniques 
based on a Field Programmable Gate Array (FPGA) implementation of the reconstructive 
signal processing (SP) operations with the hardware/software co-design paradigm using 
efficient hardware systolic arrays as coprocessors in context of the (near) real time RS 
requirements.  
 
Finally, we report and discuss the implementation and performance issues related to (near) 
real time enhancement of the large-scale real-world RS imagery indicative of the 
significantly increased processing efficiency gained with the developed aggregation method 
of the descriptive-regularized and the hardware/software co-design. 



2. PROBLEM MODEL 
 
In this section, we present a brief summary of the RS general formalism imaging problem 
previously defined in [11], [12]; hence some crucial model elements are repeated for 
convenience to the reader. 
 
Consider an RS imaging experiment performed with a coherent array imaging radar/SAR 
[12-14]. Here, we employ the conventional narrowband space-time model of the radar/SAR 
signals [11]. In such a model, the field e(r) scattered over the scene r∈R is related to the 
observed wavefield  u(z) = s(z) + n(z)  as a composition of the echo signals  s  and additive 
noise n, and is available for recordings within the prescribed time(t)-space(p) observation 
domain Z = T⋅P; t∈ T, p∈P, where z = (t, p)T defines the time-space points in Z. The 
continuous-form model of the observation wavefield u is defined by specifying the 
stochastic equation of observation (EO) [11] 

u(z) = (Se(r))(z) + n(z) = ,
R

S∫ z r( )e(r)dr + n(z) .                           (1)  

The function S(z, r) in (1) defines the signal wavefield formation model specified by the 
time-space modulation of signals employed in a particular imaging  RS system [12-14] . All 
the fields e, n, u in (1) are modeled as zero-mean complex-valued Gaussian random fields. 
We assume an incoherent nature of the backscattered field e( )x over the scattering scene r 
∈ R. This is naturally inherent to all RS imaging experiments and leads to the       δ -form 
of the scattering field correlation function, Re(r1,r2) = b(r1)δ(r1– r2), where the averaged 
square  

b(r) = ( )( )e rB = <|e(r)|2> ;  r∈R,                                      (2) 
(i.e. the second-order statistics of the complex scattering function e(r)) represents the 
ensemble average of the squared modulus of the random scattering field e(r) as a function 
over the scene domain R where r∈R is a coordinate vector of the scan parameters over the 
illuminated scene, usually the Cartesian coordinates, r = (x, y), and B  represents the 
second-order statistical ensemble averaging operator defined by (2). Function b(r) has a 
statistical meaning of the average power scattering function and is traditionally referred to 
(in the RS and radar imaging literature, e.g. [12-14]) as the spatial spectrum pattern (SSP) 
of the scattering field associated with the original scene image. Next, taking into account 
the projection formalism one can proceed from the continuous-form EO (1) to its 
conventional finite-dimensional vector form approximation 

u = Se + n                                                            (3) 
where u, n and e define the vectors composed of the coefficients um , nm and ek of the finite-
dimensional approximation of the fields u, n and e , respectively, and S is the matrix-form 
approximation [12], [15] of the integral-form SFO defined in (1). 
Zero-mean Gaussian vectors e, n and u in (3) are characterized by the correlation matrices, 
Re , Rn  and  Ru = SReS+ + Rn , respectively, where superscript + defines the Hermitian 
conjugate (conjugate transpose). Because of the incoherent nature (2) of the scattering field 
e(r), vector e has a diagonal-form correlation matrix, Re = D(b) = diag(b), in which the K⋅1 
vector of the principal diagonal b is composed of elements {bk = <ekek

