Structural Sequence Detectability in Free Choice Interpreted Petri Nets

Nuño-Sánchez, Saúl A.; Ruiz-León, Javier; Ramírez-Treviño, Antonio

Nuño-Sánchez ,S.A.; Ramírez-Treviño, A., y Ruiz-León, J (2015). "Structural Sequence Detectability in Free Choice Interpreted Petri Nets". En IEEE Transactions on Automatic Control, 61(1) , 198-203.

Enlace directo al documento: http://hdl.handle.net/11117/3353

Este documento obtenido del Repositorio Institucional del Instituto Tecnológico y de Estudios Superiores de Occidente se pone a disposición general bajo los términos y condiciones de la siguiente licencia: http://quijote.biblio.iteso.mx/licencias/CC-BY-NC-2.5-MX.pdf

Structural Sequence Detectability in Free Choice Interpreted Petri Nets

Saúl-Alonso Nuño-Sánchez, Antonio Ramírez-Treviño, Javier Ruiz-León, Member, IEEE,

Abstract

This paper is concerned with the structural sequence detectability problem in Free Choice Interpreted Petri nets, i.e. with the possibility of recovering the firing transition sequence in Free Choice Interpreted Petri nets using the output information when the initial marking is unknown. Based on the Free Choice Interpreted Petri net structure, three relationships are proposed which are devoted to capture the confusion over the transitions. These relationships depend on interpreted Petri nets structures such as T-invariants, P-Invariants, attribution and distribution places. Thus, the approach herein presented exploits the interpreted Petri nets structural information in order to determine the structural sequence detectability of an interpreted Petri net.

Keywords: Petri Nets, Structural Sequence Detectability.

I. Introduction

Discrete Event Systems (DES's) have deserved a lot of attention by the scientific community since they can model the discrete behavior of robotic systems, supply chains, transport systems, digital communication systems, information systems, etc. The study of several properties has been reported in the literature. For instance, fault diagnosis is addressed in [5], [9], [3], [2], [10]; controllability is studied in [6], [7], [13]; observability in [1], [16],[11] and identification is presented in [12], among other properties that are reported in the literature. The characterization of the previous mentioned properties relies on the event sequence reconstruction, using for this purpose the information provided by the system sensors (herein named the output Petri net information). Thus the reconstruction of firing transition sequences using the output Petri net information is an important problem because it allows enlarging the class of diagnosable, observable, or identifiable Petri nets that can be characterized.

A similar property, named invertibility has been studied in finite state automata $(F A)$ [15], where the event sequence is reconstructed after the occurrence of certain events and then it is lost again. Thus invertibility is a kind of resilient structural sequence detectability. Also structural sequence detectability was addressed in [17]. That work, however, is focused on Petri nets $(P N)$ where the initial state is known and observable places cannot generate the same output information.

We deal in this work with the sequence detectability problem in Interpreted Petri nets (IPN), i.e. with the problem of inferring the fired transition sequence from the knowledge of the output IPN information. The definition of this problem could depend on an initial state or initial $I P N$ output information. Unfortunately, this consideration is not enough to detect firing transition sequences after the occurrence of a fault (diagnosability case) where the reached state could be any one, or when the initial state is unknown (observability case). The more realistic case of this problem is concerned when the initial state and initial $I P N$ output information is unknown.

Hence, this work focuses on the study of the sequence detectability problem when the initial state and initial $I P N$ output information is unknown, this case is named the structural sequence detectability property in $I P N$ and we focus on the Free Choice $(F C)$ class. Our main goal is to avoid the enumeration of all possible firing

[^0]transition sequences to characterize the structural sequence detectability. Instead of that, we analyze the $I P N$ topological properties guaranteeing the structural sequence detectability. For instance, if two indistinguishable events t_{i} and t_{j}, enabled from a valid and unknown initial state (possibly from the same or from different initial states), could lead to the same state then two indistinguishable sequences can be generated $\sigma_{1}=t_{i} \alpha$ and $\sigma_{2}=t_{j} \alpha$, where α is an arbitrarily long firing transition sequence. Moreover, algorithms based on linear programming problems and Nerode's relationship are proposed to determine if the $I P N$ presents the structures generating the indistinguishable firing transition sequences.

This paper is organized as follows. Section II presents the basic concepts and notation of $P N$ and $I P N$. In Section III the concept of structural sequence detectability is formally defined. Section IV presents the characterization of the structural sequence detectability property in $I P N$ belonging to live and safe $F C$ class. Section V presents algorithms to test the conditions that a structural sequence detectable $I P N$ must fulfill. Finally, some conclusions and future work are presented.

II. Background

This section introduces some basic $P N$ and $I P N$ concepts. An interested reader can consult [14] and [4] for further information on $P N$.

Definition 1. A Petri net (PN) structure is a bipartite digraph defined by the 3-tuple $N=(P, T, W)$, where:

- $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is a finite set of n places,
- $T=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ is a finite set of m transitions,
- $P \cup T \neq \varnothing$ and $P \cap T=\varnothing$,
- $W:(P \times T) \cup(T \times P) \rightarrow\{0,1\}$ is a weight arc function.

A marking is a function $M: P \rightarrow\{0,1,2,3, \ldots\}$ that assigns to each place a nonnegative integer number, named the number of tokens residing inside each place. M_{0} is the initial marking. A $P N$ with a given initial marking is denoted by $\left(N, M_{0}\right)$.

Pictorially, places are depicted by circles, transitions by boxes, arcs by arrows and tokens by black dots or integer numbers residing inside each place.

The $n \times m$ incidence matrix C of N is defined by $C(i, j)=$ $W\left(t_{j}, p_{i}\right)-W\left(p_{i}, t_{j}\right)$. If $W\left(p_{i}, t_{j}\right)$ or $W\left(t_{j}, p_{i}\right)$ is not defined for a specific place p_{i} and transition t_{j}, then it is assumed as zero.

Let $x, y \in P \cup T$, the set of input nodes of $x,{ }^{\bullet} x=\{y \mid W(y, x)=$ $1\}$ and the set of output nodes of $x, x^{\bullet}=\{y \mid W(x, y)=1\}$ represent the input and output nodes from node x, respectively. These sets can be extended to a set of input (output) nodes of a set of nodes, i.e. $\bullet\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y \mid W\left(y, x_{1}\right)=1 \vee \ldots \vee W\left(y, x_{n}\right)=1\right\}$ $\left(\left\{x_{1}, \ldots, x_{n}\right\}^{\bullet}=\left\{y \mid W\left(x_{1}, y\right)=1 \vee \ldots \vee W\left(x_{n}, y\right)=1\right\}\right)$.

