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Structural Sequence Detectability in Free Choice
Interpreted Petri Nets

Saúl-Alonso Nuño-Sánchez, Antonio Ramı́rez-Treviño, Javier

Ruiz-León, Member, IEEE,

Abstract—This paper is concerned with the structural sequence de-
tectability problem in Free Choice Interpreted Petri nets, i.e. with the
possibility of recovering the firing transition sequence in Free Choice
Interpreted Petri nets using the output information when the initial
marking is unknown. Based on the Free Choice Interpreted Petri
net structure, three relationships are proposed which are devoted to
capture the confusion over the transitions. These relationships depend on
interpreted Petri nets structures such as T−invariants, P−Invariants,
attribution and distribution places. Thus, the approach herein presented
exploits the interpreted Petri nets structural information in order to
determine the structural sequence detectability of an interpreted Petri
net.

Keywords: Petri Nets, Structural Sequence Detectability.

I. INTRODUCTION

Discrete Event Systems (DES’s) have deserved a lot of attention by

the scientific community since they can model the discrete behavior of

robotic systems, supply chains, transport systems, digital communica-

tion systems, information systems, etc. The study of several properties

has been reported in the literature. For instance, fault diagnosis is

addressed in [5], [9], [3], [2], [10]; controllability is studied in [6],

[7], [13]; observability in [1], [16],[11] and identification is presented

in [12], among other properties that are reported in the literature. The

characterization of the previous mentioned properties relies on the

event sequence reconstruction, using for this purpose the information

provided by the system sensors (herein named the output Petri net
information). Thus the reconstruction of firing transition sequences

using the output Petri net information is an important problem

because it allows enlarging the class of diagnosable, observable, or

identifiable Petri nets that can be characterized.

A similar property, named invertibility has been studied in finite

state automata (FA) [15], where the event sequence is reconstructed

after the occurrence of certain events and then it is lost again. Thus

invertibility is a kind of resilient structural sequence detectability.
Also structural sequence detectability was addressed in [17]. That

work, however, is focused on Petri nets (PN ) where the initial state

is known and observable places cannot generate the same output

information.

We deal in this work with the sequence detectability problem in

Interpreted Petri nets (IPN ), i.e. with the problem of inferring the

fired transition sequence from the knowledge of the output IPN
information. The definition of this problem could depend on an

initial state or initial IPN output information. Unfortunately, this

consideration is not enough to detect firing transition sequences after

the occurrence of a fault (diagnosability case) where the reached state

could be any one, or when the initial state is unknown (observability

case). The more realistic case of this problem is concerned when the

initial state and initial IPN output information is unknown.

Hence, this work focuses on the study of the sequence detectability

problem when the initial state and initial IPN output information is

unknown, this case is named the structural sequence detectability

property in IPN and we focus on the Free Choice (FC) class.

Our main goal is to avoid the enumeration of all possible firing
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transition sequences to characterize the structural sequence detectabil-

ity. Instead of that, we analyze the IPN topological properties

guaranteeing the structural sequence detectability. For instance, if

two indistinguishable events ti and tj , enabled from a valid and

unknown initial state (possibly from the same or from different

initial states), could lead to the same state then two indistinguishable

sequences can be generated σ1 = tiα and σ2 = tjα, where α is

an arbitrarily long firing transition sequence. Moreover, algorithms

based on linear programming problems and Nerode’s relationship are

proposed to determine if the IPN presents the structures generating

the indistinguishable firing transition sequences.

This paper is organized as follows. Section II presents the basic

concepts and notation of PN and IPN . In Section III the concept

of structural sequence detectability is formally defined. Section IV

presents the characterization of the structural sequence detectability

property in IPN belonging to live and safe FC class. Section V

presents algorithms to test the conditions that a structural sequence

detectable IPN must fulfill. Finally, some conclusions and future

work are presented.

II. BACKGROUND

This section introduces some basic PN and IPN concepts. An

interested reader can consult [14] and [4] for further information on

PN .

Definition 1. A Petri net (PN) structure is a bipartite digraph
defined by the 3-tuple N = (P, T,W ), where:

• P = {p1, p2, ..., pn} is a finite set of n places,
• T = {t1, t2, ..., tm} is a finite set of m transitions,
• P ∪ T �= ∅ and P ∩ T = ∅,
• W : (P × T ) ∪ (T × P ) → {0, 1} is a weight arc function.

A marking is a function M : P → {0, 1, 2, 3, ...} that assigns

to each place a nonnegative integer number, named the number of

tokens residing inside each place. M0 is the initial marking. A PN
with a given initial marking is denoted by (N,M0).

Pictorially, places are depicted by circles, transitions by boxes, arcs

by arrows and tokens by black dots or integer numbers residing inside

each place.

