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UDC 621.396.965 
AGGREGATION OF ROBUST REGULARIZATION WITH DYNAMIC FILTRATION 
FOR ENHANCED RADAR IMAGING  

 
Yuriy V. SHKVARKO, Ivan E. VILLALON-TURRUBIATES and Jose L. LEYVA-MONTIEL 
 
 

The paper suggest a novel approach to the problem of high-resolution array radar/SAR imaging as an ill-conditioned 
inverse spatial spectrum pattern (SSP) estimation problem with model uncertainties. We explain the theory recently 
developed by the authors of this presentation that addresses a new fused Bayesian-regularization paradigm for 
radar/SAR image formation/reconstruction. We show how this theory leads to new adaptive and robustified 
computational methods that enable one to derive efficient and consistent estimates of the SSP via unifying the 
Bayesian minimum risk estimation strategy with the ME randomized a priori image model and other projection-type 
regularization constraints imposed on the solution. We detail such fused Bayesian-regularization (FBR) paradigm 
and analyze some efficient numerical schemes for computational implementation of the relevant FBR-based 
methods. Also, we present the results of extended simulation study of the family of the radar image (RI) formation 
algorithms that employ the proposed FBR paradigm for high-resolution reconstruction of the SSP of the wavefield 
sources distributed in the remotely sensed environment. The last issue that we address as a perspective innovation is 
a paradigm of incorporating the concept of dynamic computing into the FBR-based technique to enable the latter to 
reconstruct the desired environmental remote sensing signatures (RSS) extracted from the enhanced imagery taking 
into account their dynamical behaviour. This provides a background for understanding the future trends in 
development of intelligent dynamic RS imaging and resource management techniques. The advantages of the well 
designed RI experiments (that employ the FBR-based methods) over the cases of poorer designed experiments (that 
employ the matched spatial filtering as well as the constrained least squares estimators) are investigated trough the 
simulation study. 

 
 

1. INTRODUCTION 
 

The goal of this presentation is to address and discuss a 
new approach to high-resolution radar/SAR imaging as an 
ill-conditioned inverse problem of estimating the spatial 
spectrum pattern (SSP) of the wavefield sources scattered 
from the probing surface (referred to as the radar/SAR 
image). We explain the theory recently developed by the 
authors of this presentation [4] – [13] that addresses a new 
fused Bayesian-regularization (FBR) paradigm for 
enhanced radar/SAR image formation/ reconstruction. We 
show how to derive the efficient and consistent estimates of 
the SSP via unifying the Bayesian minimum risk estimation 
strategy [2] with the ME randomized a priori image model 
and other projection-type regularization constraints imposed 
on the solution [3], [5]. The principal innovative 
contribution of this study may be briefly sumarized as 
follows: 
1. Development of the grounded statistical randomized 
model of the radar/SAR imaging experiment via combining 
the maximum entropy (ME) principle of information theory 
and regularization concept for alleviating the ill-poseness of 
the nonlinear inverse problem of estimating the SSP of the 
wavefield scattered from the probing surface via processing 
the finite number of the sampled recordings of the  
radar/SAR data signals. 
2. Design of a technique for optimal solution of such 
nonlinear SSP estimation inverse problem in a concise 

algorithmic form, optimal being considered in the fused 
Bayesian-regularization setting.  

Having addressed the FBR method, we then discuss 
some new efficient numerical schemes for implementing the 
FBR-related techniques that are indicative of the 
computational advances in unifying the Bayesian and 
regularization paradigms for enhanced radar/SAR imaging. 
The FBR methodology is based on the aggregation of the 
Bayesian minimum risk statistical optimal estimation 
strategy [1], [2], [7] with the descriptive weighted 
constrained least squares optimization technique [1] that 
involves the non trivial a priori information on the desired 
properties of the SSP to be reconstructed from the actually 
measured data signals. Those may employ the specific 
metrics properties of the image space, boundary value 
conditions, calibration constraints, bench marks on the 
image scene [1], [3], [8], etc. In the applications related to 
passive and active radar remote sensing (RS), the unified 
FBR method was  conceptually developed in our previous 
studies [4] – [13].  