Let N be a $P N$. Vectors $X_{i}\left(Y_{i}\right)$ such that $C X_{i}=0, X_{i}$ entries are non negative integers $\left(Y_{i}^{T} C=0, Y_{i}\right.$ entries are non negative integers) are named T-invariants (P-invariants). The support of a T - invariant $X_{i}\left(P-\right.$ invariant $\left.Y_{i}\right)$, denoted by $\left\langle X_{i}\right\rangle\left(\left\langle Y_{i}\right\rangle\right)$, is the transition set $T_{i}=\left\{t_{j} \mid X_{i}(j)>0\right\}$ (place set $\left.P_{i}=\left\{p_{j} \mid Y_{i}(j)>0\right\}\right)$. The subnet $\mathcal{T}_{i}=\left\{\left(P_{i}, T_{i}, W_{i}\right), M_{0 i}\right\}$ of N induced by the T-invariant X_{i} is a T-component if $P_{i}=\left({ }^{\bullet}\left\langle X_{i}\right\rangle \cup\left\langle X_{i}\right\rangle^{\bullet}\right), T_{i}=\left\langle X_{i}\right\rangle, W_{i}$ is the weight arc function restricted to P_{i} and T_{i}, and $M_{0 i}$ is the initial marking, restricted to P_{i}. In a similar way, the subnet $\mathcal{P}_{i}=\left\{\left(P_{i}, T_{i}, W_{i}\right), M_{0 i}\right\}$ of N induced by the P - invariant Y_{i}^{T} is a P - component if $T_{i}=\left(\bullet\left\langle Y_{i}\right\rangle \cup\left\langle Y_{i}\right\rangle^{\bullet}\right), P_{i}=\left\langle Y_{i}\right\rangle, W_{i}$ is the weight arc function restricted to P_{i} and $T_{i} ; M_{0 i}$ is the initial marking restricted to P_{i}.

A P-invariant (T-invariant) is said to be minimal if the greatest common divisor of its entries is 1 and it is no linear combination of others P-invariants (T-invariants). A transition t_{j}
is said to be enabled at marking M_{k} if each input place p_{i} of t_{j} (i.e. each place p_{i} such that $W\left(p_{i}, t_{j}\right)=1$) is marked with one token; this is denoted by $M_{k}\left[t_{j}(k+1)\right\rangle$. The firing of an enabled transition t_{j} removes one token from each input place p_{i} of t_{j}, and adds one token to each output place p_{k} of t_{j}, reaching a new marking M_{k+1}. This fact is represented by $M_{k}\left[t_{j}(k+1)\right\rangle M_{k+1}$. The new marking M_{k+1} can be computed using the state equation:

$$
M_{k+1}=M_{k}+C \overrightarrow{t_{j}}
$$

where $\overrightarrow{t_{j}}(i)=1$ if $i=j$ and $\overrightarrow{t_{j}}(i)=0$ otherwise.
Notation $M_{0}\left[t_{a}\right\rangle M_{1}$ can be extended to a transition sequence $M_{0}[\sigma\rangle M_{q}$, where $\sigma=t_{a} t_{b} \ldots t_{r}$ and $M_{0}\left[t_{a}\right\rangle M_{1}\left[t_{b}\right\rangle M_{2} \ldots\left[t_{r}\right\rangle M_{q}$. In this case M_{q} is named reachable marking from M_{0}. Moreover, M_{q} is said to be reachable from M_{0}. The notation $\vec{\sigma}$ is the Parikh vector of σ, i.e. the $i-t h$ entry of $\vec{\sigma}$ is the number of times that t_{i} appears in σ. The reachability set of $\left(N, M_{0}\right)$, denoted by $R\left(N, M_{0}\right)$, is the set of all possible reachable markings from M_{0}, firing only enabled transition sequences.

Definition 2. An Interpreted Petri net (IPN) structure is the pair $Q=(N, \Phi)$ where:

- N is a $P N$ structure together with an initial marking M_{0}.
- There exists a $q \times n$ matrix Φ of integer numbers, such that $y_{k}=$ ΦM_{k} is mapping the marking M_{k} into the q-dimensional observation vector. The vector y_{k} is named the output information of the $I P N$. In this work we focus on cases where each column of matrix Φ is an elementary or null vector.
Transitions t_{i} and t_{j} have identical behavior (redundant) if $C(\bullet, i)=C(\bullet, j)$, where $C(\bullet, i)$ denotes the column of C corresponding to transition t_{i}. If t_{i} and t_{j} have identical behavior, then trivially the $I P N Q$ has firing transition sequences that cannot be distinguished from each other. Therefore, we focus on nets that do not present this kind of transitions. The $I P N$ state equation is:

$$
M_{k+1}=M_{k}+C \overrightarrow{t_{j}} ; \quad y_{k}=\Phi M_{k}
$$

notice that the output $I P N$ information is included.
Definition 3. A firing transition sequence of an $\operatorname{IPN}\left(Q, M_{0}\right)$ is a sequence $\sigma=t_{i} t_{j} \ldots t_{k} \ldots$ such that $M_{0}\left[t_{i}\right\rangle M_{1}\left[t_{j}\right\rangle \ldots M_{n-1}\left[t_{k}\right\rangle \ldots$. The set of all firing transition sequences is called the firing language $£\left(Q, M_{0}\right)=\{\sigma \mid$ $\sigma=t_{i} t_{j} \ldots t_{k} \ldots$ and $\left.M_{0}\left[t_{i}\right\rangle M_{1}\left[t_{j}\right\rangle \ldots M_{n-1}\left[t_{k}\right\rangle \ldots\right\}$.
Definition 4. A sequence of observation vectors (output information) of $\left(Q, M_{0}\right)$ is a sequence $\omega=\left(y_{0}\right)\left(y_{1}\right) \ldots\left(y_{n}\right), y_{i}=\Phi M_{i}$.
Definition 5. $A P N\left(N, M_{0}\right)$ is said to be live (or equivalently M_{0} is a live marking of N) if, no matter what marking has been reached from M_{0}, it is possible to ultimately fire any transition of N by progressing through some further firing sequence ([14]). A PN $\left(N, M_{0}\right)$ is safe if the maximum number of tokens in places is 1 for every $M \in R\left(N, M_{0}\right)$.
Definition 6. A Free Choice (FC) net is a strongly connected IPN subclass (i.e. for any pair of nodes $x, y \in P \cup T$ there exist directed paths from x to y and vice versa) such that if $p_{i}^{\bullet} \cap p_{j}^{\bullet} \neq \varnothing$ then $p_{i}^{\bullet}=p_{j}^{\bullet}, \forall p_{i}, p_{j} \in P([14])$.

As a notation we will use μ_{0} to represent the set of the k initial markings $\mu_{0}=\left\{M_{0}^{1}, M_{0}^{2}, \ldots, M_{0}^{k}\right\}$ such that $\left(Q, M_{0}^{i}\right)$ becomes live and safe, $M_{0}^{i} \in \mu_{0}$. Notice that if $M_{0} \in \mu_{0}$, then any reachable marking from M_{0} also belongs to μ_{0}.

Notation $\left(Q, \mu_{0}\right)$ is used to emphasize that the $I P N$ initial marking is unknown, but could be any one in μ_{0}. Testing if a marking M_{0}^{j} belongs to μ_{0}, in a Free Choice $P N$, can be performed using

Fig. 1. A $P N$ with a fork-join transition pair.
the Commoner's Theorem (see [4]). In this work we focus on the case when the set μ_{0} is known. Also, the firing language can be extended to represent all possible firing transition sequences from μ_{0} as $£\left(Q, \mu_{0}\right)=\bigcup_{i=1}^{k} £\left(Q, M_{0}^{i}\right)$. Notice that if $\sigma_{1}, \sigma_{2} \in £\left(Q, \mu_{0}\right)$, it means that there exist $M_{0}^{i}, M_{0}^{j} \in \mu_{0}$ such that $\sigma_{1} \in £\left(Q, M_{0}^{i}\right)$ and $\sigma_{2} \in £\left(Q, M_{0}^{j}\right)$.