The n × m incidence matrix C of N is defined by C(i, j) =
W (tj , pi)−W (pi, tj). If W (pi, tj) or W (tj , pi) is not defined for

a specific place pi and transition tj , then it is assumed as zero.

Let x, y ∈ P ∪T, the set of input nodes of x, •x = {y|W (y, x) =
1} and the set of output nodes of x, x• = {y|W (x, y) = 1}
represent the input and output nodes from node x, respectively. These

sets can be extended to a set of input (output) nodes of a set of

nodes, i.e. •{x1, ..., xn} = {y|W (y, x1) = 1∨ ...∨W (y, xn) = 1}
({x1, ..., xn}• = {y|W (x1, y) = 1 ∨ ... ∨W (xn, y) = 1}).

Let N be a PN . Vectors Xi (Yi) such that CXi = 0, Xi

entries are non negative integers (Y T
i C = 0, Yi entries are non

negative integers) are named T − invariants (P − invariants).

The support of a T − invariant Xi (P − invariant Yi), denoted

by 〈Xi〉 (〈Yi〉) , is the transition set Ti = {tj |Xi(j) > 0} (place

set Pi = {pj |Yi(j) > 0}). The subnet Ti = {(Pi, Ti,Wi) ,M0i}
of N induced by the T − invariant Xi is a T − component if

Pi = (•〈Xi〉 ∪ 〈Xi〉•), Ti = 〈Xi〉 , Wi is the weight arc function

restricted to Pi and Ti, and M0i is the initial marking, restricted

to Pi. In a similar way, the subnet Pi = {(Pi, Ti,Wi) ,M0i} of

N induced by the P − invariant Y T
i is a P − component if

Ti = (•〈Yi〉 ∪ 〈Yi〉•), Pi = 〈Yi〉 , Wi is the weight arc function

restricted to Pi and Ti; M0i is the initial marking restricted to Pi.
A P − invariant (T − invariant) is said to be minimal if the

greatest common divisor of its entries is 1 and it is no linear combi-

nation of others P − invariants (T − invariants). A transition tj
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is said to be enabled at marking Mk if each input place pi of tj (i.e.

each place pi such that W (pi, tj) = 1) is marked with one token;

this is denoted by Mk [tj(k + 1)〉 . The firing of an enabled transition

tj removes one token from each input place pi of tj , and adds one

token to each output place pk of tj , reaching a new marking Mk+1.

This fact is represented by Mk [tj(k + 1)〉Mk+1. The new marking

Mk+1 can be computed using the state equation:

Mk+1 = Mk + C
−→
tj

where
−→
tj (i) = 1 if i = j and

−→
tj (i) = 0 otherwise.

Notation M0 [ta〉M1 can be extended to a transition sequence

M0 [σ〉Mq, where σ = tatb...tr and M0 [ta〉M1 [tb〉M2... [tr〉Mq.
In this case Mq is named reachable marking from M0. Moreover, Mq

is said to be reachable from M0. The notation −→σ is the Parikh vector

of σ, i.e. the i− th entry of −→σ is the number of times that ti appears

in σ. The reachability set of (N,M0), denoted by R(N,M0), is the

set of all possible reachable markings from M0, firing only enabled

transition sequences.

Definition 2. An Interpreted Petri net (IPN) structure is the pair
Q = (N,Φ) where:

• N is a PN structure together with an initial marking M0.

• There exists a q×n matrix Φ of integer numbers, such that yk =
ΦMk is mapping the marking Mk into the q − dimensional
observation vector. The vector yk is named the output informa-

tion of the IPN . In this work we focus on cases where each

column of matrix Φ is an elementary or null vector.

Transitions ti and tj have identical behavior (redundant) if

C(•, i) = C(•, j), where C(•, i) denotes the column of C corre-

sponding to transition ti. If ti and tj have identical behavior, then

trivially the IPN Q has firing transition sequences that cannot be

distinguished from each other. Therefore, we focus on nets that do

not present this kind of transitions. The IPN state equation is:

Mk+1 = Mk + C
−→
tj ; yk = ΦMk

notice that the output IPN information is included.

Definition 3. A firing transition sequence of an
IPN(Q,M0) is a sequence σ = titj . . . tk . . . such that
M0 [ti〉M1 [tj〉 . . .Mn−1 [tk〉 . . .. The set of all firing transition
sequences is called the firing language £(Q,M0) = {σ|
σ = titj . . . tk . . . and M0 [ti〉M1 [tj〉 . . .Mn−1 [tk〉 . . .}.

Definition 4. A sequence of observation vectors (output information)
of (Q,M0) is a sequence ω = (y0)(y1) . . . (yn), yi = ΦMi.

