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SUMMARY 

The goal of this study is to answer two questions concerning 

linear spring-mass chains in which all the spring constants are equal 

but the masses are not all equal and do not vary monotonically along 

the chain. It is known from earlier work that a solution of the 

equations of motion of an infinite spring-mass chain can be given in 

terms of sequences of orthogonal polynomials and that if the mass is 

non-constant and non-monotone the polynomials are not any of the 

classical orthogonal polynomials. The procedure used to construct 

such a solution requires that the weight function and interval of 

orthogonality of the polynomials be known. If the polynomials 

satisfied a fourth-order differential equation, then the weight function 

and interval of orthogonality could be deduced from this equation in 

the same way they are deduced for the classical orthogonal polynomials 

from the second-order differential equations which those polynomials 

satisfy. 

Thus the first question is whether there exists a sequence of 

non-classical orthogonal polynomials satisfying a certain recurrence 

relation and at the same time satisfying a fourth-order differential 

equation. Unfortunately from the point of view of solving the equations 

of motion of an infinite chain of oscillators, it is shown that no such 

sequence exists. 

l 
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The second question concerns a finite chain of linear 

oscillators in -which one mass differs from the rest. A transcendental 

equation satisfied "by the characteristic frequencies of the system is 

derived; and it is shown that as the altered mass approaches zero, 

exactly one of the characteristic frequencies approaches plus infinity., 

while all the others remain in a certain bounded interval. It is also 

shown that if the altered mass is in the middle of the chain, the largest 

characteristic frequency can be pushed out. of this interval by a relatively 

small change in the mass. 
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CHAPTER I 

INTRODUCTION 

The purpose of this study is to answer two questions related to 

the impurity problem, two versions of which may be visualized in terms 

of the physical systems shown in Figure 1 . In Figure 1(a) infinitely 

many similar masses free to slide on a frictionless plane are joined 

together by identical massless linear springs. Figure 1(b) differs 

from 1(a) only in that finitely many (p) of the masses, not necessarily 

consecutive, no longer have the common value m; they have values 

u^m (|i > =(= 1 ; a = 1 * 2 , * *'jP). Figure 1(c) is like 1(a) except 

that the number of masses is a fixed positive integer N. In Figure 1(d) 

the jth ( 1 ̂  j ̂  N) mass of Figure 1(c) has been replaced by a mass of 

value [im (u > 0 , u =̂ l). The impurity problem consists of comparing 

some property or properties of the system shown in Figure 1(b) with the 

corresponding property or properties of the system in Figure 1(a), and 

similarly for Figures l(d) and 1(c), 

The two questions to be answered may be formulated in the following 

way. 

(i) 
n = 0 

of polynomials generated 

by the recurrence relation 
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== x 

= 1 

(1) 
P (x) - n(n + 1) n - 1 (x), n * 1 , 

where a and c are non-zero real constants (independent of x and n). For 

what values of a and c, if any, do the polynomials P (x) (for each n) 

fail to satisfy a second-order ordinary differential equation and yet 

satisfy a fourth-order differential equation of the form 

where X n is a function of n "but not of x and is not identically zero in 

n? 

(ii) For the chain of linear oscillators shown in Figure 1(d), 

is there a simple transcendental equation whose solutions give the natural 

frequencies of the system as functions of j, N, and |i? If so, what is the 

equation and is it possible by using this equation to bound the natural 

frequencies for arbitrary positive u? 

Since the relationship of question (i) to the impurity problem is 

not obvious, some explanation is needed. The solution of the impurity 

problem for the infinite chain in which only finitely many masses have 

values other than m (Figure 1(b)) appears to be very difficult. Consequently, 

it has been conjectured that some insight into the problem may be obtained 

by considering spring-mass chains in which infinitely many masses have 

values other than m but in which m (the value of the nth mass) is not a 
n v — ' 

constant nor a monotone function of n. By using suitable sequences of 

aQ(x)y + a1(x)y 1 1 f + a2(x)y' * + ^(xjy* + Xna^(x)y = 0 , (2) 



orthogonal polynomials, A. G. Law [l] has given solutions of the 

equations of motion of a number of infinite spring-mass chains. Results 

obtained "by J. W. Jayne [2] and W. F. Martens [3] show, however, that if 

all the spring constants in such a chain are equal and if the sequence 

of polynomials required in Law's solutions is a Sturm-Liouville sequence 

associated with a second-order ordinary differential equation (all the 

classical orthogonal polynomials are in this category), then m^ is either 

constant or monotone in n. Hence, no sequence of classical orthogonal 

polynomials (or, more generally, no Sturm-Liouville sequence of orthogonal 

polynomials associated with a second-order ordinary differential equation) 

is suitable for studying a chain in which the spring constants are equal 

but m is non-constant and non-monotone. On the other hand, Law's solutions n 9 

require that the interval of orthogonality of the polynomials, the 

distribution associated with them, and the three-term recurrence relation 

which they satisfy be known. Favard [k] has given a simple condition 
sufficient to guarantee that polynomials generated 

by a three-term recurrence relation of the form 

4> 0 « = 1 

^(x) = A Q x + B Q 

6 (x) = ('A x + B ) <b (x) - C d) _ (x) , Tn + l v ' • n n' rn v ' n Yn - lv ' ' 

(3) 
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be orthogonal with respect to some distribution on some interval. 