Since columns of matrix Φ are elementary or null vectors, then if $\Phi(\bullet, i)+\Phi(\bullet, j)=\Phi(\bullet, k)$ implies that one of the three vectors are the null one, i.e. column linear combinations means that the columns are equal with each other.

Throughout this work we will consider the following points:

1) This work focuses on pure (i.e. $\forall p \in P, p^{\bullet} \cap{ }^{\bullet} p=\varnothing$) Free Choice nets where the initial marking $M_{0} \in \mu_{0}$ is unknown.
2) Input places to the same transition must have associated output information, i.e., if $\left|{ }^{\bullet} t_{j}\right|>1$ then $\forall p_{i} \in{ }^{\bullet} t_{j}, \Phi(\bullet, i) \neq \overrightarrow{0}$. This consideration guarantees that if two transitions are indistinguishable with each other (their firing result in the same change of the output information), then they have the same cardinality in their sets of input places.
3) For any transition t_{j} it is not allowed that for any $p_{k} \in$ ${ }^{\bullet} t_{j}, p_{l} \in t_{j}^{\bullet}$, the marking of these places mapped into the observation vector be equal, i.e. $\Phi(\bullet, k)=\Phi(\bullet, l)$. This consideration ensures that, if we decompose the $I P N$ into $P-$ components $\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{w}\right\}$ then the firing of t_{j} produces a change in the output $I P N$ information (see [16]) in every \mathcal{P}_{k}.
Definition 7. Let C be a set of T - components of a net. C is a $T-$ Cover if every transition of the net belongs to a T-component of C.
Definition 8. Let $S N$ be any T - Cover of a FC net (see [4]), transitions $t_{i}, t_{j}\left(t_{i}\right.$ and t_{j} could be the same) form a fork-join transition pair if $\left|t_{i}^{\bullet}\right|>1,\left|{ }^{\bullet} t_{j}\right|>1$ and there does not exist a $P-$ invariant Y such that $\exists p_{k} \in t_{i}^{\bullet}, Y\left(p_{k}\right)>0$ and $\forall p_{q} \in{ }^{\bullet} t_{j}$ $Y\left(p_{q}\right)=0$.

For instance, consider the $P N$ shown in Fig. 1, the transitions t_{1} and t_{5} do not form a fork-join transition pair since there exists a P-invariant $Y^{T}=\left[\begin{array}{ccccccc}1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$ where $Y\left(p_{2}\right)=$ $1\left(p_{2} \in t_{1}^{\bullet}\right)$ and $Y\left(p_{5}\right)=Y\left(p_{6}\right)=0\left(p_{5}, p_{6} \in{ }^{\bullet} t_{j}\right)$. Transitions t_{1}, t_{4} form a fork-join transition pair.

III. STRUCTURAL SEQUENCE DETECTABILITY DEFINITION

This section introduces Forward, Reverse and Concurrence relationships on the transition set and the indistinguishable relationship on the transition and T - component sets. These relationships will be useful to characterize the structural sequence detectability $(S S D)$ in $F C I P N$ subclass.
Definition 9. Let t_{i}, t_{j} be two transitions. The firing of t_{i} is indistinguishable from the firing of $t_{j}\left(t_{i} \approx_{I} t_{j}\right)$ if $\Phi C(\bullet, i)=\Phi C(\bullet, j)$.

In a similar way, two arbitrarily long firing transition sequences $\sigma_{1}=t_{1} \ldots t_{k} \ldots, \sigma_{2}=t_{1}^{\prime} \ldots t_{k}^{\prime} \ldots,\left|\sigma_{1}\right|=\left|\sigma_{2}\right|$ are indistinguishable from each other, $\sigma_{1} \approx_{I} \sigma_{2}$, if $t_{1} \approx_{I} t_{1}^{\prime}, \ldots, t_{k} \approx_{I} t_{k}^{\prime}, \ldots$.

Notice that indistinguishability over transitions is an equivalence relationship, thus it partitions the transition set. Transitions t_{j} belonging to a class such that $\left|\left[t_{j}\right]\right|=1$ are transitions whose firing can be distinguished from any other transition firing. In the following, the set $G r\left(\approx_{I}\right)$ will denote the set of transitions pairs $\left(t_{i}, t_{j}\right)$ such that $t_{i} \approx_{I} t_{j}$ and $t_{i} \neq t_{j}$ (i.e. it is the indistinguishable transition relationship where the ref lexivity has been removed).

In live and safe $P N$, arbitrarily long sequences $\sigma_{1}, \sigma_{2} \in$ $£\left(Q, \mu_{0}\right)$, such that $\sigma_{1} \approx_{I} \sigma_{2}$ could be generated by firing T-invariants (see [4]), the T-components induced by these T-invariants will be named indistinguishable T-components. The next definition formalizes this notion.

Definition 10. Let $\mathcal{T}_{i}, \mathcal{T}_{j}$ be two T-components induced by the T - invariants X_{i}, X_{j} respectively. T - components $\mathcal{T}_{i}, \mathcal{T}_{j}\left(\mathcal{T}_{i}\right.$ could be equal to \mathcal{T}_{j}) are indistinguishable ($\mathcal{T}_{i} \approx_{I} \mathcal{T}_{j}$) from each other if there exist two firing transition sequences $\sigma_{i} \neq \sigma_{k},\left|\sigma_{i}\right|=$ $\left|\sigma_{k}\right|, \sigma_{i} \approx_{I} \sigma_{k}$, such that $\vec{\sigma}_{i}=X_{i}, \vec{\sigma}_{k}=X_{j}$.

However, not all arbitrarily long indistinguishable sequences are generated by indistinguishable T-components. The next transition relationships capture the $I P N$ structures that can generate indistinguishable and arbitrarily long firing transition sequences.

Definition 11. Transitions relationships:
a) Reverse relationship (\approx^{-}). Let Q be an IPN. The transitions t_{i} and t_{j} are reverse related $\left(t_{i} \approx^{-} t_{j}\right)$ if $t_{i} \approx_{I} t_{j}$ and ${ }^{\bullet} t_{i}={ }^{\bullet} t_{j}$.
b) Forward relationship $\left(\approx^{+}\right)$. Let Q be an IPN. The transitions t_{i} and t_{j} are forward related $\left(t_{i} \approx^{+} t_{j}\right)$ if $t_{i} \approx_{I} t_{j}$ and $t_{i}^{\bullet} \cap t_{j}^{\bullet} \neq \varnothing$.
c) Concurrence relationship $\left(\approx_{p}\right)$. Let Q be an IPN, and $t_{i}, t_{j} \in$ $T, i \neq j$, such that $t_{i} \approx_{I} t_{j}$. If \ddagger minimal $P-$ invariant Y_{k} such that ${ }^{\bullet} t_{i},{ }^{\bullet} t_{j}, t_{i}^{\bullet}, t_{j}^{\bullet} \subseteq\left\langle Y_{k}\right\rangle$ then $t_{i} \approx_{p} t_{j}$.

