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Abstract: This article first introduces the concept of wavelet q-Fisher information and then
derives a closed-form expression of this quantifier for scaling signals of parameter α. It
is shown that this information measure appropriately describes the complexities of scaling
signals and provides further analysis flexibility with the parameter q. In the limit of q → 1,
wavelet q-Fisher information reduces to the standard wavelet Fisher information and for
q > 2 it reverses its behavior. Experimental results on synthesized fGn signals validates
the level-shift detection capabilities of wavelet q-Fisher information. A comparative study
also shows that wavelet q-Fisher information locates structural changes in correlated and
anti-correlated fGn signals in a way comparable with standard breakpoint location techniques
but at a fraction of the time. Finally, the application of this quantifier to H.263 encoded video
signals is presented.

Keywords: scaling processes; 1/fα processes; wavelet information measures;
q-Fisher information; fractional Gaussian noise; structural change detection/location;
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1. Introduction

The study of the properties of computer network traffic is important for many aspects of computer
network design, performance evaluation, network simulation, capacity planning, network algorithmic
design, among others. In the very beginning of computer network traffic modelling, the traffic itself
was considered Markovian (with Poisson arrivals), because older telephone network traffic was suitably
described by this model and thus it was unsurprising to consider the characteristics of network traffic
similar to that of the telephone network. Markovian models permitted straightforward computations of
performance issues due to its short-range dependent (SRD) nature and because of the ease of computation
and lack of memory, they became very popular. The modelling of computer network traffic with
Markovian models ended when Leland and co-workers [1,2], based on detailed studies of high-resolution
network measurements, discovered that network traffic did not follow the Markovian model but instead
it was more appropriately modeled by self-similar or fractal stochastic processes. Subsequent studies not
only validated this finding but also found self-similar features in additional network configurations [3,4]
and traffic expected to flow in future networks [5,6]. The self-similar nature of network traffic (local
area network (LAN), Delay, variable-bit rate (VBR) video, etc.) indicated that computer network traffic
behaves “statistically” similar at different scales of observation. As a matter of fact, persistence behavior
was observed in LAN traffic at small as well as on high levels of observation. This finding was contrary
to commonly observed features of Markovian models where for large scales the traffic appeared to
reduce to white noise. The self-similar nature of network traffic implied that numerous results based
on the Markovian model needed to be thoroughly revised. Later, many authors reported that when
considering traffic as a self-similar process, many Internet quality of service (QoS) metrics such as delay,
packet-loss rate and jitter increased. This performance degradation implied that based on the observed
characteristics, not only was it necessary to characterize the traffic flowing through a network, but also
specifically designed actions were required to maintain the QoS of the network at acceptable levels.

The characterization of traffic was in principle performed by estimating the parameters which
determine most of its properties and behavior. The Hurst parameter (or the self-similarity parameter)
provided a rather complete characterization of self-similar processes. However, due to the complex
characteristics of observed traffic, nowadays it is clear that complementary techniques are required [7–9].
Self-similar processes are related to long-memory, fractal and multifractal processes and it is common
to find in the scientific literature claims that traffic is self-similar, fractal or multifractal. Self-similar
processes along with long-memory, fractal, 1/f and multifractal processes belong to the class of scaling
or scale-invariant signals. The theory of scaling signals has been relevant for the study of many
phenomena occurring in diverse fields of science and technology. Some aspects of physiology such
as heart-rate variability [10] are suitably modeled by scaling signals and the parameter estimated from
scaling signals determines much of the properties of the heart and the individual under study [10].
Electroencephalogram (EEG) signals obtained in humans and animals are also appropriately described
by scaling signals [11]. They also model the traffic flowing through computer communications [3,12,13],
the turbulence in physics, the noise observed in electronic devices [14] and the time series obtained in
economy [4] and finance, among others.
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Many techniques and methodologies have been proposed to analyze these processes [15–17];
however, they have shown to be limited for the rich set of complexities observed in the data [8,18].
Moreover, many articles have concluded that no single technique of analysis is sufficient for providing
efficient and robust estimation of the scaling parameter [15]. Because of this, current works concentrate
on developing cutting-edge techniques that are robust to trends, level-shifts and missing values embedded
in the data under study. The presence of these phenomenologies significantly impact the estimation
process and can lead to misinterpretation of the phenomena [10,15]. In this context, recent results
which attempt to study the complexities of the underlying process using wavelet based entropies provide
interesting alternatives. As a matter of fact, it has been demonstrated, for example, that wavelet Tsallis
q-entropies behave as a sum-cosh window [9] and that this behavior can be used to detect multiple mean
level-shifts embedded in the scaling signal under study and for the classification of scaling signals as
stationary or non-stationary as well [18].

This article defines the concept of wavelet q-Fisher information and shows that this information
quantifier can be used for the important problem of detecting level-shifts embedded in scaling signals,
in particular to H.263 signals. Closed-form expressions are found for the wavelet q-Fisher information
of scaling signals and information planes are also constructed. Wavelet q-Fisher information generalizes
wavelet Fisher information [19] and provides further analysis flexibility with the parameter q. Parameter
q in wavelet q-Fisher information permits to adapt the analyses to the type and characteristics of the data.
Extensive experimental studies using simulated signals validate the theoretical findings. It is shown
that wavelet q-Fisher information not only detects but also locates level-shifts in synthesized fractional
Gaussian noise (fGn) signals and H.263 encoded video signals.