However, the problem of actually finding the distribution and the 

interval when the recurrence relation (3) is known has been solved 

only in special cases. These facts suggest that it may be fruitful to 

identify sequences of non-classical orthogonal polynomials associated 

with fourth-order (but not second-order) differential equations in the 

hope that such sequences will permit the investigation of chains in 

which m^ is neither constant nor monotone. For such sequences the interval 

of orthogonality and the weight function can be determined from the 

differential equation. An equation of fourth (rather than third) order 

seems appropriate because no differential equation of odd order is self-

adjoint. 

It would be desirable, therefore, to identify all sequences of 

polynomials generated by a recurrence relation of the form (3) which 

satisfy a fourth-order differential equation of the form (2). In this 

study, however, a less ambitious task is undertaken—namely, to consider 

sequences of polynomials which satisfy a differential equation of the 

form (2) but are generated by a recurrence relation of the less general 

form (1). Such a recurrence relation corresponds (when a weight function 

exists) to an even weight function on ah interval symmetric about x = 0. 

In the sequel it is shown, somewhat surprisingly, that all orthogonal 

polynomials which satisfy a recurrence relation of the form (l) and a 

differential equation of the form (2) in which is not identically zero 

also satisfy a second-order differential equation. Thus, question (i) 
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k — . "which is the interval in which all N <sj m 9 

leads only to polynomials already known to "be unsuitable for the study 

of infinite spring-mass chains in which all the spring constants are 

equal but m is non-constant and non-monotone. ^ n 
The relationship of question (ii) to the impurity problem for 

the finite chain is apparent. In the pages which follow, a transcendental 

equation is derived whose solutions give the natural frequencies of the 

physical system as functions of j, N, and (i. It is shown that as u approaches 

zero through positive values, exactly one of the natural frequencies 

becomes unboundedly large while the remaining N-l natural frequencies lie 

in the interval 0 < w < 2 

natural frequencies lie when \i = 1 . 

The attention of the reader is invited to the fact that two versions 

of the impurity problem are discussed—one for the infinite chain and one 

for the finite chain. Question (i) is concerned with the effort to obtain 

information about the impurity problem in the infinite chain. Question (ii) 

is concerned with the impurity problem in the finite chain, but it also has 

a connection with the impurity problem in the infinite chain. The connection 

rests on the following fact: solutions for infinite chains are often 

obtained as limits (as N -» °o) of solutions for finite chains. The answer 

to question (ii) is intended, then, to throw some light on a possible 

limiting process of this kind, in the execution of which it is necessary 

to know how the zeros of the characteristic polynomials of the Nth-order 

system distribute themselves as N -> a>. A further discussion of this comment 

is beyond the scope of the present study, and the reader is referred to 

Law [ 1 ] . 
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CHAPTER II 

THE FIRST QUESTION: RECURSIVELY GENERATED 

POLYNOMIALS SATISFYING A FOURTH-ORDER 

ORDINARY DIFFERENTIAL EQUATION 

The object of this chapter is to answer question (i), page 1 , 

and in doing so to explain why a recurrence relation of the form (l) 

was chosen for study. 

The basic goal was to find an easy way to construct sequences of 

non-classical orthogonal polynomials about which all the required 

information would be easily available—recurrence relation, interval of 

orthogonality, and weight function (or corresponding distribution). In 

the light of previous work by Jayne [2], the task of identifying all 

sequences of polynomials generated by a recurrence relation of the form 

(3) which satisfy a fourth-order differential equation of the form (2) 

seemed too difficult for a project of the duration intended. So a special 

case of (3) was sought which still appeared to promise some measure of 

success in generating sequences of polynomials which were solutions of a 

fourth-order (but not of a second-order) differential equation. The 

reasoning which led to the special case (l) was-as follows. 

If x is a real parameter and if a and c are non-zero real constants 

(independent of x and n), the initial-value problem 
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y'' - axy' + cy = 0 

y(o) = i 

y'(0) = x 

has a solution of the form 

y(x ; t ) = J P n(x)t n (5) 
n = 0 

in which P n( x) is a polynomial of degree n satisfying the three-term 

recurrence relation 

Pc(x) 

Pn + 1 « = TTT P n « " nTFTTT Pn - l « > n * 

(6) 
1 . 