*>} associated with 



the so-called lexicographically ordered image pixels [16]. The corresponding conventional 
Ky⋅Kx rectangular pixel frame ordered scene image B = {b(kx, ky); kx = 1,…,Kx;    kv = 
1,…,Ky} relates to its lexicographically ordered vector-form representation b = {b(k); k = 
1,…, K = Ky⋅Kx} via the standard raw by row stacking (so-called lexicographical 
reordering) procedure [16], B = L{b}. Note that in all practical RS imaging applications 
[12-14], the additive observation noise n is modeled as a white Gaussian zero-mean vector 
with the diagonal-form correlation matrix Rn = N0I specified by the noise intensity N0, in 
which case the inverse is, 1−

nR = (1/N0)I. The enhanced RS imaging problem is stated 

formally as follows: to map the scene pixel-frame image B̂  via lexicographical reordering 
B̂  = L{ b̂ } of the SSP vector estimate b̂  reconstructed from whatever available 
measurements of independent realizations {u(j); j = 1, …, J} of the recorded data vector. 
The reconstructed SSP vector b̂  is an estimate of the second-order statistics of the 
scattering vector e observed through the SFO matrix S and contaminated with noise n; 
hence, the RS imaging problem at hand must be qualified and treated as a statistical 
nonlinear inverse problem. The high-resolution RS imaging implies the solution of such 
inverse problem in some optimal way.  
 
 
3. HIGH-RESOLUTION DETERMINISTIC IMAGING TECHNIQUES 
 
The desired SSP vector b̂  is recognized to be the diagonal of an estimate of the correlation 
matrix Re(b), i.e. b̂= { ˆ eR }diag . Thus one has to seek to estimate {Re}diag  given the data 

correlation matrix Ru pre-estimated by some means, e.g. ˆ uR = W = aver{uu+} = 

(1/J) ( ) ( )1

J
j jj

+
=∑ u u , by determining the solution operator (SO) Ω such that 

b̂  = { ˆ eR }diag = { ΩWΩ +}diag                                               (4) 

where operator {⋅}diag  returns the vector of the principal diagonal of the embraced matrix. 
The descriptive strategy [12] is to find the SO Ω that minimizes the augmented DR cost 
function 

Ω→min
Ω

{trace{(ΩS–I)A(ΩS–I)+}+αtrace{ΩMΩ+}}                        (5) 

that is a weighted sum of the systematic and fluctuation error measures in the desired SSP 
estimate b̂ , where tr{⋅} defines the trace operator, α is the balance (regularization) 
parameter and the weight matrix A and M provides the additional DR “degrees of freedom” 
incorporating any descriptive properties of a solution. The solution to the problem (4) 
provides the deterministic DR-optimal solution operator 

Ω = (S+MS+αA–1)–1 S+M.                                          (6) 
Next, the family of the deterministic DR-related algorithms can be derived from (4), (6) via 
adjusting the regularization parameter α and weight matrices A and M. Here we exemplify 
two most celebrated techniques, namely, the high-resolution reconstructive deterministic 
imaging techniques: (i) the Constrain Least Square (CLS), and (ii) the Weighted Constrain 
Least Square (WCLS) methods. 



3.1. Constrain Least Square (CLS) 

The CLS method implies no preference to any prior model information (i.e., A = I, M = I) 
and balanced minimization of the systematic and noise error measures in (5) by adjusting 
the regularization parameter to the inverse of the signal-to-noise ratio (SNR), e.g.               
α = N0/b0, where b0 is the prior average gray level of the image. In that case the solution 
operator Ω becomes the Tikhonov-type robust spatial filter  

ΩCLS = Ω(1) =KCLS S+,  where  KCLS = (S+S + αI )–1.                     (7) 

3.2. Weighted Constrain Least Square (WCLS) 

In the deterministic optimal case, the computationally structure of the WCLS algorithm 
clearly shows that there have appeared some additional degrees of freedom in the estimator 
at the signal processing level. These degrees of freedom are determined by the relevant 
weights that induce additional prior knowledge (in a form of smoothness of the desired 
image) on the solution via regularization. The particular choice of weights (A ≠ I, M ≠ I) 
and the regularization parameter α depends on the relevant problem model and constitutes a 
better regularized technique at the data processing level  

ΩWCLS = Ω(2) = KWCLS S+M,    where  KWCLS = (S+MS + αA)–1.              (8) 
 
 