Two indistinguishable transitions $t_{i}, t_{j},\left(t_{i}, t_{j}\right) \in \operatorname{Gr}\left(\approx_{I}\right)$ evolve in concurrence with a T-invariant X_{k} if the sequences $t_{i} \sigma_{k}$, $t_{j} \sigma_{k}$, where $\vec{\sigma}_{k}=X_{k}$ can be fired from markings $M_{0}, M_{0}^{\prime} \in \mu_{0}$.

Now the structural sequence detectability property in $I P N$ is formalized in the following definition.

Definition 12. Let $\left(Q, \mu_{0}\right)$ be an IPN. The IPN Q is said to be structurally sequence detectable if there exists $k<\infty, k \in \mathbb{N}$ such that any pair of firing transition sequences $\sigma_{1}, \sigma_{2} \in £\left(Q, \mu_{0}\right)$ with $\sigma_{1} \neq \sigma_{2},\left|\sigma_{1}\right|=\left|\sigma_{2}\right|$ and $\forall \alpha_{1}, \alpha_{2}$ such that $\sigma_{1} \alpha_{1}, \sigma_{2} \alpha_{2} \in$ $£\left(Q, \mu_{0}\right),\left|\sigma_{1} \alpha_{1}\right|=\left|\sigma_{2} \alpha_{2}\right|>k$ then $\left.\sigma_{1} \alpha_{1} \not \not\right)_{I} \sigma_{2} \alpha_{2}$.
Example 13. Let $\left(Q, \mu_{0}\right)$ be the safe and pure $P N$ shown in Fig. 2, where

$$
\Phi=\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Thus the firing transition sequences $\sigma_{1}, \sigma_{2} \in £\left(Q, \mu_{0}\right)$, where $\sigma_{1}=t_{2} \beta$ fireable at
$\left[\begin{array}{ccccc}0 & 1 & 0 & 0 & 0\end{array}\right]^{T}$, and $\sigma_{2}=t_{7} \beta \in £\left(Q, \mu_{0}\right)$ fireable at $\left[\begin{array}{ccccc}0 & 0 & 0 & 1 & 0\end{array}\right]^{T}$, where $|\beta|$ is arbitrarily long, then $\sigma_{1} \approx_{I}$ σ_{2}, thus Q is not $S S D$.

Notice that in this example the transitions t_{2} and t_{5} cannot be simultaneously enabled, because the initial marking $M_{0}^{k}=$ $\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right)^{T} \notin \mu_{0}$. As a notation, in the IPN (see Fig. 2 as an example), we associate the symbol Φ_{j} to places p_{k} if $\Phi(j, k)=1$.

Fig. 2. A non $S S D$ FC considering the initial marking unknown.

If $M_{k}\left[t_{i}\right\rangle M_{k+1}$ then the output information change, obtained when t_{i} is fired, is computed by $\Phi M_{k+1}-\Phi M_{k}=\Phi C(\bullet, i)$.
Example 14. In the FC Q shown in Fig. 2, it can be seen that $t_{2} \approx^{+} t_{7}, t_{1} \approx^{-} t_{4}$ and $t_{4} t_{7} t_{3} \ldots t_{4} t_{7} t_{3} \approx_{I} t_{1} t_{2} t_{3} \ldots t_{1} t_{2} t_{3}$.

IV. SSD Characterization in $F C$

The next theorem characterizes the structural sequence detectability property in $P N$.
Theorem 15. Let $\left(Q, \mu_{0}\right)$ be a live, safe and pure $P N$ belonging to the FC class. Then Q is SSD iff the following conditions are fulfilled:

1) $\forall t_{i}, t_{j} \in T, i \neq j, t_{i} \not \overbrace{}^{+} t_{j}$,
2) $\forall t_{i}, t_{j} \in T, i \neq j, t_{i} \not \chi^{-} t_{j}$,
3) $\forall t_{i}, t_{j} \in T, i \neq j, t_{i} \not \overbrace{p} t_{j}$,
4) if $\left(t_{i}, t_{j}\right) \in G r\left(\approx_{I}\right)$ then t_{i}, t_{j} are not evolving in concurrence with T - invariants.
5) there are no indistinguishable T - components.

Proof. The proof is based on the contrapositive statement of Theorem 15.
(\rightarrow) If there exist $t_{i}, t_{j} \in T, i \neq j, t_{i} \approx^{+} t_{j}$ in a $P N$, then by Definition $11 b$) $t_{i}^{\bullet}=t_{j}^{\bullet}$. Since Q is live and safe, then $\mu_{0} \neq \varnothing$, thus there exists a marking $M_{0} \in \mu_{0}$ such that t_{i} is enabled or it is enabled in a reachable marking M from M_{0}. Then we can choose M as the new initial marking by redefining $M_{0}=M$. A new marking $M_{0}^{\prime} \in \mu_{0}$ can be built as follows, $M_{0}^{\prime}(p)=M_{0}(p)$ if $p \notin{ }^{\bullet} t_{i} \cup{ }^{\bullet} t_{j}, M_{0}^{\prime}(p)=0$ if $p \in{ }^{\bullet} t_{i}, M_{0}^{\prime}(p)=1$ if $p \in{ }^{\bullet} t_{j}$. Thus $M_{0}\left[t_{i}\right\rangle M_{1}\left[\sigma_{1}\right\rangle$ and $M_{0}^{\prime}\left[t_{j}\right\rangle M_{1}\left[\sigma_{1}\right\rangle, \sigma_{1}$ is an arbitrarily long sequence (there is no integer k such that $\left|\sigma_{1}\right|<k$). Sequences $t_{i} \sigma_{1}$, $t_{j} \sigma_{1}$ are indistinguishable from each other, thus Q is not $S S D$.

If $t_{i} \approx^{-} t_{j}$, then ${ }^{\bullet} t_{i}={ }^{\bullet} t_{j}$. Since Q is live and bounded, then there exists M_{k} reachable from any $M_{0} \in \mu_{0}$ (see the definition of home spaces in [4]) enabling t_{i} such that M_{k} can be reached infinitely often, otherwise if there is no such M_{k} then Q is blocked or there exists an infinite number of reachable markings, a contradiction. M_{k} is also enabling t_{j} since ${ }^{\bullet} t_{i}={ }^{\bullet} t_{j}$. Then there exists a fireable sequence σ from M_{0} reaching a marking M_{k} where place ${ }^{\bullet} t_{i}={ }^{\bullet} t_{j}$ is marked. Since M_{k} is reached infinitely often, then there exists a sequence β such that $M_{k}[\beta\rangle M_{k}$. Then the sequence $\sigma \beta^{k} t_{i}, M_{0}[\sigma\rangle M_{k}\left[\beta^{k}\right\rangle M_{k}\left[t_{i}\right\rangle$, is indistinguishable from $\sigma \beta^{k} t_{j}$, $M_{0}[\sigma\rangle M_{k}\left[\beta^{k}\right\rangle M_{k}\left[t_{j}\right\rangle$, where k is an arbitrary positive integer. Hence Q is not $S S D$.