Also, we are going to present the results of extended 
simulation studies of the family of the FBR-based SSP 
estimation algorithms tested in the framework of the RI 
formation/reconstruction experiment. The use of MATLAB 
as simulation tools provided the computational efficiency 
and flexibility in performing all simulation experiments.  

The family of the FBR-based SSP estimation (RI 
reconstruction) techniques that we investigate in this study 
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trough computer simulations comprises the following basic 
estimators:  

 
1. The simplest matched spatial filtering (MSF) algorithm 
for RI formation. 
2. The descriptive constrained least squares (CLS) RI 
reconstruction algorithm. 
3. The modified descriptive weighted constrained least 
squares (WCLS) algorithm. 
4. The adaptive spatial filtering (ASF) algorithm. 
5. The general FBR estimator for the SSP and its robustified 
version (RFBR). 
6. The aggregated FBR-MVDR algorithm for reconstructive 
RS imagery. 
 

The aim of the simulation experiment was to investigate 
the performances of these above listed six FBR-based SSP 
estimators. 
 

2. ENHANCED RADAR IMAGING - A REVIEW 
 

The SSP estimation problem is a statistical ill-
conditioned nonlinear inverse problem [4], [5]. Because of 
the stochastic nature and nonlinearity, no unique regular 
method exists for reconstructing the SSP from the finite-
dimensional measurement data in an analytic closed form. 
Hence, the particular solution strategy to be developed and 
applied must unify the practical data observation method 
with some form of statistical regularization that incorporates 
the a priori model knowledge about the SSP to alleviate the 
problem ill-poseness.  

The classical imaging with radar or SAR implies 
application of the method called “matched spatial filtering” 
(MSF) that originates from the celebrated maximum 
likelihood (ML) estimation strategy [2] to process the 
recorded data signals. In the statistical terms [2], [4], such a 
method implies application of the adjoint SFO to the 
recorded data, computation of the squared norm of a filter 
outputs and their averaging over the actually recorded 
samples (the so-called snapshots [2]) of the independent 
data observations.  

As it was analyzed in many works, e.g. [1] – [13], the 
MSF method does not exploit all the “degrees of freedom” 
of the problem at hand, thus manifests low spatial resolution 
performances.  The recent approaches to high-resolution 
enhanced radar/SAR imaging are based on treatment the 
problem at hand as an ill-posed nonlinear inverse problem 
with model uncertainties [4] – [13].  The principal idea is to 
fuse the statistical Bayesian minimum risk and descriptive 
regularization-based paradigms to resolve the SSP 
estimation inverse problem with minimum risk (i.e. 
maximum spatial resolution) subject to non-trivial ME and 
other projection-type constraints imposed on the solution 
(i.e. incorporate the a priori model information with 
minimum subjective decision making).  

 
 

3. PROBLEM MODEL 
 

In radar imaging [1], [3] the backscattered field of the 
remotely sensed/probing surface X ∋ x is modeled by 
imposing its time invariant complex scattering function e(x) 
over the object scene X ∋ x. The measurement data 
wavefield u(y) = s(y) + n(y) consists of the echo signals  s  
and additive noise  n, and is available for observations and 
recordings within the prescribed time-space observation 
domain Y = T×P, where y = (t, p)T defines the time-space 
points in Y. The model of the observation wavefield  u is 
defined by specifying the stochastic equation of observation 
of an operator form [4]: u=Se+n; e ∈ E; u,   n ∈ U; S: E  → 
U, in the Gilbert signal spaces E and U with the metric 
structures induced by the inner products,  

[u1, u2]U = 1 2( ) ( )
Y

u u d∗∫ y y y , 

and  
[e1, e2]E = 1 2( ) ( )

X

e e d∗∫ x x x , 

respectively. All the fields e, n, u are assumed to be zero-
mean complex valued Gaussian random fields. Next, we 
assume an incoherent nature of the backscattered field ( )e x . 
This is naturally inherent to the radar imaging experiments 
[1], [3] and leads to the δ -form of the object field 
correlation function, Re(x1,x2) = B(x1)δ(x1– x2), where  e(x)  
and  B(x) = <|e(x)|2> are referred to as a random complex 
scattering function of the probing surface and its average 
power scattering function or spatial spectrum pattern (SSP), 
respectively.  