4. HW/SW CO-DESIGN ARCHITECTURE 
 
The HW/SW co-design is a hybrid method aimed at increasing the flexibility of the 
implementation and improvement of the overall design process [17]. The all-software 
execution of the prescribed RS image formation and reconstruction operations in modern 
high-speed personal computers (PC) or any existing digital signal processors (DSP) may be 
intensively time consuming. These high computational complexities of the RS algorithms 
make them definitely unacceptable for real time PC-aided implementation. When a co-
processor-based solution is employed in the HW/SW co-design architecture, the 
computational time can be drastically reduced [18]. 
Two opposite alternatives can be considered when exploring the HW/SW co-design of a 
complex electronic system. One of them is the use of standard components whose 
functionality can be defined by means of programming. The other one is the 
implementation of this functionality via a microelectronic circuit specifically tailored for 
that application. It is well known that the first alternative (the software alternative) provides 
solutions that present a great flexibility in spite of high area requirements and long 
execution times, while the second one (the hardware alternative) optimizes the size aspects 
and the operation speed but limits the flexibility of the solution. Halfway between both, 
HW/SW co-design techniques try to obtain an appropriate trade-off between the advantages 
and drawbacks of these two approaches. In this study, we propose to use the Microblaze 
embedded processor (for the restricted platform) and the On Chip Peripheral Bus (OPB) for 
transferring the data from/to the embedded processor to/from the coprocessor HW core. 
Such the OPB is a fully synchronous bus [19] that connects other separate 32-bit data 
buses. The overall system architecture (based on the FPGA XC4VSX35-10ff668 with the 
embedded processor and the OPB buses) restricts the corresponding processing frequency 
to 100 MHz. 



The main parameters to consider in this evaluation are the task execution speed and the area 
required by its hardware implementation. Based on those requirements, the HW/SW co-
design methodology is carried out, which consists in deciding which tasks should be 
executed by software and which should be implemented by hardware. 
The HW/SW co-design methodology encompasses the following general stages:  

(i) algorithmic implementation (reference simulation in the MATLAB platform);  
(ii) computational tasks partitioning process (definition of the number of co-

processors),  
(iii) operational mapping process employed to map the computation execution tasks 

onto HW blocks (reconfigurable arrays). 
 
 

 
Figure 1. Illustration of the HW/SW co-design paradigm. 

 
 
4.1  Algorithmic implementation stage 

In this section, we develop the procedures for computational implementation of the 
deterministic DR-related CLS and WCLS algorithms in the MATLAB platform. This 
reference implementation scheme will be next compared with the proposed HW/SW co-
design architecture based on the use of the single Field Programmable Gate Array chip. 
In the verification simulation experiments of this reference implementation, we considered 
a conventional single-look SAR with the fractionally synthesized aperture as an RS 
imaging system [1], [20]. Recall, that signal formation operator (SFO) S of such a SAR is 
factored along two axes in the image plane [15]: the azimuth or cross-range coordinate 
(horizontal axis, x) and the slant range (vertical axis, y), respectively. We considered the 
conventional triangular SAR range ambiguity function (AF) [15] Ψr(y) and Gaussian 
approximation [13]−[14], Ψa(x) = exp(–(x)2/a2), of the SAR azimuth AF with the adjustable 
fractional parameter, a. 
In analogy to the image reconstruction [1], we employed the quality metric defined as an 
improvement in the input-output signal-to-noise ratio (IOSNR)  



IOSNR = 10 log10 
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;    p = 1, 2.                                 (9) 

where kb  represents the value of the kth element (pixel) of the original image B, ( )ˆ MSF
kb  

represents the value of the kth element (pixel) of the degraded image formed applying the 
Matched Space Filter (MSF) technique [1], and ( )ˆ p

kb  represents a value of the kth pixel of 
the image reconstructed with two simulated enhancement methods, p = 1, 2 where p = 1 
corresponds to the CLS algorithm and p = 2 corresponds to the WCLS algorithm, i.e., the 
best one from the summarized deterministic DR family, respectively.  
The second adopted metric, the so-called mean absolute error (MAE), was employed as a 
metric suitable for quantification of edges and fine detail preservation in the reconstructed 
image defined as [21] 

( )( )( )
10 1

ˆ110log  K p
k kk

MAE b bK =
= −∑ ;   p = 1, 2.                         (10) 

According to these quality metrics, the higher is the IOSNR, and the lower is the MAE, the 
better is the improvement of the image enhancement/reconstructed with the particular 
employed algorithm. 
 