Definition 5. A PN (N,M0) is said to be live (or equivalently
M0 is a live marking of N ) if, no matter what marking has been
reached from M0, it is possible to ultimately fire any transition of N
by progressing through some further firing sequence ([14]). A PN
(N,M0) is safe if the maximum number of tokens in places is 1 for
every M ∈ R(N,M0).

Definition 6. A Free Choice (FC) net is a strongly connected IPN
subclass (i.e. for any pair of nodes x, y ∈ P ∪T there exist directed
paths from x to y and vice versa) such that if p•i ∩ p•j �= ∅ then
p•i = p•j , ∀pi, pj ∈ P ([14]).

As a notation we will use μ0 to represent the set of the k initial

markings μ0 = {M1
0 ,M

2
0 , ..., M

k
0 } such that (Q,M i

0) becomes live

and safe, M i
0 ∈ μ0. Notice that if M0 ∈ μ0, then any reachable

marking from M0 also belongs to μ0.
Notation (Q,μ0) is used to emphasize that the IPN initial

marking is unknown, but could be any one in μ0. Testing if a marking

M j
0 belongs to μ0, in a Free Choice PN , can be performed using

Fig. 1. A PN with a fork-join transition pair.

the Commoner’s Theorem (see [4]). In this work we focus on the

case when the set μ0 is known. Also, the firing language can be

extended to represent all possible firing transition sequences from μ0

as £(Q,μ0) =
k⋃

i=1

£(Q,M i
0). Notice that if σ1, σ2 ∈ £(Q,μ0), it

means that there exist M i
0, M

j
0 ∈ μ0 such that σ1 ∈ £(Q,M i

0) and

σ2 ∈ £(Q,M j
0 ).

Since columns of matrix Φ are elementary or null vectors, then if

Φ(•, i)+Φ(•, j) = Φ(•, k) implies that one of the three vectors are

the null one, i.e. column linear combinations means that the columns

are equal with each other.

Throughout this work we will consider the following points:

1) This work focuses on pure (i.e. ∀p ∈ P , p•∩ •p = ∅) Free

Choice nets where the initial marking M0 ∈ μ0 is unknown.

2) Input places to the same transition must have associated output

information, i.e., if |•tj | > 1 then ∀pi ∈ •tj , Φ(•, i) �= −→
0 .

This consideration guarantees that if two transitions are indis-

tinguishable with each other (their firing result in the same

change of the output information), then they have the same

cardinality in their sets of input places.

3) For any transition tj it is not allowed that for any pk ∈
•tj , pl ∈ t•j , the marking of these places mapped into the

observation vector be equal, i.e. Φ(•, k) = Φ(•, l). This

consideration ensures that, if we decompose the IPN into

P − components {P1, ...,Pw} then the firing of tj produces

a change in the output IPN information (see [16]) in every

Pk.

Definition 7. Let C be a set of T − components of a net. C is a
T−Cover if every transition of the net belongs to a T−component
of C .

Definition 8. Let SN be any T − Cover of a FC net (see [4]),
transitions ti, tj (ti and tj could be the same) form a fork-join
transition pair if |t•i | > 1, |•tj | > 1 and there does not exist a
P − invariant Y such that ∃pk ∈ t•i , Y (pk) > 0 and ∀pq ∈ •tj
Y (pq) = 0.

For instance, consider the PN shown in Fig. 1, the transitions

t1 and t5 do not form a fork-join transition pair since there exists a

P −invariant Y T = [ 1 1 1 1 0 0 0 ] where Y (p2) =
1 (p2 ∈ t•1) and Y (p5) = Y (p6) = 0 (p5, p6 ∈ •tj). Transitions t1,
t4 form a fork-join transition pair.

III. STRUCTURAL SEQUENCE DETECTABILITY DEFINITION

This section introduces Forward, Reverse and Concurrence rela-

tionships on the transition set and the indistinguishable relationship

on the transition and T − component sets. These relationships will

be useful to characterize the structural sequence detectability (SSD)
in FC IPN subclass.

Definition 9. Let ti, tj be two transitions. The firing of ti is indis-
tinguishable from the firing of tj (ti ≈I tj) if ΦC(•, i) = ΦC(•, j).

Limited circulation. For review only
IEEE-TAC Submission no.: 14-0345.4

Preprint submitted to IEEE Transactions on Automatic Control. Received: April 17, 2015 23:16:12 PST

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TAC.2015.2426275

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

In a similar way, two arbitrarily long firing transition sequences
σ1 = t1 . . . tk . . . , σ2 = t′1...t

′
k . . . , |σ1| = |σ2| are indistinguish-

able from each other, σ1 ≈I σ2, if t1 ≈I t′1, . . . , tk ≈I t′k, ....

Notice that indistinguishability over transitions is an equivalence

relationship, thus it partitions the transition set. Transitions tj belong-

ing to a class such that |[tj ]| = 1 are transitions whose firing can

be distinguished from any other transition firing. In the following,

the set Gr(≈I) will denote the set of transitions pairs (ti, tj) such

that ti ≈I tj and ti �= tj (i.e. it is the indistinguishable transition

relationship where the ref lexivity has been removed).