The problem of enhanced radar/SAR imaging is to 
develop a data processing method for performing the high 
efficient estimation of the SSP B(x) as a function of the 
probing surface X ∋ x by processing the available data 
wavefield recordings u(y) measured over the AA/SA 
trajectory Y ∋ y. Such the estimate )(ˆ xB of the SSP B(x) is 
referred to as the desired enhanced radar/SAR image of the 
probing surface [4].  

In the conventional vector form, the estimate  B̂  of the 
vectorized SSP model defines the desired discrete-form 
image of the remotely sensed scene in the adopted pixel 
image format [3]. The vector-form data is modeled by the 
equation of observation  

U = SE + N ( 1 ) 
where E is the original K-D vector of the discrete-form 
approximation of the random complex object scattering 
function (SF) e(x), the K-by-M matrix S is referred to as the 
linear signal formation operator (SFO) and N represents the 
observation noise vector (in this study, we accept the robust 
white noise model, i.e. 1−

NR  = (1/N0)I, with the noise 
intensity N0 pre-estimated by some means [4]. The vector-
form approximation of the SSP relates to the original 
complex random SF vector E as [4], [7], B={<EE+>}diag  .  
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4. FBR METHOD – AN OVERVIEW  
 

The general FBR method for enhanced AA/SAR 
imaging developed in [4], [5], [8] comprise two following 
estimators.  
 
4.1 Iterative Adaptive Spatial Filtering (ASF) Estimator 
of the SSP  
 
Defined as follows [4] 

    ASFB̂  →  )1(ˆ +iB  = )(ˆ iB  + ζ(W[V( )(ˆ iB ) –     

                                Z∑( )(ˆ iB )] – ( )(ˆ iB  – Bpr)) 
( 2 ) 

with the initial iteration )0(B̂  taken as some prior model of 
the SSP, e.g. )0(B̂  = Bpr, where superscript i = 0, 1, 2, … 
represents the iteration step number, ζ is the relaxation 
parameter, and  

Z∑( )(ˆ iB ) = T( )(ˆ iB )B0 + Z( )(ˆ iB ) ( 3 ) 
 
defines the total shift to the sufficient statistics (SS)  at the 
ith iteration. In (2), 

V = {FUU+F+)}diag ( 4 ) 
represents the vector of smooth SS that is formed applying 
the SS formation operator  

F = F(B) = D(B) (I + S+ 1−
NR SD(B))–1S+ 1−

NR  ( 5 ) 
 
to the trajectory data U. Also in (3), 

Z = Z(B) = {FRNF+ }diag ( 6 ) 
is the bias vector, T  = diag{{S+F+FS}diag}, and 

W = PΩ ( 7 ) 
 
defines the window operator: a composition of the 
smoothing filter Ω and the projector P onto the proper 
solution space, which must be designed to aggregate the 
corresponding metrics and projection constraints imposed 
on the solution (see [4], [5], [9] for details). 
 
4.2 Robust Spatial Filtering (RSF) estimator  
 

RSFB̂  =  ΩV ( 8 ) 
That relates to (2) as its robustified version for the case of 
trivial priors, Bpr = 0, P = I, and solution independent 
approximation  

F = (I + ρ–1S+S)–1S+ ( 9 ) 
of the SS formation operator with the inverse ρ–1  of the 
SNR ρ = β/N0 as a regularization parameter, where β 
represents the image average gray level preestimated  by 
some means [4]. 
 