Furthermore, the usual method of solving linear differential equations 

with constant coefficients shows that the solution of system (k) is also 

expressible in the form 

'ax - N/ a 2x 2 - kc 
y(x ; t) = | 

x + si a 2x 2 - kc 
"2" + e ~Z t 

+ (2 - a ) x 

2 >7a2x2 - kc L 

a x + N/ a 2x 2 - J+c 
- e 

x - "7a2x2 - ^c 
, (T) 

which serves then as the generating function for the polynomials P n( x). 

Writing (7) in the form 
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00 

n = 0 
4c) n 

\/ a 2 x 2 - lfc 

(a x + n/ a 2x 2 - l^c)n - (ax - \/a2x2 - 4c ) n j- n 

and comparing (8) with (5) shows that 

P (x) = — - — r — -| (a x + \/a2x2 - 4c) n + (a x - \/a2x2 - 4c) n 

n n + 1 2 n! L 

+ (2 - a) x 
4a^x^ - 4c 

(a x + \/"a2x2 - ) n - (a x - \Ta2x̂  - h. c) n 

(8) 

, n * 0 ; (9) 

and hence the second-order difference system (6) involving the parameter 

x is solved. Thus, an explicit expression for P n( x) an(3- a generating 

function for the sequence ̂ Pn(x) f are known. 

If now for some choice of the constants a and c the polynomials 

Pn(x) should prove to be solutions of a fourth-order ordinary differential 

equation of the form (2), all the7 information needed about them would be 

known—the recurrence relation, the interval of orthogonality, the weight 

function, and even an explicit expression for P n( x)• 

So consider the sequence -jp^.x)^ of polynomials generated by the 

recurrence relation (6), where a and c are nonzero real constants. If 

Pq(x) is a solution of the equation 

aQ(x) y ( l V ) + a^x) y , M + a2(x) y' ' + a^ (x) y' + X n a^(x) y = 0 (10) 

for n = 0, then Xq a^(x) = 0. But if a^(x) = 0, then the requirement that 

P^, Pg, P^, and P^ be solutions of (10) would imply that 

y(x ; t) = ^ n + 1 j j a X + ^a^x^ " ^ c ) n + (a x - v/ a 2x 2 -
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aQ(x) = a1(x) = a2(x) = a^(x) = Oj and equation (10) would become a 

triviality. Hence, â _(x) ± 0, and X Q = 0. With â _(x) ̂  0, requiring 

that P 2, P^, and P^ be solutions of (10) shovs that (10) must have 

the form 
Xn X-, Xl [ , 1 k2 A 3 ^ o ,* + ^ c5a-2%. ,a. + l v , 

"Ks- - r + r - 2 * ) x + - ( - 5 —) xi + (-2!r_)12 -
^ a. u 

/a + 2 x . , 2 c x + 
2 r 

(a + l)x2 - \ 
2kar 

3aX 2 + (a + l)(x1 - X 3) 

y(IV) , jT 3 ( X 1 + X 3 x 5 

Xp p' cX^ 

- X^xy' + x ny = 0 . (11) 

To find X , assume that P satisfies (ll). and differentiate the resulting 

identity n times. Then 

X = - X., n 1 
n(n - 2)(n - 3)(n - k) 

6 " _ 

n(n - l)(n -2)(n - k) 
o + X 

n(n - l)(n - 3)(n - k) 

n(n - l)(n - 2)(n - 3) 
2k (12) 

Introducing this expression for X n in (ll) yields the form which the fourth-

order equation (10) must have if P q, P^, P 2, P^, and P^ are solutions. 

It will now be shown that if a is neither 1 nor 2, the polynomials 

Pn(x) generated by (6) do not satisfy (10) for every n (=0, 1, 2, •••) 

unless X n is identically zero in n. In particular it will be shown that 

if P^ and Pg as calculated from (6) are assumed to be solutions of (ll)., 

in which X has the value (12). and if a is neither 1 nor 2, then X = 0. n x ' 3 — 3 n 
Suppose then that P and Pg are solutions of (ll). The two identities 

in x which result from this assumption imply that Xg, and X^ must 

satisfy the following equations. 

1 
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(13a) 

+ X^(5a + 5) = 0 (13b) 

Xx(64a + 136) + X 2(- 15a - 210) + ̂ (120) + X^(a - 26) = 0 

X (- 72a - 72) + X2(l6a2 + l68a + iko) 

+ X^(- 120a - 120) + X^(- a 2 + 2̂ a +37) = 0 

X-L(24)+ X 2(- a 2 - 3a - 50) + X^ (+0) + X^(a - 11) = 0 (I3e) 

(13d) 

(13c) 

However, these equations have only the trivial solution (and hence, 

X = 0) unless a = 1 or a = 2. To reach this conclusion, proceed as follows. 

system of four linear equations in the four unknowns X^, X^, X^, and X^ 

having a non-trivial solution if and only if the determinant of the 

coefficients vanishes. Equating this determinant to zero yields the equation 

whose only real roots are 1 and 2. Hence, the system (13a), (13c), (13d), 

(I3e)—and consequently the entire system (13) of five equations—has 

only the trivial solution unless a = 1 or a = 2. 