In live and safe PN, arbitrarily long sequences σ1, σ2 ∈
£(Q,μ0), such that σ1 ≈I σ2 could be generated by firing

T − invariants (see [4]), the T − components induced by these

T − invariants will be named indistinguishable T − components.

The next definition formalizes this notion.

Definition 10. Let Ti, Tj be two T − components induced by the
T − invariants Xi, Xj respectively. T − components Ti, Tj (Ti

could be equal to Tj) are indistinguishable (Ti ≈I Tj) from each
other if there exist two firing transition sequences σi �= σk, |σi| =
|σk|, σi ≈I σk, such that −→σ i = Xi,

−→σ k = Xj .

However, not all arbitrarily long indistinguishable sequences are

generated by indistinguishable T −components. The next transition

relationships capture the IPN structures that can generate indistin-

guishable and arbitrarily long firing transition sequences.

Definition 11. Transitions relationships:
a) Reverse relationship (≈−). Let Q be an IPN. The transitions

ti and tj are reverse related (ti ≈− tj) if ti ≈I tj and •ti = •tj .
b) Forward relationship (≈+). Let Q be an IPN. The transitions

ti and tj are forward related (ti ≈+ tj) if ti ≈I tj and t•i ∩ t•j �= ∅.
c) Concurrence relationship (≈p). Let Q be an IPN, and ti, tj ∈

T, i �= j, such that ti ≈I tj . If � minimal P − invariant Yk such
that •ti,• tj , t•i , t

•
j ⊆ 〈Yk〉 then ti ≈p tj .

Two indistinguishable transitions ti, tj , (ti, tj) ∈ Gr(≈I) evolve

in concurrence with a T − invariant Xk if the sequences tiσk,
tjσk, where −→σ k = Xk can be fired from markings M0, M ′

0 ∈ μ0.

Now the structural sequence detectability property in IPN is

formalized in the following definition.

Definition 12. Let (Q,μ0) be an IPN. The IPN Q is said to
be structurally sequence detectable if there exists k < ∞, k ∈ N
such that any pair of firing transition sequences σ1, σ2 ∈ £(Q,μ0)
with σ1 �= σ2, |σ1| = |σ2| and ∀α1, α2 such that σ1α1, σ2α2 ∈
£(Q,μ0), |σ1α1| = |σ2α2| > k then σ1α1 �≈I σ2α2.

Example 13. Let (Q,μ0) be the safe and pure PN shown in Fig.
2, where

Φ =

⎡
⎣

0 1 0 1 0
0 0 1 0 0
0 0 0 0 1

⎤
⎦ .

Thus the firing transition sequences σ1, σ2 ∈ £(Q,μ0), where
σ1 = t2β fireable at
[
0 1 0 0 0

]T
, and σ2 = t7β ∈ £(Q,μ0) fireable at

[
0 0 0 1 0

]T
, where |β| is arbitrarily long, then σ1 ≈I

σ2, thus Q is not SSD.
Notice that in this example the transitions t2 and t5 cannot

be simultaneously enabled, because the initial marking Mk
0 =

[0 1 0 1 0]T /∈ μ0. As a notation, in the IPN (see Fig. 2 as an
example), we associate the symbol Φj to places pk if Φ(j, k) = 1.

Fig. 2. A non SSD FC considering the initial marking unknown.

If Mk [ti〉Mk+1 then the output information change, obtained

when ti is fired, is computed by ΦMk+1 − ΦMk = ΦC(•, i).
Example 14. In the FC Q shown in Fig. 2, it can be seen that
t2 ≈+ t7, t1 ≈− t4 and t4t7t3...t4t7t3 ≈I t1t2t3...t1t2t3.

IV. SSD CHARACTERIZATION IN FC

The next theorem characterizes the structural sequence detectability

property in PN .

Theorem 15. Let (Q,μ0) be a live, safe and pure PN belonging
to the FC class. Then Q is SSD iff the following conditions are
fulfilled:

1) ∀ti, tj ∈ T, i �= j, ti �≈+ tj ,
2) ∀ti, tj ∈ T, i �= j, ti �≈− tj ,
3) ∀ti, tj ∈ T, i �= j, ti �≈p tj ,
4) if (ti, tj) ∈ Gr(≈I) then ti, tj are not evolving in concurrence

with T − invariants.
5) there are no indistinguishable T − components.

Proof. The proof is based on the contrapositive statement of Theorem

15.