4.3 Matched spatial filtering (MSF) estimator  
 
This represents the further simplification of the RSF [1]. 
Adopting the trivial a priori model information (P = I and  
Bpr = 0) and roughly approximating the SS formation 
operator F by the adjoint SFO, i.e. F ≈ γ0S+ (where the 
normalizing constant γ0 provides balance of the operator 

norms 2
0γ tr{S+SS+S}=tr{FSS+F+}), the (8) can be 

simplified to the classical MSF estimator 
MSFB̂  = Ω H , ( 10 ) 

where the rough SS,  H = 2
0γ {S+UU+S }diag , is now formed 

applying the adjoint operator S+, and the windowing of the 
rough SS H is performed applying the smoothing filter Ω 
that was constructed numerically in [4], [5], the MSF 
algorithm (10) coincides with the conventional aperture 
synthesis procedure [2], [3] with the matched filtering of the 
array/trajectory signal as the data processing method, 
whereas, the RSF and ASF estimators (8) and (2), 
respectively, may be referred to as the enhanced imaging 
algorithms that provide the image improvement/ 
reconstruction with respect to that formed using the 
conventional MSF method.   
 

5. SUMMARY OF THE FBR-BASED SSP 
ESTIMATORS 

 
The family of the SSP estimation (reconstruction) 
algorithms that employ the FBR technique originally 
proposed in [1], [4], and developed further in [9] comprises 
the following estimators.  
 
5.1 General FBR estimator of the SSP  
 
Defined as follows,  

FBRB̂  = {FYF+}diag   

            = KA,αS+ 1−
NR Y 1−

NR SKA,α}diag   
            = {KA,α

Jj∈
aver {Q(j)Q+

(j)}KA,α}diag , 
( 11 ) 

where  
F = KA,αS+ 1−

NR  
this is the FBR-optimized Image Formation Operator (IFO) 
in which 

KA,α  = (S+ 1−
NR S + αA–1)–1 

represents the so-called reconstructive operator where α is 
the regularization parameter and A is the weight matrix. 
Parameter  α and matrix A comprise the regularization 
degrees of freedom of the general FBR estimator (11),  

FBRB̂  = { D̂ }diag ( 12 ) 
defines the estimate of the K-D SSP vector B={<EE+>}diag   
and 

Y = 
Jj∈

aver {U(j)U+
(j)} = UR̂  ( 13 ) 

is the estimate of the M-by-M data correlation matrix. Here, 
U(j) represents the jth realization of the M-D complex 
measurement data vector  specified by (1). Also, in (11),  

Q(j) = {S+ 1−
NR U(j)} ( 14 ) 

defines an output of the matched spatial filtering (MSF) 
algorithm with noise whitening. The robustified version 
(RFBR) of the general FBR estimator (11) is constructed as 
an iterative scheme for solving (1) with respect to B with 
optimally adjusted A = 1ˆ −D  [4]. While performing the 
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iterations, A(i) at the current iteration i = 0, 1, …  is 
approximated by the estimate 1ˆ −D obtained at the previous 
iteration with the initial guess 0D̂ = B0I , i.e. approximated  
by the average gray level B0 in all image pixels [6], [10].  
 
5.2 Descriptive Constrained Least Squares (CLS) 
estimator  
 
Is constructed as modification of (11) for the following re-
adjustments: A = I and α = N0/B0, i.e. the inverse of the 
signal-to-noise ratio (SNR), where B0 is the prior average 
gray level of the SSP. In that case, the IFO F is recognized 
to be the Tikhonov's CLS spatial filter 

FCLS  = (S+S + α I )–1S+. ( 15 ) 
 
5.3 Descriptive Weighted Constrained Least Squares 
(WCLS) estimator  
 
Is constructed as a modified version of (15) for the 
following re-adjustments of the degrees of freedom: A=MB; 
α=N0/B0,  

FWCLS  = (S+S + α MB)–1S+ ( 16 ) 
 
where MB represents the Tikhonov’s stabilizer of the second 
order constructed numerically in [4].                  
 
5.4 Matched spatial filtering (MSF)  
 
SSP estimation algorithm is given by the simplified version 
of (15) for an assumption, α >> ||S+S||, which yields  

FMSF  ≈  const ⋅ S+, ( 17 ) 
hence, the rough MSF image is formed applying the adjoint 
SFO  S+ .  
 