But Jayne [2] has shown that the polynomials P n( x) generated by 

the recurrence relation (6) satisfy a second-order differential equation 

if a = 1 or a = 2. Hence, any polynomials generated "by (6) which satisfy 

n 

Consider only equations (13a), (13c), (13d), (l3e)—a homogeneous 

(a - l)2(a - 2) 2(a 2 - 7a + 20) = 0 , (14) 

i 
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(ll) with X ^ 0 are simply some type of classical orthogonal polynomials 

unsuited to the investigation of the impurity problem in the infinite 

chain. Thus no new polynomials suitable for that purpose have been found 

by answering question (i). 
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CHAPTER III 

THE SECOND QUESTION: NATURAL FREQUENCIES OF A 

LINEAR CHAIN CONTAINING ONE ALTERED MASS 

In preparation for the study of question (ii),, page 2, it will 

he helpful to calculate the natural frequencies of the system shown in 

Figure 1(c), page 2. The displacements indicated there satisfy the 

system of differential equations 

mx 1 = - kx 1 + k(x2 - x 1) , 

mx = - k(x - x ) + k(x , - x ) , 2 = g n = g N - l , (lk) n v n n - 1 v n + l n / - 7 3 v / 

One asks, for what values of the parameter w, if any, does this system 

have a solution of the form x = A coswt? Substituting in (lk) leads to 
n n v ' 

the system 

(- mw 2 + 2k)A + (- k)A2 = 0 , 
- kA n _ 1 + (- mw 2 + 2k)An + (- k)An + 1 = 0 , 2 £ n £ N - l , (15) 

- kA^ _ x + (- mw 2 + 2k)AN = 0 ,. 

which can be written more compactly as 

2 
An + 1 + <TT " 2 ) A n + An - 1 = 0 ' 1 * n * N ' 

A0 = 0
 > h + 1 = 0 • 

(16) 



Ik 

The system (l6), "Which is a second-order difference equation with 

boundary conditions,, determines the amplitudes of the displacements. 

The solution is found by considering several cases. 
2 

To search for values of w in the range 0 ̂  — - ^ k, the 
mw 2 

substitution - 2 = - 2 cos oc is made so that (l6) becomes 
A _ - 2 cos a A + A n = 0 , l ^ n ^ N , n - 1 n n + 1 

A 0 = 0 9 \ + 1 
(17) 

= 0 . 

If sin a = 0, and cos a = 1, the solution of (17) (see Hildebrand [6]) 

takes the form A = cn + c»n. where cn and c^ are arbitrary constants, n 1 2 9 1 2 
The conditions A^ = 0, + ^ = 0 require that c^ = c^ = 0 so that (17) 

has only the trivial, solution. If sin a = 0 and cos a = - 1, the solution 

of (17) is A n = (- l)n(d^ + d^n). Again the boundary conditions demand 

that d^ = d^ = 0 so that only the trivial solution results. If sin a =j= 0, 
the solution of (17) takes the form A = e n cos ncu + e^sin na. Now , n 1 2 
Aq = 0 requires that e^ = 0 and ^ = 0 requires that egSin(N + l)a = 0. 

So for a non-trivial solution, it is necessary that sin(N + l)a = 0; hence, 

since sin a 4= 0 3 a = ~r—r , p = 1, 2, N (though there are a countable ' p N + 1 
infinity of values of p for which sin a = 0, it is necessary to consider 

only the range 1 ̂  p ̂  N, because these values of p yield all the N natural 

frequencies which the system has, and additional values of p simply repeat 

some of them). 

The natural (or characteristic) frequencies may be found by using 

the equation 
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2' 2k -f. N IFK . 2 a w = — (1 - cos a; = — sin . m v M 2 

Thus w = 2 - sin(-T ̂  _ ) - , p = 1, 2, ••• , N. 
p VN + 1'2 

(18) 

Notice that for each p, 0 < w < 2 
9 P 

If one wishes to search (in this case, unnecessarily) for values 
w 2 mw 2 

of w in the range — — > ^, the substitution — — - 2 = 2 cosh a is used. k 9 k 
Equation (l6) then takes the form 

A _ + 2(cosh a) A + A . = 0 , 1 ̂  n £ N , n + 1 v ' n n - 1 9 9 

A 0 = 0 9 V + 1 = 0 • 
(19) 

The solution of (19) is A = (- l ) n f^ cosh na + fg sinh ha But now 

A Q = 0 implies = 0, and A^ + = 0 implies f̂  = 0, so that (19) has 

only the trivial solution. 

In the version of the impurity problem considered here, one of 

the masses of mass m is replaced by a mass (jm, where 0 < \± < JJ, =̂ 1. 