(→) If there exist ti, tj ∈ T, i �= j, ti ≈+ tj in a PN, then by

Definition 11 b) t•i = t•j . Since Q is live and safe, then μ0 �= ∅,
thus there exists a marking M0 ∈ μ0 such that ti is enabled or

it is enabled in a reachable marking M from M0. Then we can

choose M as the new initial marking by redefining M0 = M. A

new marking M ′
0 ∈ μ0 can be built as follows, M ′

0(p) = M0(p)
if p /∈ •ti∪ •tj , M ′

0(p) = 0 if p ∈ •ti, M ′
0(p) = 1 if p ∈ •tj .

Thus M0 [ti〉M1 [σ1〉 and M ′
0 [tj〉M1 [σ1〉 , σ1 is an arbitrarily long

sequence (there is no integer k such that |σ1 | < k). Sequences tiσ1,

tjσ1 are indistinguishable from each other, thus Q is not SSD.

If ti ≈− tj , then •ti = •tj . Since Q is live and bounded, then

there exists Mk reachable from any M0 ∈ μ0 (see the definition

of home spaces in [4]) enabling ti such that Mk can be reached

infinitely often, otherwise if there is no such Mk then Q is blocked or

there exists an infinite number of reachable markings, a contradiction.

Mk is also enabling tj since •ti = •tj . Then there exists a

fireable sequence σ from M0 reaching a marking Mk where place
•ti = •tj is marked. Since Mk is reached infinitely often, then

there exists a sequence β such that Mk [β〉Mk. Then the sequence

σβkti, M0 [σ〉Mk

[
βk

〉
Mk [ti〉 , is indistinguishable from σβktj ,

M0 [σ〉Mk

[
βk

〉
Mk [tj〉 , where k is an arbitrary positive integer.

Hence Q is not SSD.

If ti ≈p tj , then ti, tj belong to different P−components. Since

Q is a live net, then there exists an initial marking M0 ∈ μ0 such

that ti, tj are enabled. Thus the sequence titjσ1, (M0 [titj〉M2 [σ1〉)
is indistinguishable from tjtiσ1, (M0 [tjti〉M2 [σ1〉), where σ1 is

arbitrarily long and the net is not SSD.
If there is (ti, tj) ∈ Gr(≈I) and ti, tj are evolving in concurrence

with a T − invariant Xz , then there exists M0, M ′
0 ∈ μ0 enabling

the sequences tiσ
k, tjσ

k respectively, −→σ = Xz. Since (ti, tj) ∈
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Gr(≈I), then tiσ
k is indistinguishable from tjσ

k, where k is an

arbitrary positive integer, thus the net is not SSD.

If there exist indistinguishable T−components Xi, Xj then there

are two arbitrarily long sequences −→σi = kXi,
−→σj = kXj (where k

is an arbitrary positive integer) that are indistinguishable from each

other, thus Q is not SSD.

(←) Assume that Q is not SSD, then there exist two arbitrarily

long firing transition sequences σ1, σ2 ∈ £(Q,μ0), σ1 �= σ2,
enabled from M0, M

′
0 ∈ μ0 such that σ1 ≈I σ2 (i.e. there exists no

k < ∞ such that the sequences are distinguishable from each other).

It could be the case where σ1 is completely different from σ2, they

have common subsequences or they are equal. The last case is not

important for the structural sequence detectability study because we

need different sequences. Thus we will focus on the first two cases.

1) If they are completely different from each other, since σ1 ≈I σ2,

both of them are arbitrarily long firing transition sequences and the

IPN is live and safe, then these sequences are being generated by

the indistinguishable T − invariants −→σ1 and −→σ2 (see [4]), then there

exist indistinguishable T − components.

2) If they share a common subsequence, then the following two

cases are possible:

A) We analyze the previous transitions ta, tb to the common

subsequence α1 (σ1 = β1taα1..., σ2 = β2tbα1...). Notice that

|β1| = |β2| and β1, β2 must be finite, otherwise this case must

be analyzed as case 1.

I) If ta, tb belong to the same P − component. Two cases arise:

i) ta, tb are enabled simultaneously, since the IPN is safe, then

there exists pz ∈ P such that pz ∈ •ta∩ •tb, (otherwise there are

tokens residing in the input places to ta and tb simultaneously and

this P−component is not safe, a contradiction), and since the IPN
is FC then •ta = •tb, thus ta ≈− tb. Moreover, let tx be the first

transition in α1, then the subsequences tatx and tbtx are obtained.