5.5 Adaptive spatial filtering (ASF) algorithm  
 
Is constructed as modification of (11) for the case of an 
arbitrary zero-mean noise with the correlation matrix RN, 
the equal importance of the systematic and noise error 
measures [1], i.e. α  = 1, and the solution dependent weight 
matrix  A = 1ˆ −D . In this case, the IFO is recognized to be 
the adaptive spatial filter 

FASF = (S+ 1−
NR S + 1ˆ −D )–1S+ 1−

NR .   ( 18 ) 
 
5.6 Aggregated FBR-MVDR estimator  
 
Constructed as MVDRFBR−B̂ ={FFBR-MVDRYF+

FBR-MVDR}diag 
with the IFO given by [4]  

FFBR-MVDR = (S+S + N0
1ˆ −D )–1S+ . ( 19 ) 

Such FFBR-MVDR is recognized to be the IFO that 
minimizes the Bayesian risk [4], [11] of estimates B̂ . 

It is obvious that the MVDR, ASF and RFBR estimators 
may be considered as particular cases of the uniform FBR 
image formation algorithm (11) under the model 
assumptions specified above.  

Hence, by controlling the regularization degrees of 
freedom, A, α, one can proceed from the general FBR 
estimator (11) to the variety of different image formation 
algorithms, from the simplest matched spatial filtering to 
the adaptive beamforming techniques.  

 
6. TOWARDS DYNAMICAL COMPUTING FOR 

RECONSTRUCTION 
 
6.1 RSS linear dynamic model 
The crucial issue in application of the modern dynamic 
filter theory [8], [9], [13] to the problem of reconstruction of 
the desired RRS in current time is related to modeling of the 
RSS as a random field (i.e. spatial map developing in time t) 
that satisfies some dynamical state equation. Following the 
typical linear assumptions for development of the RSS in 
time [8], [13], we represent its dynamical model in a 
vectorized space-time form defined via the following 
stochastic differential state equation of the first order 
 

)()()( tt
dt

td GξFzz
+=    ,        )()( tt CzΛ =  ( 20 ) 

where z(t) is the so-called model state vector; C defines a 
linear operator that introduces the relation between the RSS 

)(tΛ  and the state vector z(t), and ξ (t) represents the white 
model generation noise vector characterized by the 
statistics, 0ξ =)(t  and )'()()'()( ttttt T −= δξPξξ  [8]. 

Here, Pξ(t) is referred to as state model disperse matrix [8] 
that characterizes the dynamics of the state variances 
developed in a continuous time  t ( tt →0 ) starting from the 
initial instant 0t .  

Next, the dynamic model equation that states the relation 
between the time-dependent SSP (actual scene image) B(t) 
and the desired RSS map )(tΛ can be represented as [8] 

);()()()()()(ˆ tttttt νzHνLCzB +=+=           
LCH =)(t . 

( 21 ) 

Here, we introduced the linearized approximation L (i.e. 
first order matrix-form approximation [13] to the inverse of 
the RSS operator Λ( B̂ (r)) and generalized (21) for the case 
of dynamical (i.e. time-dependent) RSS and SSP models. 
The stochastic differential model (20), (21) allows now to 
apply the theory of dynamical filters [8], [9], [13] to 
reconstruct the desired RRS in current time incorporating 
the a priori model dynamical information about the RSS. 
The aim of the dynamic filtration is to find an optimal 
estimate of the desired RSS, )(ˆ)(ˆ tt zCΛ = , developed in 
current time, t ( tt →0 ), via processing the reconstructed 
image vector )(ˆ tB (i.e. the reconstructed SSP developed in 
time) taking into considerations the a-priori dynamic model 
of the desired RSS specified through the state equation (20).  

In other words, one have to design an optimal dynamic 
filter that when applied to the reconstructed image 

)(ˆ tB (specified by the dynamic image model (21)) provides 
the optimal estimation of the desired RSS map 
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)(ˆ)(ˆ tt zCΛ = , in which the state vector estimate )(ˆ tz  
satisfies the a-priori dynamic behavior modeled by the 
stochastic dynamic state equation (20). The canonical 
discrete-time solution to (20) in state variables is [9], [13] 

