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SUMMARY

The goal of this study is to answer two questions concerning
linear spring-mass chains in which all the spring constants are equal
but the masses are not all equal and do not vary monotonically along
the chain. It is known from earlier work that a solution of the
equations of metion of an infinite spring-mass chain c¢an be given in
terms of seguences of orthogonal polynomisls and that if the mass is
non-constant and non-monctone the polynomials are not any of the
cléssical orthogonal polynomials., The procedure used to coastruct
such a solution reguires that the weight function and interval of
orthogonality of the polynomials be known. If the polyncmials
satisfied a fourth-order differential equation, then the weight functicn
and interval of orthogonality could be deduced from this equation in
the same way they are deduced for the classical orthogonal polynomials
from the second-order differential equaticns which those polynomials
satisfy.

Thus the first question is whether there exists a sequence of
non-classical orthogonal polynomials satisfying a certain recurrence
relation and at the same time satisfylng a fourth-order differential
equation. Unfortunately from the polnt of view of solving the equaticns
cf moticn of an infinite chain of ose¢illators, it is shown that no such

sequence exists.
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The second question concerns a finite chain of linear
oseillators in which one mass differs from the rest. A transcendental
equation satisfied by the characteristic frequencies of the system is
derived; and it is shown that as the altered mass approaches zero,
exactly one of the characteristic frequencies approaches pius infinity,
while all the others remain in a certain bounded interval. It is also
shown that if the altered mass is in the middie of the chain, the largest
characteristic frequency can be pushed out of this interval by a relatively

small change in the mass.




CHAPTER T
INTRODUCTION

The purpose of this study 1s to answer two gquestions related to
the impurity problem, two versions of which may be visualized in terms
of the physical systems shown in Figure 1. In Figure 1{a) infinitely
many similar masses free to slide on a frictionless plane are Jjoined
together by identical massless linear springs. Figure 1(b) differs
from 1(a) only in that Tinitely many (p) of the masses, not necessarily
consecutive, no longer have the common value mj; they have values
1 (ua2> Ok, +1; 0=1,2,,p). Figure 1(c) is like 1(a) except
that the number of masses is a fixed positive integer N. In Figure 1(4)
the jth (1 = J £ N) mass of Figure 1(c) has been replaced by a mass of
value um {(p > O, n + 1). The impurity problem consists of comparing
some property or properties of the system shown in Figure 1(b) with the
corresponding property or properties of the system in Figure 1(a), and
similarly for PFigures 1{d) and 1(ec).

The two guestions to be answered may be formulated in the following
way.

-

=2}
(1) Consider the seguence - {?n(x)} of polynomials generated
n==0

by the recurrence relation
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Figure 1. Finite and Infinite Chains of Linear-Oscillators




Po(x) =1

) e (1)
-2 X - ¢

L 1(X) Tn+ 1 Pn(x) n(n + 1 P - l(x)’ nzl,

where a and ¢ are non-zero real constants (independent of x and n), For
what values of s and ¢, if any, do the polyncmials Pn(x) (for each n)
fail to satisfy & second-order ordinary differential equation and yet

satisfy a fourth-order differential equation cf the form

IV ' 1t

8g(x)y + e (x)y' " +ay(x)y' "+ e ()Y A (X)y =0, (2)

where 1n is a functicn of n but not of x and is not identically zerc in
n?

(1i1) For the chain of linear oscillators shown in Figure 1(4),
is there a simple transcendental equation whose solutions give the natural
Trequencies of the system as functions of j, N, and w? If so, what is the
equation and is it possitle by using this equation to bound the natural
frequencies for arbitrary positive u?

Since the relationship of question (i) to the impurity problem 1is

net obvious, some explanation is needed. The solution of the impurity
problem for the infinite chain in which only finiltely many masses heave

values other than m (Figure 1(b)) appears to be very difficult. Consequently,
it has been conjectured that some insight into the problem may be obtained

by considering spring-mass chains in which infinitely many masses have

values other than m but in which m (the value of the nth mass) is not a

constant nor a monotone function of n. By using sultable sequences of




orthogonal polyncmials, A. G. Law [1] has given solutions of the

equationg of motion of a number of infinite spring-mass chains. Reéults
obtained by J. W. Jayne [2] end W. F. Martens [3] show, however, that if
all the spring constants in such a chain are equal and i1f the sequence