If $t_{i} \approx_{p} t_{j}$, then t_{i}, t_{j} belong to different P-components. Since Q is a live net, then there exists an initial marking $M_{0} \in \mu_{0}$ such that t_{i}, t_{j} are enabled. Thus the sequence $t_{i} t_{j} \sigma_{1},\left(M_{0}\left[t_{i} t_{j}\right\rangle M_{2}\left[\sigma_{1}\right\rangle\right)$ is indistinguishable from $t_{j} t_{i} \sigma_{1},\left(M_{0}\left[t_{j} t_{i}\right\rangle M_{2}\left[\sigma_{1}\right\rangle\right)$, where σ_{1} is arbitrarily long and the net is not $S S D$.

If there is $\left(t_{i}, t_{j}\right) \in G r\left(\approx_{I}\right)$ and t_{i}, t_{j} are evolving in concurrence with a T-invariant X_{z}, then there exists $M_{0}, M_{0}^{\prime} \in \mu_{0}$ enabling the sequences $t_{i} \sigma^{k}, t_{j} \sigma^{k}$ respectively, $\vec{\sigma}=X_{z}$. Since $\left(t_{i}, t_{j}\right) \in$
$G r\left(\approx_{I}\right)$, then $t_{i} \sigma^{k}$ is indistinguishable from $t_{j} \sigma^{k}$, where k is an arbitrary positive integer, thus the net is not $S S D$.

If there exist indistinguishable T-components X_{i}, X_{j} then there are two arbitrarily long sequences $\overrightarrow{\sigma_{i}}=k X_{i}, \overrightarrow{\sigma_{j}}=k X_{j}$ (where k is an arbitrary positive integer) that are indistinguishable from each other, thus Q is not $S S D$.
(\leftarrow) Assume that Q is not $S S D$, then there exist two arbitrarily long firing transition sequences $\sigma_{1}, \sigma_{2} \in £\left(Q, \mu_{0}\right), \sigma_{1} \neq \sigma_{2}$, enabled from $M_{0}, M_{0}^{\prime} \in \mu_{0}$ such that $\sigma_{1} \approx_{I} \sigma_{2}$ (i.e. there exists no $k<\infty$ such that the sequences are distinguishable from each other). It could be the case where σ_{1} is completely different from σ_{2}, they have common subsequences or they are equal. The last case is not important for the structural sequence detectability study because we need different sequences. Thus we will focus on the first two cases.

1) If they are completely different from each other, since $\sigma_{1} \approx_{I} \sigma_{2}$, both of them are arbitrarily long firing transition sequences and the $I P N$ is live and safe, then these sequences are being generated by the indistinguishable T-invariants $\overrightarrow{\sigma_{1}}$ and $\overrightarrow{\sigma_{2}}$ (see [4]), then there exist indistinguishable T - components.
2) If they share a common subsequence, then the following two cases are possible:
A) We analyze the previous transitions t_{a}, t_{b} to the common subsequence $\alpha_{1}\left(\sigma_{1}=\beta_{1} t_{a} \alpha_{1} \ldots, \sigma_{2}=\beta_{2} t_{b} \alpha_{1} \ldots\right)$. Notice that $\left|\beta_{1}\right|=\left|\beta_{2}\right|$ and β_{1}, β_{2} must be finite, otherwise this case must be analyzed as case 1 .
I) If t_{a}, t_{b} belong to the same P-component. Two cases arise:
i) t_{a}, t_{b} are enabled simultaneously, since the $I P N$ is safe, then there exists $p_{z} \in P$ such that $p_{z} \in{ }^{\bullet} t_{a} \cap{ }^{\bullet} t_{b}$, (otherwise there are tokens residing in the input places to t_{a} and t_{b} simultaneously and this P-component is not safe, a contradiction), and since the $I P N$ is $F C$ then ${ }^{\bullet} t_{a}={ }^{\bullet} t_{b}$, thus $t_{a} \approx^{-} t_{b}$. Moreover, let t_{x} be the first transition in α_{1}, then the subsequences $t_{a} t_{x}$ and $t_{b} t_{x}$ are obtained. Since by hypothesis we are not allowing $C(\bullet, a)=C(\bullet, b)$, then α_{1} is enabled before the firing of t_{a} or t_{b}. If α_{1} is arbitrarily long then t_{a}, t_{b} are evolving in concurrence with the T-invariant $\overrightarrow{\alpha_{1}}$.
ii) t_{a}, t_{b} are not enabled simultaneously. Let t_{x} be the first transition in α_{1}, then the subsequences $t_{a} t_{x}$ and $t_{b} t_{x}$ are obtained. If t_{x} belongs to the same P-component that t_{a}, t_{b} then the input place to t_{x} is a common output place to t_{a} and t_{b}, thus $t_{a} \approx^{+} t_{b}$. If t_{x} does not belong to the same P - component that t_{a}, t_{b}, then two cases are possible. If α_{1} can be fired infinitely often, then t_{a}, t_{b} are transitions evolving in concurrence with the T-invariant $\overrightarrow{\alpha_{1}}$. If α_{1} cannot be fired infinitely often, then the tokens residing in t_{a}^{\bullet} or t_{b}^{\bullet} (but not both since the net is safe) are required to fire a transition t_{q} fired after α_{1}. Thus there are two transition sequences, starting from t_{a} and t_{b}, marking the same place p_{z} before t_{q} is fired (otherwise both sequences include t_{q} and t_{a}, t_{b} do not belong to the same P-component, a contradiction), then these tokens should mark a place p_{z} before these tokens enable t_{q}. Then p_{z} has two input transitions $t_{a}^{\prime}, t_{b}^{\prime}$ and $t_{a}^{\prime} \approx^{+} t_{b}^{\prime}$.
II) If t_{a}, t_{b} belong to different P-components. By hypothesis there exist two markings M_{y}, M_{z} such that $M_{0}\left[\beta_{1}\right\rangle M_{y}, M_{0}^{\prime}\left[\beta_{2}\right\rangle M_{z}$ enabling t_{a}, t_{b}, then $t_{a} \approx_{p} t_{b}$.
B) We analyze the next transitions t_{a}, t_{b} to the common subsequence $\alpha_{1}\left(\sigma_{1}=\beta_{1} \alpha_{1} t_{a} \ldots, \sigma_{2}=\beta_{2} \alpha_{1} t_{b} \ldots\right)$. Notice that β_{1}, β_{2} must be finite, otherwise this case must be analyzed as case 1 .
I) If α_{1} is arbitrarily long, then this case must be analyzed as case 2.A).
II) If α_{1} is finite, then the subsequences $t_{a} \ldots$ and $t_{b} \ldots$ are arbitrarily long, since σ_{1}, σ_{2} are arbitrarily long. If these two subsequences are completely different from each other, then they are analyzed as case 1 , otherwise they must be analyzed using case 2.