Since by hypothesis we are not allowing C(•, a) = C(•, b), then α1

is enabled before the firing of ta or tb. If α1 is arbitrarily long then

ta, tb are evolving in concurrence with the T − invariant −→α1.

ii) ta, tb are not enabled simultaneously. Let tx be the first transition

in α1, then the subsequences tatx and tbtx are obtained. If tx belongs

to the same P − component that ta, tb then the input place to

tx is a common output place to ta and tb, thus ta ≈+ tb. If tx
does not belong to the same P − component that ta, tb, then two

cases are possible. If α1 can be fired infinitely often, then ta, tb
are transitions evolving in concurrence with the T − invariant −→α1.
If α1 cannot be fired infinitely often, then the tokens residing in

t•a or t•b (but not both since the net is safe) are required to fire a

transition tq fired after α1. Thus there are two transition sequences,

starting from ta and tb, marking the same place pz before tq is fired

(otherwise both sequences include tq and ta, tb do not belong to the

same P − component, a contradiction), then these tokens should

mark a place pz before these tokens enable tq. Then pz has two

input transitions t′a, t
′
b and t′a ≈+ t′b.

II) If ta, tb belong to different P−components. By hypothesis there

exist two markings My, Mz such that M0 [β1〉My, M ′
0 [β2〉Mz

enabling ta, tb, then ta ≈p tb.

B) We analyze the next transitions ta, tb to the common subse-

quence α1 (σ1 = β1α1ta..., σ2 = β2α1tb...). Notice that β1, β2

must be finite, otherwise this case must be analyzed as case 1.

I) If α1 is arbitrarily long, then this case must be analyzed as case

2.A).

II) If α1 is finite, then the subsequences ta... and tb... are arbitrarily

long, since σ1, σ2 are arbitrarily long. If these two subsequences are

completely different from each other, then they are analyzed as case

1, otherwise they must be analyzed using case 2.

The IPNs depicted in Fig. 3 illustrate the five conditions that lead

to non structural sequence detectability. The IPN 3.a) captures the

forward relationship, in this case t3 ≈+ t6. The IPN in Fig. 3.b)

captures the reverse relationship, in this case t1 ≈− t4. The IPN in

Fig. 3.c) captures the concurrence relationship, in this case t2 ≈p t3.
In the IPN in Fig. 3.d) there are indistinguishable transitions t2, t4
that are evolving in concurrence with the T − invariant X =

−−→
t8t9

(i.e. there are enough tokens to simultaneously fire transition t2 or

t4 and the transition sequence t8t9). In the IPNs in Fig. 3 e)

and f) there are indistinguishable T − components. In Fig. 3.e)

X1 =
−−→
t5t6 and X2 =

−−→
t7t8 are the T − invariants generating

these T − components. In Fig. 3.f) the unique T − component is

indistinguishable with respect to itself, for instance the permutations

σ1 = (t1t2t3t4)
k and σ2 = (t3t4t1t2)

k, where k is an arbitrary

positive integer, are indistinguishable from each other. As it was

shown in the previous examples, the five conditions are independent

from each other. In fact the 25 combinations are possible.

Fig. 3. This figure illustrates the conditions of Theorem 15.

V. ALGORITHMS

The previous section characterizes IPN exhibiting the structural

sequence detectability property. Now, this section presents algorithms

to test if a Free Choice IPN exhibits this property. As stated in

Theorem 15, structural sequence detectable IPN do not exhibit

transitions ≈+, ≈− and ≈p related. Testing if IPN transitions are

≈+ or ≈− related is a straightforward task. It consists of locating

attribution places (places pi such that |•pi| > 1) or distribution places

(places pi such that |p•i | > 1) and testing if their input or output

transitions are indistinguishable from each other. Relationship ≈p is

tested in the following way. For any (ti, tj) ∈ Gr(≈I), compute the

existence of a minimal P − invariant Y such that Y (pi) = 1 for

any pi ∈ •ti and Y (pj) = 1 for any pj ∈ •tj , i.e. if the input places

to both transitions belong to the same minimal P − invariant. If
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so, then both transitions cannot fire concurrently, thus ti �≈p tj , else

ti ≈p tj .
In order to test if there exists a (ti, tj) ∈ Gr(≈I) such that ti, tj

are evolving in concurrence with T − invariants we propose the

following algorithm.

Algorithm 16. It computes if there exists (ti, tj) ∈ Gr(≈I) with
ti, tj evolving in concurrence with T − invariants

Input: A Free Choice IPN Q = {P, T,Φ,W}
Output: A (ti, tj) ∈ Gr(≈I) such that ti, tj are evolving in

concurrence with T − invariants or empty if such (ti, tj) does
not exist.

Begin
1) Compute the set PFJ = {(pi, tF , tJ)| pi is residing inside of

a fork-join transition pair tF , tJ , |p•i | > 1}.
2) Compute the set PXa

FJ = {(pi, tF , tJ , Xa)|(pi, tF , tJ) ∈ PFJ

and there exists a T − invariant Xa such that Xa(tF ) =
Xa(tJ) = 0 and Xa(tk) = 1, where tk ∈ •pi} i.e. there exists
a T − invariant Xa that is also residing inside the fork-join
transition pair tF , tJ .