The rest of the article is organized as follows, in Section 2, the properties and definitions of scaling
signals are briefly studied and its wavelet analysis explored. Some important results are reviewed
for fractional Brownian motion (fBm), fGn and discrete pure power-law (dPPL) signals. Section 3
defines the wavelet q-Fisher information concept and derives a closed-form expression (based on the
q-analysis) of this quantifier for scaling signals. Information planes are constructed from the theoretical
formulas and the behaviors of the quantifiers are explored for a range of the parameter α. The potential
applications of wavelet q-Fisher information are also presented in this section. Section 4 details the
level-shift detection problem and describes the way in which wavelet q-Fisher information is expected to
detect level-shifts embedded in scaling signals. Section 5 presents the level-shift detection properties of
wavelet q-Fisher information in synthesized fGn signals and later, a comparative study using correlated
and anti-correlated fGn signals is performed using the Bai and Perron [20] algorithm and a version of the
Bai and Perron technique along with with wavelet q-Fisher information. The rest of Section 5 presents the
analysis of H.263 encoded video signals with wavelet q-Fisher information. Finally, Section 6 presents
the conclusion of the article.

2. Wavelet Analysis of Scaling Processes

2.1. Scaling Processes

Scaling processes of parameter α, also called 1/fα or power-law processes, have been extensively
applied and studied in the scientific literature since they model diverse phenomena [12,13] within these
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fields. These processes are sufficiently characterized by the parameter α, called the scaling-index, which
determines many of their properties. Various definitions of the scaling property have been proposed
in the scientific literature, some based on their characteristics such as self-similarity or long-memory,
others based on the behaviour of their power spectral density (PSD). In this article, a scaling process is a
random process for which the associated PSD behaves as a power-law in a range of frequencies [3,21],
i.e.,

S(f) ∼ cf |f |−α, f ∈ (fa, fb) (1)

where cf is a constant, α ∈ R the scaling index and fa, fb represent the lower and upper bound
frequencies upon which the power-law scaling holds. Depending upon fa, fb and α, several particular
scaling processes and behaviours can be identified. Independently of α, local regularity and band-pass
power-law behaviour is observed whenever fa → ∞ and fb > fa � 0 respectively. When the
scaling-index α is taken into consideration, long-memory behaviour is observed when both 0 < α < 1

and fb > fa → 0. Self-similar features (in terms of distributional invariance under dilations) are
observed in all the scaling-index range for all f . Scaling-index α determines not only the stationary and
non-stationary condition of the scaling process but also the smoothness of their sample path realizations.
The greater the scaling index α, the smoother their sample paths. As a matter of fact, as long as
α ∈ (−1, 1), the scaling process is stationary (or stationary with long-memory for small f and α ∈ (0, 1))
and non-stationary when α ∈ (1, 3). Some transformations (e.g., the Lamperti transformation) can
make a stationary process appear non-stationary and vice versa. Outside the range α ∈ (−1, 3),
several other processes can be identified, e.g., the so-called extended fBms and fGns defined in the
work of Serinaldi [15]. The persistence of scaling processes can also be quantified by the index α

and within this framework, scaling processes possess negative persistence as long as α < 0, positive
weak long-persistence when 0 < α < 1 and positive strong long-persistence whenever α > 1. Scaling
signals encompasses a large family of well-known random signals, e.g., fBms, fGns [22], pure power-law
processes [21], multifractal processes [3], etc. FBm, BH(t), comprises a family of Gaussian, self-similar
processes with stationary increments and because of the Gaussianity, it is completely characterized by
its autocovariance sequence (ACVS), which is given by,

EBH(t)BH(s) = RBH (t, s) =
σ2

2

{
|t|2H + |s|2H − |t− s|2H

}
(2)

where 0 < H < 1 is the Hurst index. FBm is non-stationary and theoretically no spectrum can be defined
on it. However, fBm possesses an average spectrum of the form SfBm(f) ∼ c|f |−(2H+1) as f → 0 which
implies that α = 2H + 1 [23]. FBm appears very often as a model for many non-stationary phenomena;
however, when the signal under study is stationary, the fGn process (obtained from a transformation of
fBm) is rather used. FGn, GH,δ(t), obtained by sampling a fBm process and computing increments of
the form GH,δ(t) = 1/δ{BH(t + δ) − BH(t)}, δ ∈ Z+ (i.e., by differentiating fBm), is a well-known
Gaussian self-similar and long-memory process. The ACVS of this process is given by:

EGH,δ(t)GH,δ(t+ τ) =
σ2

2
{|τ + δ|2H + |τ − δ|2H − 2|τ |2H} (3)

where H ∈ (0, 1) is the Hurst index. The associated PSD of fGn is given by [21]:

SfGn(f) = 4σ2
XCH sin2(πf)

∞∑

j=−∞

1

|f + j|2H+1
|f | ≤ 1

2
(4)
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where σX is the process’ variance and CH is a constant. FGn is stationary and for large enough τ and
under the restriction of 1/2 < H < 1 possesses long-memory or long-range dependence (LRD). The
scaling index α associated to fGn signals is given by α = 2H − 1 as its PSD, given by Equation (4),
behaves asymptotically as SfGn(f) ∼ c|f |−2H+1 for f → 0. Another scaling process of interest is the
family of discrete pure power-law processes (dPPL) which are defined as processes for which their PSD
behaves as SX(f) = CS|f |−α for |f | ≤ 1, where α ∈ R and Cs represent a constant. PPL signals are
stationary when the power-law parameter α < 1 and non-stationary whenever α > 1. As stated in the
work of Percival [21], the characteristics of these processes and those of fBms/fGns are similar, however,
the differences between fBms and PPLs with α > 1 are more evident. As a matter of fact, differentiation
of stationarity/non-stationarity is far more difficult for PPL than for fBms/fGns. Figure 1 displays some
realizations of fGn, fBm and PPL processes. The scaling-index α of the PPL signals are identical to
the scaling-index of the associated fGn and fBm. Note that the characteristics of the sample paths of
fGn are fairly different from those of fBm. In the case of PPL processes, this differentiation is not so
evident and as a matter of fact, when the scaling indexes approach the boundary α = 1, classification
becomes complex. For further information on the properties, estimators and analysis techniques of
scaling processes please refer to [3,12,13,15,16,21,24].