It is known (see Courant-Hilbert [5]) that if (i > 1, each characteristic 

frequency will be equal to or less than the corresponding value given by 

(18), while if \i < 1, the converse will be true. For this reason it is 

convenient to divide the following study into two cases. 

Case I ([i > l). In this case it is known that for any characteristic 

— . Two subcases are considered depending on frequency w, 0 < w < 2 

whether the altered mass is an end mass or not. 

1 
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If the altered mass is an end mass (see Figure l(d) with j = l), 

it is easily seen by techniques similar to those used previously that 

the relevant difference system is 

(- umw2 + 2k)A + (- k)A2 = 0 , 

(- k)A _ + (- mw 2 + 2k)A + (- k)A , = 0 , 2 ̂  n O - 1 , (20) v / n - l v ' n v ' n - 1 3 3 v 

(- k)A^ _ 1 + (- mw 2 + 2k)A^ = 0 . 

2 mw 
With the substitution -r— - 2 = - 2 cos a , from which it follows that 

2 2 * 
- 2 = u ( — - - 2) + 2 (n - 1), (20) becomes 

[2|j, cos Q: + 2(1 - n)]A - A g = 0 , (21a) 

A - (2 cos a) A + A = 0 , 2 ^ n ^ N , (21b) n + 1 ' n n - 1 3 v / 

*H + 1 = ° • ( 2 l 0 ) 

There is no need to consider the special cases sin a = 0, cos a = 1 

and sin a = 0, cos a = - 1, since for any characteristic frequency w, 
17 

it is known that 0 < w < 2 ( — . Thus the solution of (21) takes the form 

A = cncos na + c0sin na , n 1 2 3 

and the boundary conditions (21a), (21c) require that 

c^cos 2a + c^sin 2a = l2\± cos a + 2(1.- \i) ] A^ , (22) 

c.jCos(N + 1) a + c2sin(N + l) a = 0 . (23) 

The determinant of coefficients of this pair of linear equations is 

sin(N + l) a cos 2a -• cos(N + l) a sin 2a or sin(N - l) a. So if 

sin(N - 1) a + 0 , 
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/̂-, l sin(N + l)a . 

c 0 = - [2n cos a + 2(1 - n)] S l n ( ! ! + ^ ° A, , 2 ^ sin N - l)a 1 9 

and 

A n = [2u cos a + 2(1 - t l ) ] A 1
[ B l n ( 5 + 1 ) g C 0 8

s " ° ( ' + 1 ) a S l " " a ] 

A = [2n cos a + 2(1 - S l°i" ; 1 ; °)° . 
n 1 sin(N - l)a 

Now requiring that A reduce to A^ when n = 1 implies that 

A.̂  sin(N - l)a = [2u cosa + 2(1 - u) ]A sin N a , 

or, since A^ = 0 yields only the trivial solution, 

sin(N - l)a = [2\i cos a + 2(1 - u) ] sin N a . (2k) 

On the other hand, if sin(N - l)a = 0, (23) may he rewritten as 

c1cos(N - 1 + 2)a + c2sin(N - 1 + 2)a = 0 or 

c^[cos(N - l)a cos 2a - sin(N - l)a sin 2a] 

+ c2[sin(N - l)a cos 2a + cos(N - l)a sin 2a] = 0 ; 

and since sin(N - l)a = 0 and hence cos(N - l)a =(= 0, this equation reduces 

to c cos 2a + c 2 sin 2a = 0 . (25) 

But (25) and (22) together require that [2\i cos a +2(1 - \i) ]A^ = 0 or 

[2u cos a + 2(1 - u)] = 0, so that (2k) is still satisfied. 

Now if the altered mass is the jth mass (l < j < N), the relevant 

difference system is 
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A , - (2 cosa) A + A = 0 , l ^ n g j - 1 . (26a) n + 1 v ' n n - 1 3 v / 

A + [2(u - 1) - 2u cosa]A. + A. _ = 0 , (26b) 

A , - (2 cosa) A + A = 0 , j + U n n , (26c) n + 1 v ' n n - 1 J v / 

A 0 = * H + 1 = ° • ( 2 6 d ) 

Again the cases sin a = 0, cos a = 1 and sin a = 0, cos a = - 1 cannot 

occur so that the solution will take the form 

{C j C o s na + 

d.Lcos na + 
c cos na + c sin na, l ^ n ^ j , 

A = -i 
d2sin na , j ̂  n ^ N . 

Requiring that A q = 0 and that A^ reduce to A^ when n = j yields 

A = ( s ^ n r[2L\ A. . l ^ n ^ j . s o long as sin j a j= 0 , 
n v sin jar j ' 

Similarly + ^ = 0 and A^ = A when n = j imply that 

. sin(N + 1 - n)a fl . . ,̂ ,, . „ . , , -\ \ * A = . )-_ ' rf- A. , j g n ̂  N , if sin N + 1 - j)a 4= 0 . 