)()(
),()()()()1(

ii
iiiii

CzΛ
xΓzΦz

=
+=+

 ( 22 ) 

 
where IFΦ +Δ= tti i )()( ; tti i Δ= )()( GΓ , and tΔ  
represents the time sampling interval for dynamical 
modeling of the RSS in discrete time. Next, we specify the 
statistical characteristics of the a-priori information in such 
a discrete time scale [8]. These are as follows: 
 
- generating noise model  

{ )(iξ }: 0ξ =)(i ;  ),()()( jiji T
ξPξξ = ;          (23) 

- data noise  
{ )(iν }: 0ν =)(k ; ),()()( jiji T

νPνν = ;          (24) 

- state vector  
{z(k)}: )0()0( zmz = ; )0()0()0( zPzz =T      (25) 

 
where 0 argument implies the initial state for initial time 
instant, i = 0. For such model conventions, the disperse 
matrix Pz(0) satisfies the following disperse dynamic 
equation [13] 

)1()1()1( ++=+ iii TzzPz  

)()()()()()( iiiiii TT ΓPΓΦPΦ ξz += . 
( 26 ) 

 
6.2 Dynamic RSS reconstruction 
 
The problem now is to design an optimal decision 
procedure (optimal filter) that, when applied to all 
reconstructed images { )(ˆ iB } (ordered in a discrete time i, 
( ii →0 )), provides an optimal solution to the desired RSS 

)(iΛ  represented via the estimate of the state vector state 
vector z(i) subject to the numerical dynamic model (19). To 
proceed with derivation of such a filter, we first represent 
the state equation (22) in discrete time i, ( ii →0 ): 

)()()()()1( iiiii ξΓzΦz +=+ . ( 27 ) 
 
Next, according to this dynamical model, the anticipated 
mean value for the state vector can be expressed as 

)(ˆ)1()1()1( iiii zzzmz +=+=+ . ( 28 ) 
 
The mz(i+1) is considered as the a-priori conditional mean-
value of the state vector for the (i+1)st estimation step, thus 
from (27), (28) we obtain 

)()(ˆ),...,1(ˆ),0(ˆ)()1( iiii ξΓBBBzΦmz +=+  

                 )(ˆ izΦ= , 
( 29 ) 

and the prognosis of the mean-value becomes, 
)(ˆ)1( ii zΦmz =+ . From (27)…(29) one may deduce that 

given the fact that the particular reconstructed image )(ˆ iB  
is treated at discrete time i, it makes the previous 
reconstructions { )1(ˆ),...,1(ˆ),0(ˆ −iBBB } irrelevant, hence the 
optimal filtering strategy is reduced to the dynamical one-
step predictor.  

Thus, using these derivations, we next modify the 
dynamical estimation strategy to such one-step optimal 
prediction procedure as follows, 

 
)1(ˆ),(ˆ),...,1(ˆ),0(ˆ)1()1(ˆ ++=+ iiii BBBBzz  

)1();1(ˆ)1()1(ˆ);(ˆ)1( +++=++= iiiiii zmBzBzz . ( 30 ) 

 
Hence, for the current (i+1)-st discrete-time prediction-
estimation step, the dynamical RSS estimate (21) becomes 

)1()1()1()1(ˆ ++++=+ iiii νzHB  ( 31 ) 
with the a-priori predicted mean (28) for the desired state 
vector.  

Applying now the Wiener minimum risk strategy [13] to 
solve (31) with respect to the state vector z(t) and taking 
into account the a priori information summarized by 
(23)…(25), the dynamic solution for the RSS state vector is 

++=+ )1()1(ˆ ii zmz  
[ ])1()1()1(ˆ)1( ++−+++ iiii zmHBΣ  

( 32 ) 

where the desired dynamic filter operator )1( +iΣ  is 
defined as follows, 
 

)1()1()1()1( 1 +++=+ − iiii T
νΣ PHKΣ ; 

[ ] 11 )1()1()1(
−− +++=+ iii zΣΣ PΨK ; 

)1()1()1()1( 1 +++=+ − iiii T HPHΨ νΣ . 