Figure 1. Sample path realizations of some scaling processes. Top left depicts a fGn with
α = −0.1, top right shows a PPL process with α = −0.1, bottom left plots a fBm signal
with α = 1.9 and finally, bottom right plots a PPL process with α = 1.9.
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2.2. Wavelet Analysis of Scaling Signals

Wavelets and wavelet transforms have been extensively applied for the analysis of deterministic and
random signals in almost every field of science [8,25,26]. The advantages of wavelet analysis over
standard techniques of signal analysis has been widely reported in the literature and its potential for
non-stationary signal analysis proven. Wavelet analysis represents a signal Xt in time-scale domain by
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the use of an analyzing or mother wavelet, ψo(t) [27]. For the purposes of the paper, ψo(t) ∈ L1∩L2 and
the family of shifted and dilated ψo(t) form an orthonormal basis of L2(R). In addition, the finiteness of
the mean average energy (E

∫
|X(u)|2du < ∞) on the scaling process allows to represent it as a linear

combination of the form:

Xt =
L∑

j=1

∞∑

k=−∞

dX(j, k)ψj,k(t) (5)

where dX(j, k) is the discrete wavelet transform (DWT) of Xt and {ψj,k(t) = 2−j/2ψo(2
−jt − k),

j, k ∈ Z}, is a family of dilated (of order j) and shifted (of order k) versions of ψo(t). The coefficients
dX(j, k) in Equation (5), obtained by DWT, represent a random process for every j, a random variable
for fixed j and k and as such many statistical analyses can be performed on them. Equation (5) represents
signal Xt as a linear combination of L detail signals, obtained by means of the DWT. DWT is related
to the theory of multi-resolution signal representation (MRA), in which signals (or processes) can be
represented at different resolutions based on the number of detail signals added to the low-frequency
approximation signal. This can be written by the following equation

Xt = XL +
L∑

j=1

∞∑

k=−∞

dX(j, k)ψj,k(t) (6)

where XL is the approximation signal at scale L, which is obtained by projection of Xt in approximation
spaces Vj , and the right represent the L detail signals obtained by projections of Xt in wavelet spaces
Wj . In the study of scaling processes, wavelet analysis has been primarily applied in the estimation
of the wavelet variance [7,8]. Wavelet variance or spectrum of a random processes accounts for
computing variances of wavelet coefficients at each scale. Wavelet variance not only has permitted
to propose estimation procedures for the scaling-index α but also to compute entropies and other
information measures associated to scaling signals. Wavelet spectrum has also been used for detecting
non-stationarities embedded in Internet traffic [8] and has been shown to describe appropriately the
second-order properties of some well-known processes. For stationary zero-mean processes, wavelet
spectrum is given by:

Ed2X(j, k) =

∫ ∞

−∞
SX(2−jf)|Ψ(f)|2df (7)

where Ψ(f) =
∫
ψ(t)e−j2πftdt is the Fourier integral of ψo(t) and SX(.) represents the PSD of

Xt. Table 1 summarizes the wavelet spectrum for some standard scaling processes. Note that E(.)

and Var(.) represent the expectation and the variance operator and C(ψ, α) and C constants. The
mathematical properties and the estimation procedures for the class of long-memory, self-similar and
Hsssi processes are defined further in the work of Beran [13] and for the class of dPPL signals in the
work of Percival [21]. Hsssi processes are signals for which both the self-similarity property and the
stationarity of the increments is satisfied. It permits to obtain in the limit a long-memory signal as long
as H ∈ (1/2, 1). This process is of fundamental importance since it has stationary properties and as
a consequence is extensively used in the literature to model many phenomena. For further details on
the analysis, estimation and synthesis of scaling processes, please refer to the works of Abry [27,28],
Bardet [29,30] and references therein.
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Table 1. Wavelet spectrum or wavelet variance associated to different types of scaling
processes. E(.), Var(.) and Ψ(.) represent expectation, variance and Fourier integral
operators respectively.

Type of scaling process Associated wavelet spectrum or variance
Long-memory process Ed2X(j, k) ∼ 2jαC(ψ, α), C(ψ, α) = cγ

∫
|f |−α|Ψ(f)|2df

Self-similar process Ed2X(j, k) = 2j(2H+1)Ed2X(0, k)

Hsssi process Vard2X(j, k) = 2j(2H+1)VardX(0, 0)

dPPL process Ed2X(j, k) = C2jα

3. Wavelet q-Fisher Information of 1/fα Signals

3.1. Time-Domain Fisher’s Information Measure

Fisher’s information measure (FIM) has recently been applied in the analysis and processing of
complex signals [31–33]. In [31], FIM was applied to detect epileptic seizures in EEG signals recorded
in human and turtles. Later, the work of Martin [32] reported that FIM can be used to detect dynamical
changes in many non-linear models such as the logistic map, Lorenz model, among others. The work
of Telesca [33] reported on the application of FIM for the analysis of geoelectrical signals. Recently,
Fisher information has been extensively applied in quantum mechanical systems for the study of single
particle systems [34] and also in the context of atomic and molecular systems [35]. Fisher’s information
measure has also been used in combination with Shannon entropy power to construct the so-called
Fisher–Shannon information plane/product (FSIP) [36]. The Fisher–Shannon information plane was
recognized in that work to be a plausible method for non-stationary signal analysis and has been applied
to study geoelectrical and other nonstationary signals. Let Xt be a random signal with associated
probability density fX(x). Fisher’s information (in time-domain) of signal Xt is defined according to
the following relation