 
4.2  Partitioning stage 

One of the challenging problems of the HW/SW co-design is to perform an efficient 
HW/SW partitioning of computational tasks. The system partitioning is clearly influenced 
by the target architecture onto which the HW and the SW will be mapped. The aim of the 
partitioning problem is to find which computational tasks can be implemented in an 
efficient hardware architecture looking for the best trade-offs among the different solutions 
[10],[18],[22]. The solution to the problem consists in select which kinds of subtasks 
compose the CLS/WCLS algorithm. For example, most of the reconstructive signal 
processing (SP) algorithms incorporate two major groups of computational operations: 
basic algebraic matrix operations and discrete-form transforms like convolution, correlation 
techniques, digital filtering, etc. [6],[21],[23]−[24]. 
In this particular study, the matrix multiplication reconstructive SP operation is performed 
in several occasions. Moreover, the matrix multiplication is one of the computationally 
most time-consuming algorithms. Furthermore, the target architecture proposed in this 
study consists of one 32 bits RISC instruction set embedded processor (MicroBlaze) 
running the software and by two dedicated co-processors (corresponding to each 
reconstruction solution operator Ω for the CLS and the WCLS algorithms) implemented by 
systolic arrays (SAs) processor that meets the (near) real time RS system requirements. 
 
 



 
Figure 2. Proposed partitioning stage of the HW/SW co-design. 

Following the presented above partitioning paradigm, we decompose now the deterministic 
DR-regularized CLS and WCLS algorithms developed at the SW-design into the standard 
MicroBlaze embedded processor and by two co-processors as illustrated in Figure 2.  
The first co-processor (referred to as the CLS solution operator ΩCLS) performs the required 
matrix multiplication operations for implementing the deterministic DR-regularized CLS 
image reconstruction algorithm.  
The second co-processor (referred to as the WCLS solution operator ΩWCLS) implements 
the matrix multiplication computations of the WCLS reconstructive solution operator 
specified by (8).   
Both co-processors are next implemented as systolic arrays processor while the embedded 
processor executes the rest of the operations required for the CLS and WCLS algorithms: 
data transfer to the HW co-processors, inverse matrix operation, and matrix addition 
operation. 
Once the HW/SW partition of the tasks for the co-design architecture has been defined, 
these tasks are to be mapped into the corresponding SAs co-processors. In the HW design, 
we consider to use the precision of 32 bits fixed-point operations, 9-bit integer and 23-bits 
decimal for the implementation of each SA co-processor. 
 
4.3 Mapping algorithms onto systolic Arrays 

Now, we proceed with the development of the procedure for mapping the corresponding 
algorithms onto array processors. The first step for mapping the algorithms onto array 
processors consist in represent the algorithm into a Dependence Graph (DG) by tracing the 
associated space-time index space and using the proper arcs to display the dependencies in 
the index space. For example, the multiplication of an m×n matrix A with an n×p matrix B 
results in an output m×p matrix C = A B with elements  

1
, 1,..., ; 1,..., .

n

ij ik kj
k

c a b i m j p
=

= = =∑                                      (11) 



In Figure 3(a), we present the corresponding data-dependencies of the single assignment 
algorithm of the 3-D DG. Next, we construct the locally recursive algorithm DG for 
efficient computing of such matrix multiplication as illustrated in Figure 3(b). 
 

 
a) Single assigment DG b) Locally recursive DG 

Figure 3. Locally recursive transformation of the matrix-matrix multiplication. 
 