3) Compute if there exist two indistinguishable transitions that
evolve in concurrence with T − invariants.

4) Return the ti, tj evolving in concurrence with T − invariants
or empty if such ti, tj do not exist.

End

In order to perform step 3 of the previous algorithm we have the

following facts. Notice that every (pi, tF , tJ , Xa) ∈ PXa
FJ contains

the T − invariant Xa and distribution place pi that are residing

inside the fork-join transition pair (tF , tJ). When pi is marked the

T−invariant Xa is enabled. The indistinguishable transitions ti, tj ,

(ti, tj) ∈ Gr(≈I) evolve in concurrence with Xa if the places pa ∈
•ti, pb ∈ •tj can be marked simultaneously with the distribution

place pi, and pi lies in a different minimal P − invariant from

those minimal P − invariants containing pa and pb.

The next linear programming problems (LPP ′s) find out if this

pi lies in a different P − invariant from those containing the input

places pa and pb. Notice that the computation of a minimal P −
invariant containing pi and not containing pa and pb implies that

Y TC = 0, Y ≥ 0, Y (pi) ≥ 1 and Y (pa) = Y (pb) = 0 for those

input places pa and pb to ti and tj . Notice that the LPP ′s find

out rational vectors Y in the left kernel of the incidence matrix, so

they are no P − invariants since their entries are not non negative

integers. Fortunately, the existence of these rational vectors Y implies

the existence of P − invariants (since Y is rational valued vector,

then it can be multiplied by an appropriate integer value and the

P − invariant is obtained). Thus, abusing of the language, we call

these vectors Y as P − invariants. Computing the existence of the

minimal P − invariant is performed in three steps. First a P −
invariant Y1 containing place pi and the input places pa ∈ •ti is

computed. Afterwards a P − invariant Y2 containing place pi and

the input places pb ∈ •tj is computed. If both pi and pa (pi and

pb) belong to a minimal P − invariant, then Y1 (Y2) is a rational

representation of this minimal P−invariant, otherwise it is a linear

combination of the minimal P−invariants (those containing pi and

pa or pi and pb).

The P − invariant YG = Y1+Y2 is computed. Notice that YG is

a linear combination of P − invariants (hence YG is not minimal)

and YG satisfies that it contains place pi and the places pa ∈ •ti, pb ∈
•tj . Then a new P − invariant Y3, included in YG, containing the

places pa ∈ •ti, pb ∈ •tj where Y3(pi) = 0 is computed. If such Y3

is found then ti and tj evolve in concurrence with T − invariants.
These facts are considered in the following LPP ′s.

For each (pi, tF , tJ , Xa) ∈ PXa
FJ do

select pi,
For each (ti, tj) ∈ Gr(≈I) do

select ti, tj

Min

|P |∑
i=1

Y1(i) Min

|P |∑
i=1

Y2(i)

s.t. s.t.

Y T
1 C = 0 Y T

2 C = 0

Y1(pi) ≥ 1 Y2(pi) ≥ 1

Y1(pk) ≥ 0, pk ∈ P − {pi} Y2(pk) ≥ 0, pk ∈ P − {pi}∑
Y1(pa) ≥ 1, pa ∈ •ti

∑
Y2(pb) ≥ 1, pb ∈ •tj

end for

end for

If Y1 or Y2 is not empty, then there exist minimal P −invariants
containing places pi, pa ∈ •ti, pb ∈ •tj or linear combinations

of P − invariants containing pi, pa ∈ •ti, pb ∈ •tj . The next

linear programming problem determines what is the case. If Y1 and

Y2 are empty (both problems have no solution), then there are not

P − invariants containing places pi,
•ti, •tj .

If both problems have a solution, then compute YG = Y1+Y2 and

Min

|P |∑
i=1

Y3(i)

s.t.

Y T
3 C = 0

Y3(pi) = 0, pi is the selected distribution place

Y3(pk) ≥ 0, pk is any place of P different from pi∑
Y3(pa) ≥ 1, pa ∈ •ti∑
Y3(pb) ≥ 1, pb ∈ •tj

Y3(i) ≤ YG(i)

If there exists Y3, then place pi is in a different minimal P −
invariant from those containing pa ∈ •ti, pb ∈ •tj . If Y1 and Y2

are empty or there exists Y3 then there exists a (ti, tj) ∈ Gr(≈I)
such that ti, tj are evolving in concurrence with T − invariants,
else there exists no such (ti, tj) ∈ Gr(≈I) evolving in concurrence

with T − invariants.

Proposition 17. Given an IPN of the FC class, the existence of a
(ti, tj) ∈ Gr(≈I) such that ti, tj are evolving in concurrence with
T − invariants can be determined using Algorithm 16.