IX =

∫ (
∂

∂x
fX(x)

)2
dx

fX(x)
(8)

Fisher’s information IX is a non-negative quantity that yields large (possibly infinite) values for
smooth signals and small values for random disordered data. Accordingly, Fisher’s information is
large for narrow probability densities and small for wide (flat) ones [37]. Fisher information is also a
measure of the oscillatory degree of a waveform, where highly oscillatory functions have large Fisher
information [34]. The purpose of the article is to study the behavior of Fisher information (defined
in wavelet domain) of scaling signals of parameter α. Fisher’s information has mostly been applied
in the context of stationary signals using a discretized version of Equation (8), which is given by the
following equation,

IX =
L∑

k=1

{
(pk+1 − pk)2

pk

}
(9)

for some probability mass function (pmf) {pk}Lk=0. Fisher information can be generalized in various
ways to provide further analysis flexibility and to adapt the analyses to the characteristics of the data
under study. Several generalizations have been proposed in the literature. This article uses and studies
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the q-Fisher information of Plastino and coworkers [11]. Plastino and co-workers defined the q-Fisher
information of a probability mass functions as [11]

Iq ≡
∑

j

{pj+1 − pj}2 pq−2j (10)

As stated above, parameter q provides further analysis flexibility and can highlight possible
nonstationarities embedded in the signal under study. In this context, q-Fisher information is again a
descriptor of the complexities associated to random signals and shares similar properties as the standard
Fisher’s information in the sense that it is large for narrow probability density and also for highly
oscillatory data.

3.2. Wavelet q-Fisher Information

This article defines a generalized version of Fisher information in the wavelet domain (called wavelet
q-Fisher information), derives a closed-form expression of this quantifier for scaling signals, and explores
the possibility of using wavelet q-Fisher information for the analysis of scaling signals. Let {Xt,

t ∈ R} be a real-valued scaling process satisfying Equation (1), with DWT {dX(j, k), (j, k) ∈ Z2} and
associated wavelet spectrum E|dX(j, k)|2 ∼ cXt2

jα (cXt a constant and E the expectation operator) [8].
A pmf obtained from the wavelet spectrum of scaling signals is given by the expression [9,38–41]

pj ≡
1/Nj

∑
k Ed2X(j, k)∑M

i=1 {1/Ni

∑
k Ed2X(i, k)}

= 2(j−1)α 1− 2α

1− 2αM
(11)

where Nj (respectively Ni) represents the number of wavelet coefficients at scale j (respectively i),
M = log2(N) with N ∈ Z+ the length of the data and j = 1, 2, . . . ,M . Substituting Equation (11) into
Equation (10) results in the wavelet q-Fisher information of a scaling signal which is given by

Iq = (1− 2α)2
{

1− 2α

1− 2αM

}q {
1− 2αq(M−1)

1− 2αq

}
(12)

= 2α(1−q/2)+2
{

sinh2
1−v1 (u2)

}
{

sinhq1−v2/(M−1) (u2)

sinh1−v1 (u1)

}

×
{

sinh1−v1 (u1)

sinhq1−v2 (u2)

}{
Pnum

Pden

}
(13)

where Pnum and Pden are given by the following polynomial expressions

Pnum = 2 cosh1− v1
(M−2)

(u1(M − 2)) + 2 cosh1− v1
(M−4)

(u1(M − 4))

+ 2 cosh1− v1
(M−6)

(u1(M − 6)) + . . . (14)

Pden = 2 cosh1− v2
(M−1)

(u2(M − 1)) + 2 cosh1− v2
(M−3)

(u2(M − 3))

+ 2 cosh1− v2
(M−5)

(u2(M − 5)) + . . . (15)

with u1 = αqlnq(2)/2, u2 = qu1, v1 = 2(1− q)/(αq) and v2 = qv1. Equations (13)–(23) involve the use
of the q-analysis [42], where

sinhq(x) ≡ {exq − e	qxq }/2 (16)

coshq(x) ≡ {exq + e	qxq }/2 (17)
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denote the q-sinh and q-cosh functions and

exq ≡ {1 + (1− q)x}1/(1−q) (18)

	qx ≡ (−x)/{1 + (1− q)x} (19)

denote the q-exponential and q-difference functions. Equation (13) allows to relate the results of wavelet
q-Fisher information with the ones of the standard wavelet Fisher information measure. As a matter of
fact, in the q → 1 limiting case, wavelet q-Fisher information turns out to be the standard wavelet Fisher
information for which the following holds:

I1 =
(2α − 1)2

(
1− 2α(M−1)

)

1− 2αM
(20)

= 2
α
2
+2 sinh2 (α ln 2/2).

{
PM
num (2 cosh (α ln 2/2))

PM+1
den (2 cosh (α ln 2/2))

}
(21)

where PM
num(.) and PM+1

den (.) denote polynomials of argument 2 cosh(α ln 2/2) that are given by

PM
num(.) = (2 coshu)M − 2(M − 3)

2!
(2 coshu)M−2

+
3(M − 4)(M − 5)

3!
(2 coshu)M−4 − . . . (22)

PM+1
den (.) = (2 coshu)M+1 − (M − 2)

1!
(2 coshu)M−1

+
(M − 3)(M − 4)

2!
(2 coshu)M−3 − . . . (23)

where u = α ln 2/2. Parameter q provides further analysis flexibility and allows to potentially emphasize
some characteristics in the data under study. In [19], the wavelet Fisher’s information was introduced
and the wavelet Fisher information plane was presented. An interesting question is how the information
plane is affected by the value of the parameter q. Since q is allowed to vary from−∞ to +∞, the present
article studies relevant features in some key ranges of q. Figure 2 shows the effect of the parameter q on
the information planes obtained by wavelet q-Fisher information, and as a consequence, it is possible to
study with some detail the complexities of scaling signals in different ranges of the scaling parameter α.