The $I P N s$ depicted in Fig. 3 illustrate the five conditions that lead to non structural sequence detectability. The $I P N$ 3.a) captures the forward relationship, in this case $t_{3} \approx^{+} t_{6}$. The $I P N$ in Fig. 3.b) captures the reverse relationship, in this case $t_{1} \approx^{-} t_{4}$. The $I P N$ in Fig. 3.c) captures the concurrence relationship, in this case $t_{2} \approx_{p} t_{3}$. In the $I P N$ in Fig. 3.d) there are indistinguishable transitions t_{2}, t_{4} that are evolving in concurrence with the $T-$ invariant $X=\overrightarrow{t_{8} t_{9}}$ (i.e. there are enough tokens to simultaneously fire transition t_{2} or t_{4} and the transition sequence $\left.t_{8} t_{9}\right)$. In the IPNs in Fig. 3 e) and f) there are indistinguishable T - components. In Fig. 3.e) $X_{1}=\overrightarrow{t_{5} t_{6}}$ and $X_{2}=\overrightarrow{t_{7} t_{8}}$ are the T - invariants generating these T-components. In Fig. 3.f) the unique T-component is indistinguishable with respect to itself, for instance the permutations $\sigma_{1}=\left(t_{1} t_{2} t_{3} t_{4}\right)^{k}$ and $\sigma_{2}=\left(t_{3} t_{4} t_{1} t_{2}\right)^{k}$, where k is an arbitrary positive integer, are indistinguishable from each other. As it was shown in the previous examples, the five conditions are independent from each other. In fact the 2^{5} combinations are possible.

Fig. 3. This figure illustrates the conditions of Theorem 15.

V. Algorithms

The previous section characterizes $I P N$ exhibiting the structural sequence detectability property. Now, this section presents algorithms to test if a Free Choice $I P N$ exhibits this property. As stated in Theorem 15, structural sequence detectable $I P N$ do not exhibit transitions \approx^{+}, \approx^{-}and \approx_{p} related. Testing if $I P N$ transitions are \approx^{+}or \approx^{-}related is a straightforward task. It consists of locating attribution places (places p_{i} such that $\left.\right|^{\bullet} p_{i} \mid>1$) or distribution places (places p_{i} such that $\left|p_{i}^{\bullet}\right|>1$) and testing if their input or output transitions are indistinguishable from each other. Relationship \approx_{p} is tested in the following way. For any $\left(t_{i}, t_{j}\right) \in G r\left(\approx_{I}\right)$, compute the existence of a minimal P-invariant Y such that $Y\left(p_{i}\right)=1$ for any $p_{i} \in{ }^{\bullet} t_{i}$ and $Y\left(p_{j}\right)=1$ for any $p_{j} \in{ }^{\bullet} t_{j}$, i.e. if the input places to both transitions belong to the same minimal $P-$ invariant. If
so, then both transitions cannot fire concurrently, thus $t_{i} \not \overbrace{p} t_{j}$, else $t_{i} \approx_{p} t_{j}$.

In order to test if there exists a $\left(t_{i}, t_{j}\right) \in \operatorname{Gr}\left(\approx_{I}\right)$ such that t_{i}, t_{j} are evolving in concurrence with T-invariants we propose the following algorithm.

```
Algorithm 16. It computes if there exists \(\left(t_{i}, t_{j}\right) \in G r\left(\approx_{I}\right)\) with
\(t_{i}, t_{j}\) evolving in concurrence with \(T\)-invariants
    Input: A Free Choice IPN \(Q=\{P, T, \Phi, W\}\)
    Output: \(A\left(t_{i}, t_{j}\right) \in G r\left(\approx_{I}\right)\) such that \(t_{i}, t_{j}\) are evolving in
concurrence with \(T\) - invariants or empty if such \(\left(t_{i}, t_{j}\right)\) does
not exist.
    Begin
    1) Compute the set \(P_{F J}=\left\{\left(p_{i}, t_{F}, t_{J}\right) \mid p_{i}\right.\) is residing inside of
        a fork-join transition pair \(\left.t_{F}, t_{J},\left|p_{i}^{\bullet}\right|>1\right\}\).
    2) Compute the set \(P_{F J}^{X_{a}}=\left\{\left(p_{i}, t_{F}, t_{J}, X_{a}\right) \mid\left(p_{i}, t_{F}, t_{J}\right) \in P_{F J}\right.\)
        and there exists a \(T\)-invariant \(X_{a}\) such that \(X_{a}\left(t_{F}\right)=\)
        \(X_{a}\left(t_{J}\right)=0\) and \(X_{a}\left(t_{k}\right)=1\), where \(\left.t_{k} \in^{\bullet} p_{i}\right\}\) i.e. there exists
        a \(T\)-invariant \(X_{a}\) that is also residing inside the fork-join
        transition pair \(t_{F}, t_{J}\).
    3) Compute if there exist two indistinguishable transitions that
        evolve in concurrence with \(T\)-invariants.
    4) Return the \(t_{i}, t_{j}\) evolving in concurrence with \(T\)-invariants
        or empty if such \(t_{i}, t_{j}\) do not exist.
```

 End
 In order to perform step 3 of the previous algorithm we have the following facts. Notice that every $\left(p_{i}, t_{F}, t_{J}, X_{a}\right) \in P_{F J}^{X a}$ contains the T-invariant X_{a} and distribution place p_{i} that are residing inside the fork-join transition pair $\left(t_{F}, t_{J}\right)$. When p_{i} is marked the T-invariant X_{a} is enabled. The indistinguishable transitions t_{i}, t_{j}, $\left(t_{i}, t_{j}\right) \in G r\left(\approx_{I}\right)$ evolve in concurrence with X_{a} if the places $p_{a} \in$ ${ }^{\bullet} t_{i}, p_{b} \in{ }^{\bullet} t_{j}$ can be marked simultaneously with the distribution place p_{i}, and p_{i} lies in a different minimal P-invariant from those minimal P-invariants containing p_{a} and p_{b}.

The next linear programming problems $\left(L P P^{\prime} s\right)$ find out if this p_{i} lies in a different P-invariant from those containing the input places p_{a} and p_{b}. Notice that the computation of a minimal $P-$ invariant containing p_{i} and not containing p_{a} and p_{b} implies that $Y^{T} C=0, Y \geq 0, Y\left(p_{i}\right) \geq 1$ and $Y\left(p_{a}\right)=Y\left(p_{b}\right)=0$ for those input places p_{a} and p_{b} to t_{i} and t_{j}. Notice that the $L P P^{\prime} s$ find out rational vectors Y in the left kernel of the incidence matrix, so they are no P-invariants since their entries are not non negative integers. Fortunately, the existence of these rational vectors Y implies the existence of P-invariants (since Y is rational valued vector, then it can be multiplied by an appropriate integer value and the P - invariant is obtained). Thus, abusing of the language, we call these vectors Y as P-invariants. Computing the existence of the minimal P - invariant is performed in three steps. First a P invariant Y_{1} containing place p_{i} and the input places $p_{a} \in{ }^{\bullet} t_{i}$ is computed. Afterwards a P-invariant Y_{2} containing place p_{i} and the input places $p_{b} \in{ }^{\bullet} t_{j}$ is computed. If both p_{i} and $p_{a}\left(p_{i}\right.$ and p_{b}) belong to a minimal P-invariant, then $Y_{1}\left(Y_{2}\right)$ is a rational representation of this minimal P-invariant, otherwise it is a linear combination of the minimal P-invariants (those containing p_{i} and p_{a} or p_{i} and p_{b}).