( 33 ) 

( 34 ) 

( 35 ) 

 
Last, using the derived filter equations (32), (35) and the 
initial RSS state model given by (22), we finally obtain the 
optimal filtering procedure for dynamic reconstruction of 
the desired RSS map in the current discrete time 
 

+=+ )(ˆ)()1(ˆ iii zΦΛ  
[ ])(ˆ)()1()1(ˆ)1( iiiii zΦHBΣ +−+++ ; 

i = 0, 1, … 
( 36 ) 

 
with the initial condition, { })0(ˆ)0(ˆ BΛ Λ= , and a priori 
statistics specified by (23)…(25).  

Figure 1 shows the information flow diagram that 
illustrates the overall fused procedure for RSS 
reconstruction and dynamic filtration. As a primary part, the 
SSP image reconstruction is to be performed. Next, the 
desired particular RSS map is to be reconstructed in a 
dynamic fashion.  

The crucial issue to note here is related to model 
uncertainties regarding the particular employed dynamical 
RSS model (22), hence the corresponding uncertainties 
regarding the overall dynamically reconstructed RSS.  
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Multi-Sensors Images Acquisition and Reconstructive Processing 

 
  

Images Reconstruction 
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Fig. 1. Block diagrams of the image and RSS reconstruction and dynamical post-processing techniques. 
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SNR, 
μ 

FIRST SYSTEM, 
ΔΨa = 16 

 

SECOND SYSTEM, 
ΔΨa = 32 

 
 

[dB] 
IOSNR (RSF) 

[dB] 
IOSNR (ASF) 

[dB] 
IOSNR (RSF) 

[dB] 
IOSNR (ASF)

[dB] 
15 2.24 3.20 2.62 3.89 
20 3.34 4.32 4.47 5.78 
25 4.20 5.12 5.31 7.42 
30 5.55 6.24 6.45 9.19 

Table 1. IOSNR Values 
 

7. QUALITY METRIC 
 

For the purpose of objectively testing the performances 
of different FBR-related SSP estimation algorithms, a 
quantitative evaluation of the improvement in the estimates 
(gained due to applying the suboptimal and optimal IFOs  
F(RSF) and F(ASF)  (instead of the adjoint operator F(MSF) = S+) 
was accomplished. In analogy to image reconstruction [5] 
we use the quality metric defined as an improvement in the 
output signal-to-noise ratio [9] 

 

IOSNR(RSF/ASF) = 10 log10 
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8.   COMPUTER SIMULATIONS 
 

In the simulations, we investigated the performances of 
the family of all the FBR-based methods summarized above 
in their applications to reconstructive RS imagery. We 
simulated conventional side-looking imaging radar (i.e. the 
radar array was constructed by the moving antenna as in 
[6]) with the SFO factored along two axes in the imaging 
plain. In the range direction (over the vertical axis), the 
radar ambiguity function was approximated by a triangular 
shape pulse [3] of three pixels width at a half-maximum 
level and in the azimuth direction (over the horizontal axis) 
the ambiguity function was approximated by a Gaussian 
bell of 8 pixels width [6], [13]. Figure 2 presents the initial 
image of the reported here scene formed applying the MSF 
method, i.e. MSFB̂ , contaminated with 8% additive white 
noise. All other images correspond to different 
reconstructive FBR-based methods as specified in the 
corresponding figure captions. 

The Table 1 shows the IOSNR values provided with  two 
of the simulated methods: RSF and ASF, i.e. FBR-MVDR. 
The results are reported for two SAR system models with 
different resolution parameters and different SNR. 

Next, in Figures 8.a, 8.c and 8.e, we present some 
simulation results of dynamic reconstruction-filtration of a 
particular RSS that represents the so-called integral 
hydrological index (IHI) map extracted from the 
reconstructed images [9]. The particular reported 
simulations are specified in the figure captions. The IHI 