The wavelet q-Fisher information planes shown in Figure 2 display the Fisher information (in wavelet
domain) for q ∈ (0, 1) for various stationary and nonstationary scaling processes. Note that as q → 0, the
wavelet q-Fisher information of nonstationary signals (α > 0) increases exponentially. Nonstationary
signals are therefore more perceptible or attain high Fisher’s information (when q → 0) than stationary
scaling signals. Note that as long as q ∈ (0, 1), the form of the wavelet q-Fisher information planes are
similar in shape. This shape is preserved as long as q < 2. For the special case q > 2, a completely
different behaviour is observed on Fisher planes. Also note that as long as q ∈ (0, 1), the stationary
scaling signals Fisher information are small. Figure 3 displays the wavelet q-Fisher information plane
for scaling signals when q ≥ 2. When q = 2, wavelet q-Fisher information is symmetrical around α = 0

and the Fisher information observed at the right of q = 2 are identical to those observed at the left of that
point. For q = 3, wavelet q-Fisher information is high for stationary signals and low for nonstationary
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ones. Note that this behaviour is contrary (opposite) to the behaviour observed for this quantifier when
q ∈ (0, 1). Based on this, wavelet q-Fisher information reverses its behaviour as long as q > 2. The
boundary q = 2, therefore, permits wavelet q-Fisher information to highlight nonstationary or stationary
phenomena (or processes). For q →∞, nonstationary phenomena is zero. Figure 4 reviews the behavior
observed in the wavelet q-Fisher information planes for q < 2 and q ≥ 2.

Figure 2. Wavelet q-Fisher information for 1/fα signals. Top left plot displays the Fisher
information with q = 0.2, top right with q = 0.4. Bottom left graph represents Fisher
information for q = 0.6 and bottom right plot with q = 0.8. 1
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Î q

−2
0

2
4

10

150

20

Scaling-index α
Length M

3.3. Applications of Wavelet Fisher’s Information Measure

As studied above, wavelet q-Fisher information allows to discern between stationary and
nonstationary scaling signals, which equivalently, allows to suitably describe the complexities within
these signals. Based on the fact that wavelet q-Fisher information has large values for non-stationary
signals and small values for stationary ones (for the case q ∈ (0, 1)), a potential application area
of wavelet q-Fisher information is in the classification of fractal signals as fractional noises and
motions. Classification of 1/fα signals as motions or noises remains as an important, attractive and
unresolved problem in scaling signal analysis [10,43,44] since the nature of the signal governs the
selection of estimators, the shape of quantifiers such as qth order moments, the nature of correlation
functions, etc. [45]. The correct classification of scaling signals avoids many estimation issues, however,
it is not trivial in the limit of α → 1. Another important potential application of wavelet q-Fisher
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information, related to the classification of signals, is in the blind estimation of scaling parameters [46].
Blind estimation refers to estimating α, independently of signal type (stationary or non-stationary).
Wavelet q-Fisher information can also be utilized for the detection of structural breaks in the mean
embedded in 1/fα signals. Structural breaks in the mean affect significantly the estimation of scaling
parameters leading to biased estimates of the parameter α and consequently in misinterpretation of
the phenomena.

Figure 3. Wavelet q-Fisher information for 1/fα signals. Top left plot displays the Fisher
information with q = 2.5, top right with q = 3. Bottom left graph represents Fisher
information for q = 3.5 and bottom right plot with q = 4.
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Î q

Iq

−2
0

2
4

10

150

0,1

0,2

Iq

−2 0 2 4 6

10

150

0,1

Scaling-index α
Length M

G
en

er
a
li
ze
d
q-
F
is
h
er
,
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Stoev and coworkers [8] demonstrated that the well-known Abry–Veitch estimator [27,28]
overestimates the scaling index α in the presence of a single level-shift which gives rise to values of
H = (α + 1)/2 > 1, which in principle are not permissible in the theory of self-similar signals. In
the following, the paper concentrates on the detection of structural breaks in the mean embedded in
synthesized stationary fGn signals by the use of wavelet q-Fisher information. Figure 5 illustrates a
flowchart that can be used for enhancing the estimation of the scaling parameter α for scaling signals
with multiple structural changes. The first step is to detect and locate structural changes followed by the
quantification of the amplitude of the structural changes and the elimination of the structural changes in
the signal.
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Figure 4. Wavelet q-Fisher information of scaling signals. Wavelet q-Fisher information
is exponentially increasing (or decreasing) for signals with α > 0 (or −∞ < α < 0) and
minimum for scaling signals with α = 0. 1
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Figure 5. Estimation of the scaling index α in the presence of structural changes in the mean.
The estimation involves three steps, level-shift detection & location, level-shift quantification
& elimination and estimation of the scaling index in a time series with no structural changes.