The P-invariant $Y_{G}=Y_{1}+Y_{2}$ is computed. Notice that Y_{G} is a linear combination of P-invariants (hence Y_{G} is not minimal) and Y_{G} satisfies that it contains place p_{i} and the places $p_{a} \in{ }^{\bullet} t_{i}, p_{b} \in$ ${ }^{\bullet} t_{j}$. Then a new P-invariant Y_{3}, included in Y_{G}, containing the places $p_{a} \in{ }^{\bullet} t_{i}, p_{b} \in{ }^{\bullet} t_{j}$ where $Y_{3}\left(p_{i}\right)=0$ is computed. If such Y_{3} is found then t_{i} and t_{j} evolve in concurrence with T-invariants. These facts are considered in the following $L P P^{\prime} s$.

For each $\left(p_{i}, t_{F}, t_{J}, X_{a}\right) \in P_{F J}^{X_{a}}$ do
select p_{i},
For each $\left(t_{i}, t_{j}\right) \in G r\left(\approx_{I}\right)$ do
select t_{i}, t_{j}

$\operatorname{Min} \sum_{i=1}^{\|P\|} Y_{1}(i)$	$\operatorname{Min} \sum_{i=1}^{\|P\|} Y_{2}(i)$
s.t.	s.t.
$Y_{1}^{T} C=0$	$Y_{2}^{T} C=0$
$Y_{1}\left(p_{i}\right) \geq 1$	$Y_{2}\left(p_{i}\right) \geq 1$
$Y_{1}\left(p_{k}\right) \geq 0, p_{k} \in P-\left\{p_{i}\right\}$	$Y_{2}\left(p_{k}\right) \geq 0, p_{k} \in P-\left\{p_{i}\right\}$
$\sum Y_{1}\left(p_{a}\right) \geq 1, p_{a} \in{ }^{\bullet} t_{i}$	$\sum Y_{2}\left(p_{b}\right) \geq 1, p_{b} \in{ }^{\bullet} t_{j}$

end for
end for
If Y_{1} or Y_{2} is not empty, then there exist minimal P-invariants containing places $p_{i}, p_{a} \in{ }^{\bullet} t_{i}, p_{b} \in{ }^{\bullet} t_{j}$ or linear combinations of P - invariants containing $p_{i}, p_{a} \in{ }^{\bullet} t_{i}, p_{b} \in{ }^{\bullet} t_{j}$. The next linear programming problem determines what is the case. If Y_{1} and Y_{2} are empty (both problems have no solution), then there are not P-invariants containing places $p_{i},{ }^{\bullet} t_{i},{ }^{\bullet} t_{j}$.

If both problems have a solution, then compute $Y_{G}=Y_{1}+Y_{2}$ and

$\operatorname{Min} \sum_{i=1}^{\|P\|} Y_{3}(i)$
s.t.
$Y_{3}^{T} C=0$
$Y_{3}\left(p_{i}\right)=0, p_{i}$ is the selected distribution place
$Y_{3}\left(p_{k}\right) \geq 0, p_{k}$ is any place of P different from p_{i}
$\sum Y_{3}\left(p_{a}\right) \geq 1, p_{a} \in^{\bullet} t_{i}$
$\sum Y_{3}\left(p_{b}\right) \geq 1, p_{b} \in^{\bullet} t_{j}$
$Y_{3}(i) \leq Y_{G}(i)$

If there exists Y_{3}, then place p_{i} is in a different minimal $P-$ invariant from those containing $p_{a} \in{ }^{\bullet} t_{i}, p_{b} \in{ }^{\bullet} t_{j}$. If Y_{1} and Y_{2} are empty or there exists Y_{3} then there exists a $\left(t_{i}, t_{j}\right) \in \operatorname{Gr}\left(\approx_{I}\right)$ such that t_{i}, t_{j} are evolving in concurrence with T-invariants, else there exists no such $\left(t_{i}, t_{j}\right) \in G r\left(\approx_{I}\right)$ evolving in concurrence with T-invariants.

Proposition 17. Given an IPN of the FC class, the existence of a $\left(t_{i}, t_{j}\right) \in G r\left(\approx_{I}\right)$ such that t_{i}, t_{j} are evolving in concurrence with T-invariants can be determined using Algorithm 16.

Proof. In live and bounded (safe in this case) Free Choice IPN two places are marked in the same marking iff they belong to different P-invariants [4]. According to the S-coverability and T - coverability theorems [4], the different P-invariants are generated by the transitions t_{a} such that $\left|t_{a}^{\bullet}\right|>1$ (i.e. the fork transitions). Thus, if two places are going to be marked simultaneously, they must be in different downstream paths from a fork transition. T-coverability theorems ensure that the downstream paths from a fork transition are joined by a transition t_{b} such that $\left|{ }^{\bullet} t_{b}\right|>1$ and the fork-join transition pair is formed. Thus, the algorithm computes the distribution places $\left|p_{i}^{\bullet}\right|>1$ residing inside a fork-join transition pair. Distribution places have more than one output transitions, thus they are the only places candidate to generate T - invariants inside of a fork-join transition pair (other places have only one output transition and their T-invariants must include the join transition). Thus the algorithm searches for places p_{i} such that $\left|p_{i}^{\boldsymbol{\bullet}}\right|>1$ and at least one output transition of this place is included in a T-invariant not containing the join transition. The set of such places p_{i} is the computed set $P_{F J}^{X_{a}}$ in step 2). Now, T - invariants X_{a} can be fired in concurrence with transitions
in different downstream paths from the fork transition t_{F}. Now, the transitions in different downstream paths from the fork transition t_{F} must include indistinguishable transitions t_{i}, t_{j} to ensure that the Free Choice $I P N$ is not $S S D$, otherwise it is $S S D$. Thus the algorithm computes (using the two linear programming problems) if there is a minimal P - invariant containing $p_{i},{ }^{\bullet} t_{i},{ }^{\bullet} t_{j}$ or the addition of some minimal disjoint P-invariants containing $p_{i},{ }^{\bullet} t_{i},{ }^{\bullet} t_{j}$. If no such P-invariants are found then there exists a $\left(t_{i}, t_{j}\right) \in G r\left(\approx_{I}\right)$ such that t_{i}, t_{j} are evolving in concurrence with T-invariants. If such P-invariant is found, then the third linear programming problem uses Y_{G} to determine if places $p_{i},{ }^{\bullet} t_{i},{ }^{\bullet} t_{j}$ are in different minimal P-invariants not sharing places, if such P-invariant exists then places $p_{i},{ }^{\bullet} t_{i},{ }^{\bullet} t_{j}$ are in different minimal P-invariants not sharing places.