of polynomiels required in Law’s solutions is a Sturm-Liouville sequence
associmted with a second-crder crdinary differential equation (all the
classical orthogonal polynomials are in this category), then m is either
constant or mcnotone in n. Hence, no sequence cof classical orthogonal
polyncmials (or, more generally, no Sturm-Liouville sequence of orthogonal
polynomisls associated with a second-order ordinary differential equation)
is suiteblie for studying a chain in which the spring constants are equal
but m, is non-constant and non-monotone, On the other hand, Law’s sclutions
require that the interval of crthogonality of the polynomials, the
distributicn aésociated with them, and the three-term recurrence relaticn
which they satisfy be known. Favard [4] has given a simple condition
sufficient to guarantee that a sequence {@n(x)}'of polynomials generated

by & three-term recurrence relation of the form

do(x) =1
¢l(x) = Ay X + B, (3)

0, , (¥ =(Ax+3B) 0 (x)-cC ¢




be orthogonal wlth respect to some distribution on some interval.
However, the problem of actually finding the distribution and the
interval when the recurrence relation (3) is known has been solved

only in special cases. These facts suggest that it may be fruitful to
identify sequences of nonuélassical orthogonal polynomials associated
with fourth-order (but not second-order} differential equatlons in the
hope that such sequences will permit the Investigation of chains 1In
which mn is neither constant nor monotone. For such sequences the interval
ol orthogonality and the weight function can be determined from the
differential eguation. An equation of fourth (rather than third) order
seems appropriate because no differential equation of odd order is self-
adjoint.

It would be desirable, therefore, %o ldentify all sequences of
polynomials generated by a recurrence relation of the form (3) which
satisfy a fourth-order differential equation of the form (2). In this
study, however, a less ambitious task is undertaken—namely, to consider
gsequences of polynomials which satisfy & differentizl equation of the
form (2) but are gererated by a recurrence relation of the less general
form (1l). Such & recurrence relation corresponds (when a weight function
exists) to an even weight function on an interval symmetric about x = O,
In the sequel it is shown, scmewhat surprisingly, that all orthogonsal
polynemials which satisfy a recurrence relation of the form (1) and a
differential equation of the form (2) in which ), is not identically zero

also satisfy a second-order differential equation. Thus, question (i)




leads only to polynomials already known to be unsuitable for the study
of infinite spring-mass chains in which all the spring constants are
equal but m is non-censtant and non-monotone.

The relationship of gquestion (11) to the impurity problgm for
the finite chain is apparent. In the pages which follow, a transcendental
equation is derived whose soluticns give the natural frequencies of the
physical system as functions of j, N, and u. It is shown that as u approaches
zero through positive wvalues, exactly one of the natural fregquencies
becomes unboundedly large while the remaining N-1 natural frequencies lie
in the interval 0 < w < 2 E, which is the interval in which all N
natural frequencies lie when p = 1.

The attention of the reader 1s invited to the fact that two versions
of the impurity problem are discussed—one for the inflnite chaln and one
for the finite chain. Question (i) is concerned with the effort to cbtain
information about the impurity problem in the infinite chain. @Question (ii)
is concerned with the impurity problem in the finite chain, but it also has
a connection with the impurity problem in the infinite chain., The connection
rests on the following fact: solutions for Infinite chains are often
obtained as limits (as N — ®) of solutions for finite chains. The answer
to question (ii) is‘intended, then, to throw some light on a possible
limiting process of this kind, in the execution of which 1t is necessary
to know how tﬁe zercs of the characteristic polynomials of the Nth-order
system distribute themselves as N — =, A further discussion of this comment
is beyond the scope of the present study, and the reader is referred to

Law [1].




CHAPTER II

THE FIRST QUESTION: RECURSIVELY GENERATED
POLYNOMIALS SATISFYING A FOURTH-ORDER

ORDINARY DIFFERENTIAL EQUATTON

The cbject of this chapter is to answer question (i), page 1,
and in deing s¢ to explain why a recurrence relation of the form (l)
was chosen for study.

The basic gcal was to find an easy way to construct sequences of
non-classical orthogonal polynomials sbout which all the required
information would be easily available—recurrence reiation, interval of
orthogeonality, and weight function (or corresponding distribution). 1In
the light of previous work by Jayne {2], the task of identifying all
sequences of polynomiaels generated by a recurrence relation of the form
(3) which satisfy a fourth-order differential equation of the form (2)
seemed too difficult for a project of the duration intended. So a special
case of (3) was sought which still appeared to promise some measure of
success in generating sequences of polynomials which were soluticns of a
fourth-order (but not of a second-order) differential equation. The
reasoning which led to the special case (1) was. ag follows.