Level-shift
quantification
& elimination

Level-shift detec-
tion & location

Estimation of α
SX(f) ∼
C|f |α α̂

Flowchart for estimating parameter α

The final step is to estimate the scaling parameter α with some standard method of estimation such as
the Abry–Veitch estimator. Without the use of this methodology, significant biases in the estimation of α
can be obtained, which in turn gives rise to misinterpretation of the phenomena under study. This article
studies anti-correlated and correlated versions of fractional Gaussian noises and the power of wavelet
q-Fisher information in detecting single structural breaks in the mean within these signals.
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4. Level-Shift Detection Using Wavelet q-Fisher Information

4.1. The Problem of Level-Shift Detection

Detection and location of structural breaks in the mean (level-shifts) has been recognized as an
important research problem in many areas of science [47,48]. In the Internet traffic analysis framework,
detection, location and mitigation of level-shifts significantly improves on the estimation process.
Moreover, it has been demonstrated [8] that the presence of a single level-shift embedded in a stationary
fGn will result in an estimated H > 1 [8] (estimated using wavelet-based methodologies). This is
turn results in misinterpretation of the phenomena under study, inadequate construction of qth-order
moments, etc. Let B(t), t ∈ R be a 1/f signal with level-shifts at time instants {t1, t1+L, . . . tj, tj+L}.
B(t) can be represented as

B(t) = X(t) +
J∑

j=1

µj1[tj ,tj+L](t) (24)

where X(t) is a signal satisfying Equation (1) and µj1[a,b](t) represents the indicator function of
amplitude µj in the interval [a, b]. The problem of level-shift detection reduces to identify the points
{tj, tj+L}j∈J where a change in behaviour occurs. Often, the change is perceptible by eye, but frequently
this is not the case and alternative quantitative methods are preferred. In what follows, a description of
the procedure for detecting level-shifts in 1/f signals by wavelet q-Fisher information is described and
later results on simulated fGn and H.263 encoded video signals are presented.

4.2. Level-Shift Detection Using Wavelet q-Fisher Information

To detect the presence of level-shifts in fractal 1/f signals, wavelet q-Fisher information is computed
in sliding windows. A window of length W , located in the interval m∆ ≤ tk < m∆ + W applied to
signal {X(tk), k = 1, 2, . . . N} is

X(m;W,∆) = X(tk)Π

(
t−m∆

W
− 1

2

)
(25)

where m = 0, 1, 2, . . .mmax, ∆ is the sliding factor and Π(.) is the well-known rectangular function.
Note that Equation (25) represents a subset of X(tk) and thus by varying m from 0 to mmax and
computing wavelet q-Fisher’s information on every window, the temporal evolution of wavelet q-Fisher
information is followed. Suppose the wavelet q-Fisher information at time m (for sliding factor ∆) is
denoted as IX(m), then a plot of the points

{(W +m∆, IX(m))}mmaxm=0 := Iq (26)

represents such time-evolution. In [8], it was demonstrated that the presence of a sudden jump in a
stationary fractal signal will cause the estimated Ĥ > 1. The level-shift, thus, causes the signal under
observation to become non-stationary. In the wavelet Fisher’s information framework, this sudden jump
will cause its value to increase suddenly. Therefore a sudden jump increase (in the form of an impulse) in
the plot of Equation (26) can be considered as an indicator of the occurrence of a single level-shift in the
signal. These theoretical findings are experimentally tested by the use of synthesized scaling signal with
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level-shifts. The synthesized signals correspond to fGn signals generated using the circular embedding
algorithm [49,50] (also known as the Davies and Harte algorithm).

5. Results and Discussion

5.1. Analysis of fGn Signals with Single Level-Shifts

Figure 6 displays the level-shift detection capabilities of wavelet q-Fisher information for a
self-similar, long-memory fGn with Hurst exponent H = 0.7 and a single structural break embedded
within its structure.

Figure 6. Detection of a single structural break at tb = 8192 embedded in a fractional
Gaussian noise signal with parameter H = 0.7.
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The structural break is located at tb = 8192, i.e., in the middle of the time series. The amplitude of
the level-shift is

√
σ2
X/2, where σ2

X is the variance of the analyzed fGn signal. Top plot displays the
graph of a stationary fGn signal with a single level-shift. For illustration purposes, the level-shift is also
shown in white within this figure. Note that the level-shift embedded within the fGn is imperceptible,
therefore, its detection becomes complex. Many articles in the literature claim that a given technique
is a good level-shift detection tool, however, they present results on solely anticorrelated signals with
large level-shifts. As stated above, an impulse-like peak in the wavelet q-Fisher plot is an indicator of a
level-shift in the analyzed signal. Note from bottom plot of Figure 6 that wavelet q-Fisher information
not only detects the weak level-shift but also locates it with reasonable accuracy. Level-shifts with
amplitudes greater than

√
σ2
X/2 are also efficiently detected by wavelet q-Fisher information. The results

presented in bottom plot of Figure 6 were computed using a value of q = 0.6. In order to efficiently
detect weak level-shifts embedded in correlated fGn signals, the value of q must lie within (0, 1); the
more correlated the signal (and also the more weaker the level-shift) the lower the value of q. Decreasing
the value of q has the effect of increasing the amplitude of the impulse-shaped peak in the wavelet
q-Fisher information which in consequence makes the detection easier. Multiple weak level-shifts are
also efficiently detected by wavelet q-Fisher information. As wavelet q-Fisher information is computed in
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sliding windows, multiple weak level-shifts are not only detected but also located. The more correlated
the signal, the more difficult it is to detect and locate the level-shifts. Figure 7 displays the wavelet
q-Fisher information for anticorrelated fGn signals with a single level-shift.