Proof. In live and bounded (safe in this case) Free Choice IPN
two places are marked in the same marking iff they belong to

different P − invariants [4]. According to the S − coverability
and T − coverability theorems [4], the different P − invariants
are generated by the transitions ta such that |t•a| > 1 (i.e. the fork

transitions). Thus, if two places are going to be marked simulta-

neously, they must be in different downstream paths from a fork

transition. T − coverability theorems ensure that the downstream

paths from a fork transition are joined by a transition tb such that

|•tb| > 1 and the fork-join transition pair is formed. Thus, the

algorithm computes the distribution places |p•i | > 1 residing inside

a fork-join transition pair. Distribution places have more than one

output transitions, thus they are the only places candidate to generate

T − invariants inside of a fork-join transition pair (other places

have only one output transition and their T − invariants must

include the join transition). Thus the algorithm searches for places

pi such that |p•i | > 1 and at least one output transition of this place

is included in a T − invariant not containing the join transition.

The set of such places pi is the computed set PXa
FJ in step 2). Now,

T − invariants Xa can be fired in concurrence with transitions
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in different downstream paths from the fork transition tF . Now, the

transitions in different downstream paths from the fork transition tF
must include indistinguishable transitions ti, tj to ensure that the Free

Choice IPN is not SSD, otherwise it is SSD. Thus the algorithm

computes (using the two linear programming problems) if there is a

minimal P − invariant containing pi,
•ti, •tj or the addition of

some minimal disjoint P − invariants containing pi,
•ti, •tj . If no

such P−invariants are found then there exists a (ti, tj) ∈ Gr(≈I)
such that ti, tj are evolving in concurrence with T − invariants.
If such P − invariant is found, then the third linear programming

problem uses YG to determine if places pi,
•ti, •tj are in different

minimal P − invariants not sharing places, if such P − invariant
exists then places pi,

•ti, •tj are in different minimal P−invariants
not sharing places.

Previous LPP ′s can be solved using the Simplex algorithm, it has

not polynomial complexity but in almost all cases performs very fast.

Algorithm 18. It determines the existence of an indistinguishable
T − component with respect to itself

Input: A Free Choice IPN Q = {P, T,Φ,W}
Output: If there exist an indistinguishable T − component with

respect to itself.
1) Compute the set T≈I , where T≈I represents the domain of

relation ≈I (i.e. the set of indistinguishable transitions).
2) Compute a T − component Ti = {(Pi, Ti,Wi)}, where Ti ⊆

T≈I .
3) Using Nerode’s relationship (see [8]) verify if each transition

of Ti can bisimulate another one, i.e. any pair of states reached
after a given string of transitions should have the same future
behavior in terms of a post-language of transitions.

4) If each transition is bisimulable then Ti ≈I Ti, else Ti �≈I Ti.

Algorithm 19. Determine the existence of indistinguishable T −
components.

Input: A Free Choice IPN Q = {P, T,Φ,W}
Output: If there exist two indistinguishable T −components from

each other.
1) Compute the set T≈I .
2) Compute a T − component Ti = {(Pi, Ti,Wi)}, such that

Ti ⊆ T≈I .
3) Compute a T − component Tj = {(Pj , Tj ,Wj)}, such that

Tj ⊆ T≈I and Xi �= Xj (the T − invariants that generate
the T − components are different.)

4) Using Nerode’s relationship verify if each transition of the
T − component Ti can bisimulate another one of the T −
component Tj .

5) If each transition of the T − component Ti bisimulate a
transition of the T − component Tj then Ti ≈I Tj , else
Ti �≈I Tj .

The complexity of both algorithms, for testing condition 5) of The-

orem 15, is NP. Nevertheless, the performance of these algorithms

can be improved as follows. In Algorithm 18 the number of tested

T − invariants is reduced by only testing T − invariants Xi

where the greatest common divisor of the vector’s entries ΦPostXi

is greater than one, where Post(i, j) = W (ti, pj). In the Algorithm

19 the number of tested T − invariants is reduced by adding the

constraint that the two T−invariants Xi and Xj must generate the

same output information (i.e. they have the same natural projection).

It is important to remark that there exist polynomial algorithms

[2] that only test a sufficient condition for the non existence of

indistinguishable T − components.

VI. CONCLUSIONS

This paper characterized the structural sequence detectability prop-

erty in DES modeled by live, safe and pure Free Choice IPN . It

has been shown that structural sequence detectability property can be

characterized using the IPN structure, instead of enumerating all

the firing transition sequences. These results are useful to enlarge the

class of observable and diagnosable IPN ′s.
Currently we are working on extending our results in several

ways. First, we are extending the structural sequence detectability

characterization to more complex IPN classes. Also, we are trying

to relax some work hypothesis in order to cover a broader set of nets.

Furthermore, the same proposed IPN ′s structures are being used to

deal with the marking reconstruction characterization.
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