If x is a real parameter and if a and c are non-zero real constants

{independent of x and n), the initial-value prcblem

e - 1




d
Ty _ ' - t L, =
vy axy' + cy =0 ( dt)
y(0) =1 (L)
y'(0) =x
has a solution of the form
oQ
n
sy 0 = ) B (5)
n=2~0
in which Pn(x) is a polyncmial of degree n satisfying the three-term
recurrence relation
Po(x) =1
P (x)  =x (6)
a x c

Fo 1 =57 R cgme o mE L

Furthermore, the usual method of solving linear differential equations
with constant coefficients shows that the solution of system (4) is also

expressible in the form

ﬂx-m=l[eﬁx+ﬁ§?TE>t+er'%?§Tmﬁﬂ
;1) =1 |e
(2‘@X.[eﬁx+ﬁ%ETE?t—er-ﬁ?pfjﬁt} (D

+
> Va2x2 - lLe

which serves then as the generating function for the polynomisals Pn(x).

Writing (7) in the form




YW5t%=E —3 [ VagxZ - ko)™ + (a x -Va2x2 - Leo)"
— 2n + lnI

+ {2 - 8)x [(a x +va2x2 - L) - (a x -Va2x2 - ko)™ } }'tn (8)
VaZx@ - ke :

and comparing (8) with (5) shows that

{ﬁa x +va2x2 - ko) + (a x -vatx2 - Le)"

Pn(x) = n + l

Le-8) x [(ax;mm)n- (ax-@‘ﬂmnﬂ,ngo; (9)
- Lo

and hence the second-order difference system (6) involving the parameter
x is solved., Thus, an explicit expression for Pn(x) and a generating
function for the sequence {?n(x)}-are known,

If now for some choice of the constants a and c¢ the polynomials
Pn(x) should prove to be solutions of a fourth-order ordinary differential
equation of the form (2), all the information needed sbout them would be
¥nown—the recurrence relation, the interval of orthogonality, the weight

function, and even an explicit expression for Pn(x).

~

Sc consider the sequence {fn(x)}g of polyncmials generated by the
recurrence relation (6), where a and ¢ are nonzerc real constants. If

Po(x) is a solution of the equation

a y(IV) + al(x) v+ 2, (x) v

O(x 33 )y o+ A au(x) y =0 (10)

for n = 0, then X4 au(x) = 0. But if au(x) = 0, then the regquirement that

Pys P2, P5’ and Ph be solutions of (10) would imply that
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ao(x) = al(x) = BE(X) = aj(x) = 0; and equation (10) would become a

triviality. Hence, a,(x) 4+ 0, and 1, = 0. With au(x) % 0, requiring

0
that P, P,, P5, and P), be solutions of (10} shows that (10) must have
the form
{k K} lh)xh N ___[(a + l)l r (22 a + l
6‘r6‘ g R ! ——1:—(13)
2 (N, = ) +
+ (E-E—— lu}xe +. E—-5 (a + l) - lh} }'y(Iv) + {.[- L 6'2 LB }x5
oha

c g
- g;ﬁ' [5a12 + (8 + l)()\1 - k3)]'%} o4 {(l - x + §E{}y"
- AXyT +A Y =0, , (11)

To find Xn’ assume that Pn satisfies (11), and differentiate the resulting

identity n times. Then

n 1

Y [n(n - 2)(n 5_5)(n - hﬂ + 2,

[n(n -.l)(ngi 3)(n - M)]

" 24

[n(n -1)(n %El(n - L*liI + M[nin - 1)(n - 2)(n - 5)] : (12)

Introdueing this expression for X in {11) yields the form which the fourth-
order equation (10) must have if P 0? Pl’ P 5, and Ph are solutions,
It will now be shown that if a is neither 1 nor 2, the polynocmials
Pn(x) generated by (6) do not satisfy (10) for every n (=0, 1, 2, -**)
unless ln is identically zeroc in n. In particular it will be shown that
if P5 and P, as calculated from (6) are assumed to be solutions of (11),
in which A has the value (12), end if a is neither 1 nor 2, then A_ = O.
Suppose then that P5 and P, are solutions of (11). '™™e two identities

in x which result from this assumption imply that ll’ 12, 13, and lh must

satisfy the following egquations.
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11(15a + 25) + 12(- S5a - 40) + 13(al + 23) + 1h(- 5) =0 (13a)

py (a2 -8a -3) +2 (5a2 + 30a + 10) + A { - a° - 2la - 13)
1 2 25
+ lu(Ea +5) =0 (13b)
11(6ha + 136) + 12(- 15a - 210) +‘x5(120) + lu(a -26) =0 (13c)
A (- 28 - 72) + A,(16a" + 168a + 140)
+ 2g(- 120a - 120) + 3 (- 6 4+ 2ha + 37) = 0 (13d)
A (24)+ 2 (- 2% - 3a - 50) + A (40) + dy,(a - 11) = 0 (13e)