Figure 7. Wavelet q-Fisher information for anticorrelated fGn signals. Top left plot displays
the wavelet q-Fisher information for a fGn signal with H = 0.1, top right plot with H = 0.2,
bottom left plot for H = 0.3 and finally bottom right plot for H = 0.4. The amplitude of
level-shifts was set to
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The level-shift amplitude is
√
σ2
X/2 and is located in the middle of the time series with length

N = 214. Top left plot displays the wavelet q-Fisher information for a fGn signal with Hurst exponent
H = 0.1. Note that a large impulse-shaped peak indicates the presence of a single level-shift embedded
in the fGn signal under study. The wavelet q-Fisher information was computed in sliding windows with
window-length W = 211 at sliding factor of ∆ = 90. Parameter q was set to q = 0.6. Top right plot
displays the Fisher information of a fGn signal (with H = 0.2) with a single level-shift. Note that the
presence of the level-shift is shown by the large impulsive peak in the wavelet q-Fisher information plot.
Bottom plots display the wavelet q-Fisher information for fGn signals with H = 0.3 and H = 0.4.
Wavelet q-Fisher information plot detects, as in the previous cases, the presence of the single level-shift
by an impulse shaped peak in the middle of the time series. Similar results are obtained when analyzing
anti-correlated fGn with H < 0.5, which in principle indicates that wavelet q-Fisher information detects
the presence of a single weak level-shift embedded in anticorrelated self-similar signals. Recall that
anti-correlated signals share the property that large values are likely to be followed by low values, or
equivalently, positive values are likely to be followed by negative values. Figure 8 displays the wavelet
q-Fisher information plots for long-memory, self-similar fGn signals.
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Figure 8. Wavelet q-Fisher information for Gaussian white noise and correlated fGn signals.
Top left plot displays the wavelet q-Fisher information for a Gaussian white noise signal
(H = 0.5), top right plot for a fGn signal with H = 0.6, bottom left plot for a fGn signal
with H = 0.8 and finally bottom right plot for a fGn with H = 0.9. The amplitude of
level-shifts was set to

√
σ2
X/2.
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Top left plot displays the wavelet q-Fisher information for a random Gaussian white noise (fGn with
H = 0.5). As in the previous analyses, wavelet q-Fisher information is computed using q = 0.6 and
sliding windows with W = 211 and ∆ = 90. This and the previous results indicate that wavelet q-Fisher
information detects the presence of level-shifts embedded in fGn signals which are either anticorrelated
or completely random, i.e., level-shifts are detected as long as the Hurst parameter in fGn signals is
H ≤ 5. The rest of the plots of Figure 8 display the level-shift detection capabilities of wavelet q-Fisher
information for correlated fGn signal. The stationarity and self-similarity conditions are still satisfied
and the correlation within observations varied. Top right plot displays the wavelet q-Fisher information
for a fGn signal with weak long-memory (H = 0.6) and a single level-shift (with amplitude

√
σ2
X/2).

The level-shift within the signal is correctly detected by wavelet q-Fisher information. Bottom left and
bottom right plots of Figure 8 display the wavelet q-Fisher information for strongly correlated (H = 0.8

andH = 0.9 respectively) stationary fGn signals with a single level-shift within its structure. Note that in
both plots the level-shifts are correctly detected by wavelet q-Fisher information and for the case of single
level-shifts, wavelet q-Fisher information detects effectively these nonstationarities for anti-correlated,
random and correlated stationary fGn signals.

5.2. Comparison with Other Methods

Wavelet q-Fisher information not only detects but also, with some accuracy, locates single and
multiple level-shifts embedded in fGn signals of parameter H . To test the accuracy of wavelet q-Fisher
information as a structural break detection and location technique, a comparative study with some
standard methodology of breakpoint location is performed using synthesized fGn signals. Anticorrelated
and correlated fGn signals are used to test how well wavelet q-Fisher’s information (along with some
breakpoint detection/location technique) locates single structural breaks embedded in the middle of the
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process. The well-known Bai & Perron algorithm [20] for multiple structural change detection is used in
this article. The Bai & Perron algorithm is tested against a reduced size time series of wavelet q-Fisher
information for which the same Bai & Perron algorithm is applied. Thus, the Bai & Perron algorithm is
used along with wavelet q-Fisher information in order to date the structural change detected by wavelet
q-Fisher information. The advantage of using the Bai & Perron algorithm in wavelet q-Fisher information
time series is that it is possible to investigate the presence of multiple structural changes in long traces
in a fraction of the time required in the standard Bai & Perron algorithm.

Table 2. Comparison of wavelet q-Fisher information based Bai & Perron technique for
breakpoint detection with Bai & Perron algorithm. The traces used were synthesized using
the fGn model with length N = 4096 and a single break at tb = 2048.

Statistics

Breakpoint detection using fGn signals
Nominal H

Bai & Perron algorithm Wavelet FIM Bai & Perron
0.3 0.5 0.7 0.3 0.5 0.7

BIAS −0.53 −0.83 456.1 −464.6 −490 −439

σ 4.41 32.2 569 138 256 562√
MSE 4.37 31.64 722.33 484.1 551.1 706.4
µ 2048 2048 1591 2512 2538 2487

min() 2040 2000 646 2184 2104 1444
max() 2058 2186 2159 2844 3624 3624

For instance, the Bai & Perron algorithm analyzes a trace of N = 4096 points in almost 10 minutes,
while for the wavelet FIM based Bai & Perron algorithm it is performed in seconds. Table 2 presents
a comparison of the standard Bai & Perron methodology for structural change detection and location
against the same technique using pre-processed (using wavelet q-Fisher information) time series. The
techniques were tested using 30 time series of fGn type with Hurst exponents H = {0.3, 0.5, 0, 7}. The
statistics were computed as BIAS = τ̂b − τ0, where τ0 is the location of the structural break and τ̂b is
the mean structural break dated with some technique. The rest of the statistics are the mean, µ = τ̂b, the
standard deviation, σ, the min, max and the