Now substituting for A. , and A. i i n gives 
J j 

A. sin(N - j)a A.sin(j - l)a 
j /lXT , , rr + [2(n - 1) - 2u cosa] A. + -J : : = 0 ; 
sin(I + 1 - j)a ' ^ j sin j a 

and since Â . =!= 0 for a non-trivial solution, this equation becomes 

sin(N - j)a sin j a: + [2(n - 1) - 2[icos a]sin(N + 1 - j)a sin j a 

+ sin(N + 1 - J)a sin(j - l)a = 0 . (27) 

It appears that there are three exceptional cases to be considered—namely, 
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sin j a = 0, sin(N + 1 - j)a =(= 0 ; sin j a ) = 0 , sin(N + 1 - j)a = 0 ; 

and sin j a = 0, sin(N + 1 - j)a = 0. But it will now be shown that if 

(26) is to have a non-trivial solution, then sin j a = 0 if and only if 

sin(N + 1 - j)a = 0 so that the first two possibilities are eliminated. 

If sin j a = 0, then = 0 ; and since A^ + ^ = 0 , the requirement 

that A = dncos na + d^sin na for j ̂  n ̂  N + 1 yields n 1 2 0 17 

d-̂ cos j a + d̂  sin j a = 0 (28) 

and dxcos(N + l)a + d 2 sin(N + l)a = 0 . (29) 

But since sin j a = 0, (28) implies d-ĵ  = 0; and then for a non-trivial 

solution (29) implies sin(N + l) a = 0 (if d 2 = 0 , then A n = 0 for 

j ^ n ̂  N; but then (26bimplies A^ 1 = 0 ^hich makes A n = 0 for all n). 

But if sin(N + l)a := 0 , then sin(N + 1 - j)a = sin(N + l)a cos j a 

+ cos(N + l)a sin j a = 0 ; so sin j a = 0 implies that sin(N + 1 - j)a = 0. 

Conversely, if sin(N + 1 - j)a = 0, then A^ + = 0 implies that 

d1cos(N + l)a + d2sin(N + l)a = 0 , 

or d1cos(N + 1 - j + j)a + d2sin(N + 1 - j + j)a = 0 , 

or d1cos(N + 1 - j)a cosj a + d2cos(N + 1 - j)a sin j a = 0 . 

But since cos(N + l - j ) a ^ = 0 , 

d^cos j a + d 2 sin j a = 0 . 
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That is, A = o , or c sin j a = 0, which implies sin j a = 0 for a 

non-trivial solution. Thus the only exceptional case is sin j a = 0 

and sin(N + 1 - j)a = 0. But then equation (27) is still satisfied. 

Now note that if j = 1, then (27) reduces to (2*0 since sin a =j= 0. 

Thus for the case u > 1, whether the altered mass occupies an end position 

or an interior position, (27) is the desired transcendental equation 

satisfied by the characteristic frequencies. 

Case II (\x < l). There is no longer any guarantee that all 
k characteristic frequencies are less than 2 

n r 

2 — is a characteristic frequency is explored first. This possibility 

corresponds to sin q: = 0, cos a, = - 1 in the previous analysis. If the 

altered mass is an end mass, the relevant difference system is 

The possibility that 

[2 - U^]A1 - A 2 = 0 , 

A + 2A + A n = 0. 2 ̂  n ̂  N , n + 1 n n - 1 ' 9 

h + 1 = ° • 

The solution takes the form A = (- l) n(e 1 + e^n), and the boundary 

conditions require that 

ei + 2 e 2 = ( 2 " ̂ A l 9 

e x + (N + l)e2 = 0 . 

If N = 1 , there is no solution unless [x = ̂  ; and if N > 1 , 

e i = i - r r < 2 - 9 e
2
 = A i » 3 0 t h a t 

A = (- l ) n (2 - k\i) N t 1 " n A_ . But A should reduce to An when n v / v ^ ' N - l 1 n 1 
n = 1. Hence 



21 

A l N - 1 I I 
(2 - +n)N 
N - 1 = 0 . 

3N - 1 
Thus there is a non-trivial solution only if u = . If the altered 
mass is an interior mass, the relevant difference system is 

A , + 2A + A _ = 0 , l £ n £ j - l , n + 1 n n - 1 3 3 

A. + (k\x - 2)A. + A. . = 0 , 
J + 1 J J - 1 

A _, + 2A + A _ = 0 , j + l ^ n ^ N , n + 1 n n - 1 3 0 3 

A o = \ H- 1 = 0 • 

Now using the boundary conditions and in addition requiring that A^ reduce 

to A. when n = j gives 0 

A = n (- D n ' J £ ) a , , 
J J 

1 * n * J , 

The interface condition A. _ + (k\x - 2)A. + A. _ = 0 requires that 
.1 + 1 _ .1 . 1 - 1 

= 0 ; so there is a non-trivial 
N + 1 solution only if u == 1 - ^ ^ + ^ r y (note that if j = 1 , this 

expression reduces to \i = ^—) . 