However, these equations have only the trivial solution (and hence,

ln = 0) unless a = 1. or a = 2. To reach this conclusion, proceed as follows.
Consider only equations (13a), (13c), (134), (13%e)—a homogeneous

system of four linear equations in the four unknowns ll’ 12, 13, and lh

having a non-trivial sclution if and only 1If the determinant of the

coefficients vanishes. Equating this determinant to zero ylelds the equation
(a - 1)%(a - 2)%(a® - 7a + 20) =0, (14)

whose only real roots are 1 and 2., Hence, the system (13a), (13c), (13d),
(13e) —and consequently the entire system (13) of five equations—has
only the trivial solution unless a =1 cr a = 2,

But Jayne [2] has shown that the polynomials Pn(x) generated by
the recurrence reletion (6) satisfy a second-order differential equation

if a =1 or a = 2, Hence, any polynomials generated by (6) which satisfy




(11) with ln # 0 are simply some type of classleal orthogonal polyncmials
unsuited to the investigation of the impurity problem in the infinite
chain, Thus no nev polynomials suitable for that purpose have been found

by answering question (i).
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CHAPTER III

THE SECOND QUESTION: NATURAL FREQUENCIES OF A

LINEAR CHAIN CONTAINING ONE ALTERED MASS

In preparation for the study of question (ii), page 2, it will
be helpful to calculate the natural frequencies of the system shown in
Figure 1(c), page 2. The displacements indicated there satisfy the

system of differential equations

mx, = - kxo + k(xe - xl) s
| m o= -k(x -x _ ) +k(x, ,-%x),2sns¥-1, (14)
mky = - k(xN - Xy | 1) - kxp .

One asks, for what values of the parameter w, if any, does this system

have a solution of the form x = A coswt? Substituting in (14) leads to

the system
2
(= mw™ + 2k)Al + (- k)A2 =0,
-kA g+ (- e + Ek)An + (- k)Ah +1-0,2=2nsN-1, (15)
2
- kAN 1t (- mw™ + 2k)AN_ =0,
which can be written more compactly as
(——-2A + A =0,1lsnsN,
A =0, A =0.

N+ 1
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The system (16), which is & second-order difference equation with
boundary ccnditions, determines the amplitudes An of the displacements.

The solution is found by considering several cases.

2
To search for values of w in the range O = E%— = 4, the
2

substitution E%— -2 = -2 cos o is made so that (16) becomes

An -1 2 cog O An + An 1= ¢, l=En=0N,

Ay =0, Ay 1 =0.

(17)

If sin o = 0, and cos @ = 1, the soluticn of (17) (see Hildebrand [6])

takes the form An =y + ol where ¢y and ¢, are arbitrary constants.

The conditions AO =0, A.N +1° 0 require that cl = ce

0 so that (17)

It

has only the trivial solufticn. If sin g = 0 and cos ¢ - 1, the solution

of (17) is An = (- l)n(dl + d.n). Again the boundary conditions demand

2

that d) = d, = 0 so that only the trivial solution results. If sinq Lo,

the solution of (17) takes the form A

el cos no + eesin ney.  Now

0 requires that e, sin(N¥ + 1l)a = O.

A, = 0 requires that e, = 0 and AN .1

0 2

So for a non-trivial solution, it is necessary that sin{l + 1l)a = O; hence,

since sin o + O, qa = LS p=1, 2, +++, N (though there are a countable

v N4+ 1?7
infinity of values of p for which sin QP = 0, it is necessary to consider
only the range 1 £ p £ N, because these values of p yield all the N natural
frequencies which the system has, and additional values of p simply repeat
some of them).

The natural (or characteristic) frequencies may be found by using

the equation
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2 2k Ik 2

. EX& - — R Q
W= S (1 - cos a) — sin” 3.
_ lE (I - eee
Thus Wy, = 2 |5 51n(N - l)2 s p =1, 2, » N. (18)
‘Notice that for each p, O < vy <2 % .