Next, considering the linear transformation matrix ⎡ ⎤= ⎢ ⎥⎣ ⎦
ΠT Σ , where Π  is a (1 × p)-

dimensional vector (composed of the first row of T ) which determine the time scheduling 
andΣ  is the (p-1)×p sub-matrix composed of the rest rows of T  that determine the space 
processor. The SA for performing the matrix multiplication in the proposed parallel format 
employs the following specifications in the transformations defined by T :  

• [ ]T1 1 1=Π  for the vector schedule,  

• [ ]T0 0 1=d  for the projection vector and,  

• 
T1 0 0

0 1 0
⎡ ⎤= ⎢ ⎥⎣ ⎦

Σ  for the space processor.   

Once the transformation matrix 
1 1 1
1 0 0
0 1 0

⎡ ⎤⎡ ⎤= = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

ΠT Σ  is defined, the dependence vectors 

are specified by [ ],a b c=Φ Φ Φ Φ  where 
1
0 ,
0

a

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

Φ  
0
1
0

b

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

Φ  and 
0
0
1

c

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

Φ  represent 

the dependence of the corresponding variables in the algorithm. With these specifications, 

we next construct the SA by 
1 1 1 1 0 0 1 1 1
1 0 0 0 1 0 1 0 0 ,
0 1 0 0 0 1 0 1 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
→ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
T Φ Κ

TΦ =Κ                          

where K  is composed of the new revised vector schedule (represented by the first row of 
the SA) and the inter-processor communications (represented by the rest rows of the SA). 
 



 
Figure 4. Systolic array processor of the matrix multiplication algorithm. 

 
The transformation represented above performs the linear-type mapping onto a 2-D SA 
architecture corresponding to the matrix multiplication algorithm that we represent in 
Figure 4. 
 
Next, to avoid unnecessary multiple data transfer from the embedded processor data 
memory to the SAs coprocessors, we propose to incorporate memory buffers into the 
architecture with the objective to satisfy the high bandwidth requirements of the SA 
processors as illustrated in the block diagram of Figure 5. 
 
 

 
Figure 5. Block diagram of the HW/SW co-design architecture with the systolic arrays. 

 
 
In summary, the developed systolic architecture performs the parallel and pipelined 
schemes which exploit the proposed above mapping methodology. These architectures 
provide the necessary HW-level implementation of the SW-optimized complex multi-
purpose RS imaging algorithms. 
 



5. SIMULATIONS AND PERFORMANCE ANALYSIS 

5.1 Simulations  
 
In this study, the simulations were performed with a large scale (512-by-512) pixel format 
image borrowed from the real-world high-resolution terrain SAR imagery (south-west 
Guadalajara region, Mexico [25]). We considered two DR-related estimators from the 
deterministic family, i.e., renumbered now as p = 1, 2. The first one is the CLS algorithm, 
with the solution operator Ω(1) = Ω CLS defined by (7), which was applied to enhance the 
degraded MSF image. The second simulated technique corresponds to the WCLS method 
with the solution operator Ω(2) = Ω WCLS. In the simulations, the latter was assigned the 
value 0N = 0.01 0b  that corresponds to the prior signal to noise ratio (SNR) 0 0/b N = 20dB. 
The quantitative measures of the image enhancement/reconstruction performance achieved 
with the particular employed deterministic DR-CLS and DR-WCLS techniques, evaluated 
via the IOSNR metric (9) and the MAE metric (10), are reported in Table I. The simulation 
experiments were run by different effective fractionally synthesized aperture frames κa, κr 
(as specified in Table I) for different SNR. Next, Figure 6 shows the original scene image 
(not observable with the simulated SAR systems). 
 

 

Figure 6. Original real world high-resolution scene 
 
The images of Figure 7(a) thru 7(f) present the results of image formation and enhancement 
applying the selected deterministic DR-related estimators as specified in the figure 
captions. Figures 7(a) and 7(b) represent the degraded images formed applying the 
conventional MSF algorithm [1]. From these figures, one may easily observe that the 
degraded images suffer from imperfect spatial resolution due to the fractional aperture 
synthesis mode and are severely corrupted by Gaussian noise (i.e. Figure 7(a)) and also by 
multiplicative signal-dependent noise due to the single-look SAR mode (i.e. Figure 7(b)). 
In this scenario, the degradations in resolution are moderate over the range direction (κr = 
6) and much larger over the azimuth direction (κa = 15). Figures 7(c) thru 7(d) present the 
enhanced images formed using the CLS adjusted to the particular scenario and the 
corresponding images optimally reconstructed using the WCLS algorithm (8) are presented 
in Figures 7(e) thru 7(f), respectively. 