√
MSE = 1/L

∑L
j=1 (τ̂ jb − τ0)2. Note from the Table 2 that

wavelet q-Fisher information has a BIAS of around ∼ 450, this BIAS can be explained by the fact that
wavelet q-Fisher information detects level-shifts by the presence of a phased impulse-shaped peak. The√
MSE values for the wavelet q-Fisher information can also be explained by this phased nature of the

peaks within wavelet q-Fisher information. Note that when applied to correlated fGn signals, the wavelet
FIM based Bai & Perron algorithm performs better than the standard Bai & Perron algorithm. These
results indicate that wavelet FIM based Bai & Perron technique works reasonably well for detecting and
locating weak structural changes in fGn signals and that can be applied to long traces since it is fast
and robust.
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5.3. Application to H.263 Video Traces

H.263 video encoded traffic, along with MPEG-4 video traffic, is expected to account for a large
amount of the traffic in both future wireline and wireless computer communications networks [6].
Video traffic is recognized in the literature to possess long-memory characteristics independently of
the encoding algorithm used to generate the video trace [5]. Reported statistical studies, for some video
traces, indicate the presence of nonstationarities within the traces due to the Hurst parameter estimation
H > 1 and a test for time constancy of the scaling exponent α indicates that the Hurst parameter varies
with time. As reported in the work of Stoev [8], a Hurst parameter estimation greater than 1 indicates
the presence of a level-shift embedded in the time series under study. A single level-shift in a fGn time
series causes the estimated Hurst parameter within the signal (using wavelet based estimation) to be
greater than 1. In this section, we explore the wavelet q-Fisher information for some publicly available
video traces and discuss the stationarity nature of the video traces based on the estimated wavelet Fisher
information. The traces studied were obtained at Technical University of Berlin web page and represent
60 minutes of H.263 video encoded traffic using 256 kbit/s target bit rate. Top plot of Figure 9 displays
the time series of H.263 encoded Mr. Bean movie. Each point of the time series represents the number
of bits of each frame size. The total length of the encoded Mr. Bean movie is 26, 034 points. The
Hurst parameter of Mr. Bean movie is H > 1, which indicates the presence of some nonstationarity
within the signal. Bottom plot of Figure 9 display the wavelet q-Fisher information (with q = 0.8) of
Mr. Bean movie computed in sliding windows of length W = 2048 and sliding factor of ∆ = 100.
Note that the wavelet q-Fisher information of Mr. Bean movie displays some impulse-shaped peaks
at t ∼ {8000, 11000, 20000, 25000} which according to the previous discussion on simulated signals
indicate the presence of level-shifts embedded in the time series under study. The presence of peaks
within a signal indicates in consequence that different regions of similar behavior are observed within
the signal. This is turn indicates that current stationary models for video sequences need to be revised
thoroughly. Similar behavior of the wavelet q-Fisher information is observed when varying the parameter
q in the interval q ∈ (0, 1). By approaching q → 0, some level-shifts in the form of impulses are
amplified. The results of the wavelet q-Fisher information are similar as those presented in [6] in the
sense that the presence of peaks indicate that the scaling exponents are not constant in time and that the
presence of level-shifts causes the estimated Hurst parameter H > 1.

Figure 10 displays the time series obtained by encoding the Jurassic Park movie with H.263 algorithm
and the wavelet q-Fisher information of the encoded video trace. The length of the time series is 25, 407

points and the wavelet q-Fisher information was computed with q = 0.8, W = 2048 and ∆ = 100.
Note from the bottom plot of Figure 10 that the wavelet q-Fisher information of Jurassic Park movie

presents, as in the previous case, several impulse-shaped peaks indicating the presence of level-shifts
within the encoded video signal. Finally Figure 11 displays the encoded video signal of Star Wars IV
movie along with the wavelet q-Fisher information of this signal computed with q = 0.8, W = 2048 and
∆ = 100. The length of this H.263 encoded video signal is 25, 243. Note that as in the previous analyses,
impulse shaped peaks are found in the wavelet q-Fisher information of this signal. These results indicate
that H.263 encoded video signals display nonstationary features which need to be taken into account
since future wireline and wireless networks will likely support this type of traffic.
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Figure 9. Wavelet q-Fisher information for an H.263 encoded video signal. Top plot displays
the time series (frame size in bits) of Mr. Bean movie and bottom plot shows the wavelet
q-Fisher information of Mr. Bean movie using a q = 0.8.
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Figure 10. Wavelet q-Fisher information for an H.263 encoded video signal. Top plot
displays the time series (frame size in bits) of Jurassic Park movie and bottom plot shows the
wavelet q-Fisher information of Jurassic Park movie using a q = 0.8.
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Figure 11. Wavelet q-Fisher information for an H.263 encoded video signal. Top plot
displays the time series (frame size in bits) of Star Wars IV movie and bottom plot shows the
wavelet q-Fisher information of Star Wars IV movie using a q = 0.8.
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6. Conclusions

In this article, the definition of wavelet q-Fisher information was presented and the properties of
this quantifier for scaling or 1/fα processes studied. A closed-form expression of wavelet q-Fisher
information was derived for scaling signals in terms of the q-analysis and it was demonstrated that in
the q → 1 limit, it converged to the standard wavelet Fisher information. Wavelet q-Fisher information
provides further analysis flexibility since q can be adjusted according to the properties and characteristics
of the data. For q > 2, wavelet q-Fisher information reverses its behavior and when q ∈ (0, 1) it
can be used for the detection of level-shifts embedded in scaling signals. Experimental studies using
synthesized fGn signals and the Bai & Perron algorithm demonstrate that wavelet q-Fisher information
not only detects but also locates weak level-shifts embedded within these signals. The application of
wavelet q-Fisher information to H.263 encoded video signals was also presented.
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