If one wishes to search (in this case, unnecessarily) for values
2

of w in the range EE;-> L, the substitution EE“ - 2 =2 cosh ¢ is used.
Bauation (16) then takes the form
= = =
ALt 2(cosh a) A +A ,=0,1lsnsN,

(19)
Ao =0 by, 3 =0

The solution of (19) is A_ = (- i [fl cosh ng + f

I

2
= 0, so that (19) has

sinh iy ]. But now
AO = 0 implies fl = 0, and AN +1° 0 implies f2
cnly the trivial sclution.

In the version of the impurity problem considefed here, cne of
the masses of mass m is replaced by a mass um, where 0 < pu < o, U + 1.
It is known (see Courant-Hilbert [5]) that if p > 1, each characteristic
frequeney will be egual teo or less than the corresponding value given by
(18), while if u < 1, the converse will be true, For this reason it is
convenient to divide the following study into two cases.

Case I (p> 1). 1In this case it is known that for any characteristic

frequency w, 0 < w< 2 ]E . 'Two subcases are considered depending con

whether the altered mass is an end mass or not.
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If the altered mass is an end mass (see Figure 1(d)} with J = 1),
it is easily seen by technigues similer to those used previously that

the relevant difference system 1is

o
(- pmw®™ + 2k)A,  + (- k)4, =0,
2
(- k)An 1t (= mw™ + 2k)An + (= k)An _1=0,2snsN-1, (20)
e
(- k)AN St (- mw~ + EK)AN =0,
mmg
With the substitution el 2 ==-2¢c¢cos &, from which it follows that
E%E— -2 = p(EE— -2) +2 (p - 1), (20) becomes
[2u cos o + 2(1 - p.)]Al - A2 =0, (21a)
A Lq- (2 cos a) An +A _,=0,2s5ns0N, (21b)
Ay .1 =0. (21e)

There is nc need tc consider the special cases sin g =0, cos g =1
and sin o = 0, ¢ccs @ = - 1, since for any characteristic frequency w,

it is known that 0 < w< 2 ‘% . Thus the sclution of (21) takes the form

A =c.cos nx + c.sin
Y 1 o 5 ne o,

and the boundary conditions (2la), (2lec) require that

c,cos 2a + c,sin 20 = 24 cos @ + 2(1 - )] A, (22)

c,cos{N + 1) ¢+ c.8in(N+ 1} o =0 . (23)

1 2

The determinant of coefficients of this pair of linear equations is
sin(¥ + 1) o cos 20 - cos(N + 1) o sin 2¢ or sin(N - 1) . So if

sin(N - 1) a £ 0,
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sin(N + 1l)x
e, =[2u cos o+ 2(1 - p)] sin%N - l%a Ay
sin{(N + 1)
- [D2 -
2 (2u cos a + 2(1 ul]a{?ﬁ‘.—ﬂa‘“‘l’

0
It

and

B . [sin(N + L)a cos na - cos{N + l)a sin na]
A = (24 cos o + 2(1L p)]Al 1o (T - o

sin{N + 1 - n)a

or An = [2u cos o + 2(1 - u)]Al sia(W - o
Now requiring that An reduce to Al when n = 1 Implies that
Ay sin(N - 1L)a = [2u cosa + 2(1 - u)]Al sin Na ,
or, since Al = 0 yields only the trivial solution,
sin(N - VJa = [2u cos a + 2{1 - u)] sin N o . (2k4)

On the other hand, if sin(¥ - 1l)a = 0, (23) may be rewritten as
clcos(N -1+ 2o+ cgsin(N -1 +2)a=0 or

cl[cos(N - Lo cos 2o - sin{N - 1l)a sin 2a]

+ ce[sin(N - Lo cos 20 + cos(N - 1)a sin 20] = 0 ;

and since sin(N - 1l)a = 0 and hence cos(N - 1)a + 0, this equation reduces

to c.cos 2a + ¢, sin 20 = 0 . (25)

1 2

But (25) and (22) together require that [2u cos o +2(1 - u)]Al =0 or
[2u cos ¢ + 2(1 - p)] = 0, so that (24) is still satisfied.