Previous $L P P^{\prime} s$ can be solved using the Simplex algorithm, it has not polynomial complexity but in almost all cases performs very fast.

```
Algorithm 18. It determines the existence of an indistinguishable
\(T\) - component with respect to itself
    Input: A Free Choice IPN \(Q=\{P, T, \Phi, W\}\)
    Output: If there exist an indistinguishable \(T\)-component with
respect to itself.
    1) Compute the set \(T_{\approx_{I}}\), where \(T_{\approx_{I}}\) represents the domain of
        relation \(\approx_{I}\) (i.e. the set of indistinguishable transitions).
    2) Compute a \(T\) - component \(\mathcal{T}_{i}=\left\{\left(P_{i}, T_{i}, W_{i}\right)\right\}\), where \(T_{i} \subseteq\)
        \(T_{\approx_{I}}\).
    3) Using Nerode's relationship (see [8]) verify if each transition
        of \(\mathcal{T}_{i}\) can bisimulate another one, i.e. any pair of states reached
        after a given string of transitions should have the same future
        behavior in terms of a post-language of transitions.
    4) If each transition is bisimulable then \(\mathcal{T}_{i} \approx_{I} \mathcal{T}_{i}\), else \(\mathcal{T}_{i} \not \approx_{I} \mathcal{T}_{i}\).
```

```
Algorithm 19. Determine the existence of indistinguishable \(T\) -
components.
    Input: A Free Choice IPN \(Q=\{P, T, \Phi, W\}\)
    Output: If there exist two indistinguishable \(T\)-components from
each other.
    1) Compute the set \(T_{\approx_{I}}\).
    2) Compute a \(T\) - component \(\mathcal{T}_{i}=\left\{\left(P_{i}, T_{i}, W_{i}\right)\right\}\), such that
        \(\mathcal{T}_{i} \subseteq T_{\approx_{I}}\).
    3) Compute a \(T\) - component \(\mathcal{T}_{j}=\left\{\left(P_{j}, T_{j}, W_{j}\right)\right\}\), such that
        \(\mathcal{T}_{j} \subseteq T_{\approx_{I}}\) and \(X_{i} \neq X_{j}\) (the \(T\)-invariants that generate
        the \(T\) - components are different.)
    4) Using Nerode's relationship verify if each transition of the
        \(T\) - component \(\mathcal{T}_{i}\) can bisimulate another one of the \(T\) -
        component \(\mathcal{T}_{j}\).
    5) If each transition of the \(T\) - component \(\mathcal{T}_{i}\) bisimulate \(a\)
        transition of the \(T\) - component \(\mathcal{T}_{j}\) then \(\mathcal{T}_{i} \approx_{I} \mathcal{T}_{j}\), else
        \(\mathcal{T}_{i} \not \ddot{m}_{I} \mathcal{T}_{j}\).
```

The complexity of both algorithms, for testing condition 5) of Theorem 15 , is $N P$. Nevertheless, the performance of these algorithms can be improved as follows. In Algorithm 18 the number of tested T-invariants is reduced by only testing T-invariants X_{i} where the greatest common divisor of the vector's entries Φ Post X_{i} is greater than one, where $\operatorname{Post}(i, j)=W\left(t_{i}, p_{j}\right)$. In the Algorithm 19 the number of tested T-invariants is reduced by adding the constraint that the two T-invariants X_{i} and X_{j} must generate the same output information (i.e. they have the same natural projection). It is important to remark that there exist polynomial algorithms [2] that only test a sufficient condition for the non existence of indistinguishable T - components.

VI. Conclusions

This paper characterized the structural sequence detectability property in $D E S$ modeled by live, safe and pure Free Choice $I P N$. It has been shown that structural sequence detectability property can be characterized using the $I P N$ structure, instead of enumerating all the firing transition sequences. These results are useful to enlarge the class of observable and diagnosable $I P N^{\prime} s$.

Currently we are working on extending our results in several ways. First, we are extending the structural sequence detectability characterization to more complex $I P N$ classes. Also, we are trying to relax some work hypothesis in order to cover a broader set of nets. Furthermore, the same proposed $I P N^{\prime} s$ structures are being used to deal with the marking reconstruction characterization.

References

[1] L. Aguirre, A. Ramírez, and O. Begovich. Design of asymptotic observers for discrete event systems. Proc. IASTED International Conference on Intelligent Systems and Control, pages 188-193, October 1999.
[2] M.P. Cabasino, A. Giua, and C. Seatzu. Diagnosability of bounded Petri nets. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai, P.R. China, pages 1254-1260, December 2009.
[3] M.P. Cabasino, A. Giua, and C. Seatzu. Diagnosis of discrete event systems using labeled Petri nets. Proc. 2nd IFAC Workshop on Dependable Control of Discrete Systems, June 2009.
[4] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press, 1995.
[5] M. Dotoli, M.P. Fanti, and A.M. Mangini. Fault detection of discrete event systems using Petri nets and integer linear programming. Proc. of 17th IFAC World Congress, Seoul, Korea, pages $6554-6559$, July 2008.
[6] A. Giua and F. DiCesare. Blocking and controllability of Petri nets in supervisory control. IEEE Transactions on Automatic Control, 39(4):818-823, April 1994.
[7] X. Guan and L.E. Holloway. Control of distributed discrete event systems modeled as Petri nets. Proceedings of the 1997 American Control Conference, 4:2342-2347, 1997.
[8] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 2003.
[9] G. Jiroveanu and R.K. Boel. The diagnosability of Petri net models using minimal explanations. IEEE Transactions on Automatic Control, 5(7):1663 - 1668, July 2010.
[10] D. Lefebvre and C. Delherm. Diagnosis of DES with Petri net models. IEEE Trans. on Automation Science and Engineering, 4(1):114-118, 2007.
[11] Lingxi Li and C.N.Hadjicostis. Reconstruction of transition firing sequences based on asynchronous observations of place token changes. Proceedings of the 46th IEEE Conference on Decision and Control, pages 1898-1903, December 2007.
[12] M. E. Meda-Campaña and S. Medina-Vazquez. Synthesis of timed Petri net models for on-line identification of discrete event systems. 9th IEEE International Conference on Control and Automation ICCA, pages 12011206, 2011.
[13] John O. Moody and Panos J. Antsaklis. Supervisory Control of Discrete Event Systems Using Petri Nets. Kluwer Academic Publishers, 1998.
[14] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of IEEE, pages 541-580, April 1989.
[15] C.M. Özveren and A. S. Willsky. Invertibility of discrete-event dynamic systems. Mathematics of Control, Signals, and Systems, pages 365-390, December 1992.
[16] Israel Rivera-Rangel, Antonio Ramírez-Treviño, L.I. Aguirre-Salas, and Javier Ruíz-León. Geometrical characterization of observability in interpreted Petri nets. Kybernetika, 41(5):553-574, 2005.
[17] Y. Ru and C.N. Hadjicostis. Sensor selection for structural observability in discrete event systems modeled by Petri nets. IEEE Transactions on Automatic Control, 55(8):1751-1764, August 2010.

[^0]: S.A. Nuño-Sánchez is with ITESO, Tlaquepaque, Jalisco, México. E-mail: snuno@gdl.cinvestav.mx. Supported by CONACYT scholarship N.- 35348
 A. Ramírez-Treviño and J. Ruiz-León are with CINVESTAV-IPN Unidad Guadalajara, Jalisco, México. E-mails:\{art,jruiz\} @gdl.cinvestav.mx