If there are any characteristic frequencies larger than 2 ^ , 

they can be found by using the substitution ~ 2 = 2 cosh a, a > 0 . 

If the altered mass is an end mass, the difference system is 
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[2|i cosh a - 2 ( 1 - ̂ i)]A + A g = 0 , 

A _ + (2 cosh a) A + A n = 0 , 2 =g n £ N , n + 1 v ' n n - 1 

^ + 1 = ° • 

The solution takes the form 

A^ = (- l)n[c^cosh n a + CgSinh n a] . 

The boundary conditions require that 

c^cosh 2 a + c^sinh 2 a = [ - 2|_i cosh a + 2 ( 1 - u.) ]A^ , 

c^cosh(N + 1 ) a + c^sihhfN + l) a - 0 . 

If N > 1 (the case Hf = 1 is of no interest), these equations imply 

ĉ  = _ [- 2|i cosh a + 2 ( 1 - u) ]Aj sinh (N + l)a 
1 sinh(N - l)a 

- [ - 2u cosh a + 2 ( 1 - \i)]Aj_ cosh(N + l)g 
° 2 ~ sinh(N - l)a 

A = (- 1 ) n E- 2|i cosh a + 2 ( 1 - jj.) ]An sinh ( N + 1 - n)g 
n sinh(N - l ) a 

But requiring that A = A when n = 1 yields 

A - c o s h a + 2 ( 1 - fi)]A1 sinh N a 
1 ~ sinh(N - l)a ' 

And since A^ =(= 0 for a non-trivial solution, this equation implies 

sinh(N - l)a = [2u cosh a - 2 ( 1 - u)]sinh N a . (30) 

If the altered mass is an interior mass, the difference system 
is 
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i. n + (2 cosh a)A + A _ = 0 , l £ n £ J - l , n + 1 v 7 n n - 1 

A 
J 

+ 1 + [2(u - 1 ) + 2|i cosh a]A + A^ _ 1 = 0 , 

V n + (2 cosh a) A + A _ = 0 , j + l £ n ^ N , n + 1 ' n n - 1 

0 N + 1 

The solution takes the form 

A = C (- l ) n 1'c.cosh n a + c^sinh n a] 3 l ^ n ^ j , n ^ 1 2 ' ' 

(- l ) n [cLcosh n a + dnsinh n a] , j ̂  n ̂  N ; 

and the satisfaction of the boundary conditions requires that 

A = ( - ( - l ) n " A A . S l t " a , 1 S n * J , 
n \ v ' j sinh j a 3 0 3 

L ( - I ) " " J A . S ^ (g + * - a J a , j I n S J . 
u v j sinh (N + 1 - j)a 

Satisfying the equation A. _ + [2(u - l) + 2|* cosh a]A. + A. = 0 
J + l J J " 1 

n. ,, , sinh (N - j)a r o / n N , 0 . n sinh ( j - l)a n implies that — . T ~ )- ^-—tt— + [2(u - 1 ) + 2|_icosh a] - \ : : — - 0 , * sinh (N + 1 - o)a v sinh j a ' 
or sinh(N - j)a sinh j a + [2((i - l) + 2u cosh a] sinh (N + 1 - j) a sinh j a 

+ sinh (N + 1 - j) a sinh (j - l) a = 0 . ( 3 1 ) 

Note that if j = 1 , equation ( 3 1 ) reduces to equation ( 3 0 ) ; so in the 

case (j, < 1 , if there are any characteristic frequencies greater than 
n r 

2 \ — , they may be found from equation ( 3 1 ) . Those characteristic 

frequencies less than 2 ^ ^ may, of course, be found from equation ( 2 7 ) . 

However, more information may be deduced from equation ( 3 1 ) . For 

this purpose it is convenient to write the equation in the form 



2h 

o / i \ o -u sinh(N - j)g , sinh(j - l)g 2(u - 1) + 2u cosh a = . ./,T
N i y .\ + — . s . . ^ ' * sinh(N + 1 - j)a sinh j a 

The left side of this equation is an increasing function of a for 

a > 0, while the right side is the sum of two functions of the type 

ffa) = . . /., t t — * where k is a non-negative integer. A function 
v ' sinh(k + l)g 9 & 

of this type is non-increasing as can be seen by considering the 

derivative 
, % k cosh k a sinh(k + l)a - (k + l) sinh k a coshfk + l)a ff(g) = -̂ ^5 * ' > — 

sinh (k + l)g 
- k sinh a - cosh(k + l)g sinh k a 

sinh (k + l)a 
S k s l n h

g

a - s l n h k a i 0 for k = 0, 1, 2 , • • • . 
sinh (k + l)g 

For convenience let g(a) = 2(u - l) + 2ll cosh a and h(a) = - S ? " / S ^ -, 
D V ' v^ ' ^ v ' sinh(N + 1 - jja 