Now if the altered mass is the jth mass (1 < jJ < N), the relevant ]

|

difference system is




A, ,-(2cosa) A +A ,=0,1sns]-1,
Aj + 17 (2(n - 1) - 2n cosa]Aj + Aj _170,
- = 1 =n s

A+ (2 cosa) A+ =0, Jd+lsnsl,

Bo =ty 41=0-

18

(26a)

(26b)

(26e)

(264)

Again the cases sin o =0, cos @ =1 and sin ¢ = 0, cos @ = - 1 cannot

occeur so that the solution will take the form

cocos o + ¢ sinmy , 1L = n
A = 1 2
n dlcos w + dgsin ey o, J

IIA
= e
-

1A

o

1A

Requiring that AO = 0 and that An reduce to Aj when n = J ylelds

sin ngy
A = (3Rng

. Sin fo , Lsnsj, s0long as sin ja + 0 ,
L&

J
Similarly AN +1° 0 and An = Aj when n = J imply that

_lsin(¥ + 1 - n)a i
Ay = [sin(N +1 - j)a} Ao d=m

A

Now substituting for Aj _ 5 and Aj L1 1n (26b) gives
Aj sin{N - jlo Ajsin(j - 1o
. ;| - - A =
sin(¥ + 1 - jlo + [2(w - 1) - 24 cosal J * sin j « 0

and since Aj + 0 for a non-trivial solution, this equation becomes

sin(N - J)a sin ja + (2{(p - 1) - 2ucos alsin(N + 1 - jlo sin j ¢

+ sin(N + 1 - J)a sin{j - L)a=0.

N, if sin{(N+1-3)a$0.

(27)

It appears that there are three exceptional cases to be considered—namely,

T L TE L L T mmir e e Rk e i 2o e Al

T e Sy ey
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sin Ja =0, sin(N+1 - j)af0; sinjat0, sin(N+1-Ja=0;
and sin j a = 0, sin{N + 1 - jJ)a = 0. But it will now be shown that if
(26) is to have a non-trivial solution, then sin j o = O if and only if
sin(N + 1 - j)a = 0 so that the first two possibilities are eliminated.
If sin j o = 0, then Aj = 0 3 and since AN 1= 0 , the requirement

that An = dlcos ng 4+ dzsin nd for jsEsns N+ 1 yields

djcos Ja +d, sin ja =0 (28)

2

and - dlcos(N + Lo+ d, sin(N + L)g =0 . (29)

2

But since sin j o = 0, (28) implies d, = 0; and then for a non-trivial

solution (29) implies sin(N + 1) a = O (if d,

j £ n s N; but then (26b) implies Aj .1 = 0 which makes An = 0 for all n).

= 0, then An = 0 for

But if sin(N + 1)a = 0, then sin(N + 1 - j)a = sin(N + 1l)g cos j

+ cos(N+ L)agsin Jja =03 so sin j o = O implies that sin(N + L - j)a = O.

Conversely, if sin(N + 1 - j)a = O, then AN 1= 0 implies that

dlpos(N + o+ d.sin{(l + VJa =0,

2

or djeos(N + 1 - J+ jla+ dsin(N+ 1 -3+ a=0,

or dlpos(N + 1 - j)a cos) o+ decos(N +1-Nasin ja=0.
But since cos(N + 1 - J)a + 0,

dcos Joa+ 4

. sin ja=0.

2
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That iS,Aj =0, or ¢,8in j ¢ = O, vhich implies sin j o = O for a

2
non~-trivial solution. Thus the only exceptional case is sin jao =0
and sin(N + 1 - j)a = 0. But then equation (27) is still satisfied.

Now note that if j = 1, then (27) reduces to (24) since éin a £ 0.
Thus for the case p > 1, whether the altered mass occupies an end position
or an interior position, (27) is the desired transcendéntal equation
satisfied by the characteristic frequencies.

Cagse IT (u < 1). There is no longer any guarantee that all
characteristic frequencies are less than 2 % . 'The possibility that
E‘J%-is a characteristic frequency is explored first. Th;s possibility

correspends to sin o = 0, cos @ = - 1 in the previous analysis. If the

altered mass is an end mass, the relevant difference system is

[2 - bula, -8, =0,

An +1 7 2An + An _1 = 0, 2=nsN,

AN + 1 0.