  
a) b) 

  
c) d) 

  
e) f) 

Figure 7. Simulation results: (a) degraded SAR scene image formed applying the MSF 
method corrupted by Gaussian noise [fractional SAR parameters: κr = 6 pixels,  κa = 15 
pixels; SNR = 20 dB]; (b) degraded SAR scene image formed applying the MSF method 
corrupted by Composite noise [fractional SAR parameters: κr = 6 pixels,  κa = 15 pixels; 
SNR = 20 dB]; (c) image reconstructed applying the CLS algorithm for the degraded image 
with Gaussian noise; (d) image reconstructed applying the CLS algorithm for the degraded 
image with Composite noise; (e) image reconstructed applying the WCLS algorithm for the 
degraded image with Gaussian noise; (f) image reconstructed applying the WCLS 
algorithm for the degraded image with Composite noise. 



Table I  and Table II report the quantitative performances evaluated via two quality metrics 
(9) and (10) gained with the specified above robust deterministic DR-related SSP 
estimators (p = 1, 2). 
 
Table I. IOSNR values provided with the selected simulated DR-related methods, p = 1, 2. 

SNR 
(dB) 

IOSNR(p); p = 1,2 
SCENARIO 

(with Gaussian noise): 
κr = 6,  κa = 15 

SCENARIO 
(with Composite noise): 

κr = 6,  κa = 15 
CLS WCLS CLS WCLS 

5 3.03 3.82 3.48 3.59 
10 4.36 5.13 4.13 4.41 
15 5.52 6.07 5.46 5.92 
20 6.84 8.73 5.78 7.21 

 
Table II. MAE values provided with the selected simulated DR-related methods, p = 1, 2. 

SNR 
(dB) 

MAE(p); p = 1,2 
SCENARIO 

(with Gaussian noise): 
κr = 6,  κa = 15 

SCENARIO 
(with Composite noise): 

κr = 6,  κa = 15 
CLS WCLS CLS WCLS 

5 18.09 15.40 18.72 17.38 
10 15.35 14.68 18.13 16.81 
15 13.67 12.94 16.31 13.51 
20 12.53 11.73 15.35 12.40 

 
From the analysis of the simulation results, one may deduce that, the WCLS method over-
performs the robust CLS in all simulated scenarios. The higher values of IOSNR as well as 
lower values of MAE were obtained with the robust deterministic DR-related estimators. 
Note that IOSNR (9) is basically a square-type error metric; thus, it does not qualify 
quantitatively the “delicate” visual features in the reconstructed images, hence, small 
differences in the corresponding IOSNRs reported in Table I. Also, the enhanced 
deterministic DR estimators manifest the higher IOSNRs and lower MAEs in the case of 
higher SNR (see Table II for MAE metrics). 
 
 
5.2 HW Performance Analysis 
 
In this section, we complete our study with the comparative performance analysis of the 
proposed coprocessors for performing the reconstructive matrix operations of the 
CLS/WCLS algorithms, correspondingly. The synthesis metrics related to the 
implementation of the proposed SA for the reconstructive SP matrix multiplication 
operation are summarized in Table III and table IV. These metrics specify the area and time 
behavior of the selected hardware core. 
 
 

 



Table III. Synthesis Metrics 
Area of the SA 

Logic Utilization* 
Slice Registers, Flip Flops and Latches 6% 
LUTs, Logic, Shift Reg. and Dual-RAMs 5% 
BUFGs 8% 
DSP48 15% 
*The reference area is Xilinx Virtex-4 XC4VSX35-10ff668. 

 

     In Table III, we report the synthesis results evaluated for different metrics that are 
indicative of the efficiency of the proposed SA architecture. The exemplified test case of a 
4×4 data matrix was considered. In Figure 8, we report the resource utilization of the 
proposed systolic hardware architecture designs for different numbers of processors 
elements (PEs).  