map is extracted from the original brightness reconstructed 
image applying the truncated (two-edge) histogram filter 
operator with the empirically adjusted lower threshold thL 
and upper threshold thU [9].  Within the truncation interval 
(thU – thL), the IHI extraction operator provides 
homogeneous translation of the scaled reconstructed images 
{ B̂ } in to the RSS map {Λ } [9], [13]. Also, in Figures 
8.b, 8.d and 8.f, we present the simulation results of the 
dynamic behavior of the IHI maps extracted/filtered from 
the ASF-reconstructed SSP image, RSF and FBR-MVDR 
reconstructed images, respectively. The reported filtered 
IHIs are indicative of the dynamical behavior of the RSS. 
The IHI map dynamics are well detailed in both reported 
simulation experiments. Also, the dynamical 
reconstructions performed iteratively applying the algorithm 
(36) resulted in the processing with substantial reduced 
computational load. The reported results qualitatively 
demonstrate that with proper adjustment of the degrees of 
freedom in the general algorithm (36), one could predict the 
dynamic behavior of the IHI maps. The detailed 
investigation of the prediction methodology is a matter of 
the further studies. 
 

9. DISCUSSIONS AND CONCLUSION 
 

In this study, we addressed the new fused Bayesian-
regularization (FBR) paradigm for estimating the SSP that 
combines the Bayesian inference strategy with the 
descriptive regularization techniques. With this method, we 
presented the FBR-based interpretation of the conventional 
matched spatial filtering and new recently developed RSF 
and ASF techniques that manifest the enhanced resolution 
performances of the remotely sensed environmental images. 
Also, we examined the behaviour and performances of a 
family of the recently developed FBR-based SSP estimators 
in application to the reconstructive RS imagery. The 
advantages of the well designed RI experiments (that 
employ the FBR, ASF and FBR-MVDR algorithms) over 
the cases of poorer designed experiments (that employ the 
MSF, CLS and WCLS methods) were investigated and 
reported here for one test scene borrowed from the real-
world RS imagery.  

These results qualitatively demonstrate that with some 
proper adjustment of the degrees of freedom of the 
robustified FBR-based techniques (i.e. the RFBR, ASF and 
FBR-MVDR), one could approach the quality of the 
statistically optimal general FBR method avoiding the 
cumbersome adaptive computations. The resolution is 
substantially improved for the cases when any of three 
techniques (RFBR, ASF and FBR-MVDR) was applied to 
enhance the RS images, i.e. regions of interest are much 
better defined, and ringing effects are within the acceptable 
tolerance level. The iterative RFBR and the FBR-MVDR 
techniques somewhat overperform the ASF algorithm but 
require almost 10 times more computations than the ASF 
algorithm.  
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Fig. 2. Rough Image formed applying the matched spatial 
filtering (MSF) technique. 

Fig. 3. Enhanced radar image formed applying the descriptive 
constrained least squares (CLS) algorithm. 

Fig. 4. Enhanced radar image formed applying the modified 
descriptive weighted constrained least squares (WCLS). 

Fig. 5. Enhanced radar image formed applying the adaptive 
spatial filtering (ASF) algorithm. 

Fig. 6. Enhances radar image formed applying the robust FBR 
estimator. 

Fig. 7. Enhances radar image formed using the aggregated 
FBR-MVDR algorithm. 
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(a) Integral Hydrological Index (IHI) map  
extracted from the reconstructed figure 5 

 

(b) Dynamics for a particular zone of the IHI map 
 extracted from figure 8(a) 
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(c) Integral Hydrological Index (IHI) map  
extracted from the reconstructed figure 6 

 

(d) Dynamics for the same particular zone of the IHI map  
extracted from figure 8(c) 
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(e) Integral Hydrological Index (IHI) map  
extracted from the reconstructed figure 7 

(f) Dynamics for the same particular zone of the IHI map 
 extracted from figure 8(e) 

Fig. 8. Simulation results of post-processing and dynamical filtration of the RSS using SAR data 
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The optimization of the adjustments of the regularization 
degrees of freedom could further enhance the performances 
of all three reported methods and reduce the computational 
load. Such optimization is a matter of the further studies. 
Also, as a matter for perspective study, we have addressed 
the dynamical RSS post-processing scheme that reveals 
some possible approach toward a new dynamic 
computational paradigm for high-resolution fused numerical 
reconstruction and filtration of different RSS maps in 
current time. In future work, we intend to develop a family 
of such dynamical versions of the FBR-based algorithms for 
updating the relevant RSS maps in current discrete time. 
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