The solution takes the form A = (- 1)™(e, + e.n), and the boundary

1 2

conditions require that

il

e. + 2e (2 - hp)a

1 2 1’
e, + (N + 1)e2 =0 .
If N =1, there is no solution unless p = % s and If N> 1 ,
e, = ﬁ T i (2 - 4u)Al » 8y = Eﬁ—f—% Al , so that
A = (- )" (2 - 4yu) E—%—%—%—E A) . But A should reduce to A, when

n =1. Hence
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1 N -1

Thus there is a ncn-trivial solution only if p = TN If the altered

mass i1s an interior mass, the relevant difference system is

An+l+2An+An_l=O,i§néj-l,
. by - 2)A, + A, =
AJ+1+(u 2)J+J_l o,

An +1 7t 2An + An -1 = 0O,J+1l=n=0N,

AO - AN + 1 0 -

Now using the boundary conditicns and in addition requiring that An reduce

to A, wvhen n = j glves

J
= R J B £n s
A (. 1) (j) Aj s lsns=s]j,
oy -3 [n- W+ 1)) Do o<
(- 1) TN T D Aj , i=nsN.
The interface condifion A, . + (4 - E)Aj + Aj . 1 = 0 requires that

- J - N - _d=ii_ g , s
AJ[ - (N + 1) + (b - 2) 3 } = 0 3 so there is a non-trivial

solution only if p =1 - H'(NN++11- 3 (ote that if 3 = 1 , this
J
expression reduces to p = SN - l)
; =g

If there are any characteristic frequencies larger than 2 i % 3

they can be found by using the substitution Iﬂ;— -2=2cosha, a> 0.

If the altered mass is an end mass, the difference system is




(24 cosh ¢ - 2(1 - p)]Al +A, =0,

A + (2 cosh Q)An + A

n+ 1 -1

AN + 1 0.

The solution takes the form

n .
A = (- 1) [cicosh n o + c,sinh n ol

The boundary conditions reguire that

c,cosh 2 & + eysinh 2 o = [- 2u cosh o + 2(1 - u)]A

clcosh(N +1la+c

l.’
If N> 1 (the case N =1 is of no interest), these equatiocns imply

_[- 2@ cosh @ + 2(1 - u)]AY sinh (N + 1)

€1 = sinh(N - L& 3
o = -[- 24 cosh ¢ + 2(1 - p)JA] cosh(N + L)
2 sinh(N - L)a :
A = (- 0" (- 2u cosh a + 2(1 - p)JAy sinh (N + 1 - njo
n sinh(N - 1)o

But requiring that An = Al when n = 1 yields

_ ~-[- 2u cosh @ + 2(1 - w)]A; sinh N o

Ay sinh(N - 1)a

And since Ay + 0 for a non-trivial solution, this equation implies
sinh(N - 1)a = [2u ecosh o - 2(1 - p)lsinh N o .

if the altered mass is an interior mass, the difference system

is

22

(30) .
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= = = -
AL (2 cosh a)An +A _,=0,1lsns 3-1,
Aj +1 7 [2{p - 1) + 2u cosh og].»’-\‘j + AJ _1=0,

e = ] £ ns

n+ 1
A0 = AN + 1 .

The solution takes Tthe form

a = (-1

A

{clcosh n o+ cysinh n ¢l ,1snsj,

(- 1)n [dlcosh n o+ dysich n al 5 J

ItA
o]
1A

n;
and the satisfaction of the boundary conditions requires that

(- 1)n -3 Aj sinh n ¢ snsj,

sinh j o’

(- 1)% " j , sinh (N + 1 - n)a
' jsinh (N+ 1 - jla’

JEensN.

Satisfying the equation Aj L1 7 [2(k - 1) + 28 cosh a]Aj + Aj .1 =0
o _sinh (N - J)o _sink (J - Va
implies that sioh (N7 1 - 3)a + [2(n - 1) + 2ucosh o) sioh 3o =0

or sirh(N - j)a sinh j a + [2(u - 1) + 24 cosh o} sinh (N + 1 ~ j) @ sinh J «

+sinh (N+ 1 - 3) asinh (j-L)a=0. (31)

Note that if j = 1, equation (31) reduces to equation (30)}; so in the
case u < 1 , if there are any characteristic frequencies greater than
2‘325; they may be found from equation (51}. Those characteristic
frequencies less than 2 j{%nmay, of course, be found from equation (27).
However, more informetion may be deduced from equation (31). For

this purpose it is convenient to write the equation in the form




2k

sinh(N - J)a | sioh(j - l)o

2 - 1) + 2u cosh a = siph(N + 1 - Ja sinh J o ’

The left side of this equation is an incereasing function of ¢ for

@ > 0, while the right side is the sum of two funecticns of the type

fla) = sinh k &

= simn(k 7 )G ° where k 1s a non-negative integer. A functicn

of this type is non-increasing as can be seen by considering the

derivative

k cosh k o sinh(k + )a - (k + 1) sinh k g cosh(k + 1)a
sinhe(k + Lo
k sinh g - cosh(k + 1)o sinh k &
sinhg(k + Lo
k sinh ¢ - sinh k o
sinhe(k + Lo

ft(a) =

A

=0 for k=0,1, 2, *°* .