 

 
Figure 8. Resource utilization varying the number of PEs. 

 
Next, the overall time performance gain achieved with the proposed approach are reported 
in Table IV. 

Table IV. Time Performance 
*Time Performance of the SA 

Maximum Pin delay: 8.69ns 
Average connection delay on the 10 worst nets: 8.35 ns 
Maximum Frequency 115.3 MHz 

*The reference system clock corresponds to the Xilinx Virtex-4 XC4VSX35-10ff668. 
 
 
With the n×n matrix-matrix multiplication systolic architecture developed in this study, the 
most time consuming operations required only 3n-2 clock cycles and the area occupied 386 
slices for data precision of 32-b (e.g., considering the same n=4 test case). Other alternative 
implementations for systolic matrix multiplication were presented in [26]−[28]. In [26], the 
systolic matrix multiplication design occupied an area of 110 slices (i.e., data precision of 
8-b) with the corresponding processing time of n2+3n+2 clock cycles. Mencer et al. in [27] 
presented the matrix multiplication architecture with an area performance of 954 slices for 
data precision of 8-b. An alternative matrix multiplication systolic architecture was also 
proposed in [28], which approached a total time of n2+2n clock cycles and 54,500 slices for 
the data precision of 64-b. As it is easy to deduce from the area-time comparative analysis 



with all those alternatives implementations, the proposed systolic architectures for 
performing the matrix multiplication manifest the best area-time trade-off performance. 
 
Last, we compared the required processing time for two different implementation 
techniques as reported in Table V. In the first case, the reference deterministic DR 
procedure for the CLS and WCLS algorithms were implemented in the conventional 
MATLAB software in a personal computer (PC) running at 1.73GHz with a Pentium (M) 
processor and 1GB of RAM memory and in the second case, the same DR-related 
algorithms were implemented using the proposed FPGA based HW/SW co-design 
architecture (partitioning the Matlab application in SW and HW functions) employed in the 
Xilinx FPGA XC4VSX35-10ff668. 
 

 

TABLE IV. Comparative Processing Time Study  

Method Processing Time [secs] 
CLS WCLS 

Reference PC-based  
Deterministic Descriptive Regularization  20.3 20.7 

Proposed HW/SW Co-design  3.12 3.26 
 
Analyzing the reported results one may deduce the following. FPGA based HW/SW co-
design architecture manifests the (near) real time high-resolution reconstruction of the RS 
imagery. The implementation of the proposed HW/SW co-design architecture helps to 
reduce the overall processing time. Particularly, the proposed implementation of the 
deterministic DR WCLS algorithm with systolic arrays takes only 3.26 seconds for the 
image reconstruction. This new architecture implementation reduces the overall processing 
time approximately 6 times less than the reference implementation MATLAB-PC-based 
form the DR-related algorithm. 
 
 
6. CONCLUSION 
 
In this paper, we have proposed the aggregation of the deterministic descriptive 
regularization and the HW/SW co-design methods particularly adapted for the 
enhancement/reconstruction of RS imagery. The unified deterministic DR-HW/SW co-
design approach using efficient hardware systolic arrays as coprocessors have achieved the 
(near) real time RS requirements. At the algorithmic level, we present the quantitative 
performances gained via the proposed quality metrics of the unified deterministic DR-
HW/SW co-design approach using the corresponding computational recipes. The 
processing time gain of the unified algorithmic (software-level) and systematic (hardware-
level) co-design approach was achieved via partitioning all the important functions related 
to the specific problem into hardware units (i.e. systolic arrays co-processors) and software 
application in the embedded processor, i.e. the processing time of the deterministic DR-
related CLS/WCLS algorithms were significantly reduced up to six times of the overall 
computation time. We do believe that pursuing the addressed HW/SW co-design paradigm 
one could approach definitely the (near) real time RS image processing requirements while 
performing the post-processing of the large-scale real-world RS imagery attaining the 
enhancement/reconstruction performance gains close to the limiting bounds. 
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