+ S i n h ^ j . " 1 ) Q ! . Note that g(0) = 4u - 2 and sinh j a v 

t v, / n N - j j - 1 0 1 1 . N + 1 lim hi a) = -•— + = 2 - - — = 2 -a^ u0 - N + l - j T j - - N + l - j j - - j(N + 1 - j) ' 

Now since g(a) is increasing and h(a) is decreasing (except in the trivial 

case N = l), there will be no solution to the equation g(a) = h(a) unless 

^ " 2 g 2 " j(N + 1 - J ) ' W h l C h m p l i e S ^ g 1 • +j(N + 1 - j) ' a n d o n l y 

one solution if this condition is satisfied (see Figure 2 ). Thus if 
N + 1 

u > 1 - i . r r , all the characteristic frequencies are less than 
4j(N + 1 - «]) 

2 1^ ; i f |i = 1 - 4 j(N^++l^"—J) > o n e characteristic frequency equals 
while the others are less than 2 1—: and if ll < 1 - i . >J^ +

n
 1 rr « one 

J m ' 4j(N + 1 - j) 3 

characteristic frequency is greater than 2 \ ~~ a n (l "the others are less 

than 2 1 — . Furthermore, when ll < 1 - i . fJ^ +
n
 1 — r \ . upper and lower ^ m 4j(N + 1 - j)' 

L 
1 
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Figure 2 . Graph of the Functions g(a) and h(a). 
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bounds on the largest characteristic frequency may be determined by the 

following reasoning (see Figure 2 ) . Since h(a) is non-increasing and 

since lim h(a) = 0 , the value a at which g(a) = h(a) satisfies the 

inequality 0 ^ g(a) ̂  2 - + \ . j) or 0 ^ 2((i - 1 ) + 2|i cosh a ^ 2 

N + 1 „ 1 ^ t , , a 2 
t t t t = rv • Hence, — ^ 1 + cosh a ^ -
j(N + 1 - 3) 3 \i \i 

1 N + 1 
1 ' ̂ (N + 1 - j) And 

since the corresponding characteristic frequency is computed from the 

relation w = — (l + cosh cc) , it follows that m v 3 

2k 2 ̂  ij-k — ^ w ^ — mu mu 
N + 1 

' l*.j(N + 1 - j) 
^ c 
mu 

In particular, as u approaches zero, the largest characteristic frequency 

increases without bound. 

In addition, it is interesting to investigate the size of the 
N + 1 

critical value of u as a function of j. Since u = 1 - i ./ ' t t 3 

c 4j(N + 1 - j) 
^ c (N + 1)[N + 1 - 2 j ] d | Ic c\ ' i ' • N + 1 T - _T , 1 

= ±—_—L± ^ll . thus t t - = 0 implies j = — - — . If N + 1 
d j l̂ f (N + 1 - jr d J 2 

N + 1 N is even, then -—-— is an integer, so the largest value of u c is + . 
N N 

If N + 1 is odd, the largest value of u c occurs when j = - or j = - + 1 . 
For either of these values of j. u = 1 - __,;?? + \̂ . Thus it is clear 

° 9 *c N(N + 2) 

(l) that the 'largest value of u c is attained when the altered mass is as 

close to the middle of the chain as possible and (2) that when the altered 

mass occupies that position u c is only slightly less than unity for large 

N. 
i 

Finally note that it is not really necessary to use equation (j5l) 
to find all the characteristic frequencies even if one of them is larger 

I k 2 2k than 2 — . Consider the original substitution w = — (l - cos a), but >Jm ° m v ' 3 
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now no longer require that a be a real variable. Instead let a be 

confined to the right-angled path in the complex plane described as 

follows: a = + i , where for 0 ^ < n, = 0 and for 

0^ = jt, a 2 ^ 0. Recalling that cos (a 1 + i a 2) = cos cosh 

- i sin sinh a , it is clear that so long as a is confined to the 

path described, cos a is real, and in fact as a moves along the real 

axis from = 0 to cx̂  = jt and then up along the line = ^, cos a 

decreases continuously from 1 to - <». Now when = jt and > 0.? 

cos a = cos (a + i <x,) = - cosh a_. so that — (l - cos a ) = — ( 1 + cosh x 2 2 m v m v 

Also sin (at + i a ) == sin at cosh a 2 + i cos at sinh a = - i sinh a . 

If - cosh a is substituted for cos a and - i sinh a is substituted for 

sin a in equation ( 2 7 ) , it becomes equation ( 3 1 ) . Thus in every case 

all characteristic frequencies can be calculated from equation ( 2 7 ) . 
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