sinh(N - J)o

For convenience let g{a) = 2{u - 1) + 2u cosh o and h{a) = ST T T = 500

sinh(j - Do -

TR . Note that g(0) = ku - 2 and

. _ N -3 J-1_,__ 1 _1I_,_ _N+1
al-linoh(a)“m+1--,j+ 7 T2 W ISl 3T meI-ogyc

Now since g(a) is inereasing and h(a) is decreasing (except in the trivial

case § = 1), there will be nc solution to the equation g(a) = h{g) unless

N+ 1 . . N+ 1
- 'l <5 -
W+ 1 -3 ° which implies p s 1 el -y’ and only

one solution if this condition is satisfied (see Figure 2), Thus if
N+ 1
Lj(w+ 1 -
k . _ N+ 1 s s !k
E_I;;, ifu=1 FI@+ I < 3)° one characteristie frequency equals 2 =

3 1 — - d 1q - e}
while the others are less than 2 y an if i< 1 ]IJ (N T - JT 3 ne

hp -2 2

B> 1 -

3T ¢ all the characteristiic frequencies are less than

characteristic frequency is greater than 2 S% and the others are less

N+ 1
N+1-

Sk
than 2 \= . FPFurthermore, when <1 - = - upper and lower
- 2 H MJ( J)’ PP
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N+ 1

T I D el

h(a)

o b ——2

by -2 /

Figure 2. CGraph of the Functicns g(a) and hiq).
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bounds on the largest characteristic frequency may be determined by the
following reasoning (see Figure 2). Since h{a) is non-increasing and

A .
since lim h(z) = 0, the value o at which g{a) = h(c) satisfies the

A N+1 A
inequality O = g{a) £ 2 - = - or 0= 2 -1l) + 2ucoshxs 2
N+ 1 1 A 2 N+ 1
- . =3 - = = - - n .
W+ L -3 Hence, M 1 + cosh & n [l BT+ 1 - J)] ind

since the corresponding characteristic frequency is computed from the

relation w° = EE (1 + cosh &), it follows that

2k _ 2 _kk [ N+ 1 } Hhi

=W = - T p = .
my mp By +1-3) Iy

In particular, as u'approaches zerp, the largest characteristic frequency
inereases without bound.

In addition, it is interesting tc investigate the size of the

1. N+ 1
py(n+1 - 3) °

critical value of u as a function of j. Since K, =

N+ 1

We (W D)W+ 1 23], du
- -y

(o4
- thus —— = 0 implies j
.2 42 ’ a
aJ LiT(m+ 1 - 4) J
. N+ 1, . , i}
is even, then > is an integer, so the largest value of “c is TR

If N + 1 is odd, the largest value of b, oeceurs when j = g or j = g + 1.

For either of these values of J, Ho = 1l - T g : ; . Thus it 1s clear

If N+ 1

n

(1) that the largest value of . is attained when the altered mass is as
close to the middle of the chain as possible and (2) that when the altered
mass cccupies that position Ko 1s only slightly less than unity for larée
N, .

Finally note that it is not really necessary to use equation (31)
to find all the characteristic frequencies even if cne of them is larger

than 2 !% . Congider the original substitution w2 ==§k (L - cos a), but
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now ho longer require that o be a real variable. Instead let ¢y be

confined tc the right-angled path in the complex plane described as

Il

follows: o =, + 1 & where for 0 £ o, < n, o, = O and for

e’ 1 2
0. Recalling that cos(al + 1 ag) = cos Q

1

v

[0 = T, ae

cosh
1 o)

1 2

- 1 8in ¢, sinh ., it is clear that so long as ¢ is confined to the

1 2

path described, cos o is real, and in fact as ¢ moves along the real

axis from ¢ = 0 to ¢, = = and then up along the line ¢

1 = 1, COs

1 2

decreases continuously from 1 to - =, Now when ¢, = 7 and ¢,

1 2
2k 2k
» 80 that =— (1 - cos &) == (1 + cosh ae).

> Q,
cos g = cos(n + 1 qo,) = - cosh Qp
[

Also sin(x + i ae) = sin « cosh o, + 1 cos n sinh o, = - 1 sinh o,.
If - cosh ¢ is substituted for cos o and - i sinh ¢ is substituted for
sin o in equation (27), it becomes equation (31). Thus in every case

all characteristic frequencies can be calculated from equation (27).
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