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SUMMARY
Controlling a walking biped robot is a challenging problem due to the robot’s complex and uncertain
dynamics. In order to tackle this problem, we propose a sliding mode controller based on a dynamic
model that we obtained using the conformal geometric algebra (CGA) approach. An important
contribution of this paper is the development of algorithms using the CGA framework. The CGA
framework permits us to use lines, points, and other geometric entities to obtain the Lagrange equations
of the system. The references for the joints of the robot were obtained in a bio-inspired way following
the kinematics of a walking human body. The first and second derivatives of the reference signal
were obtained via an exact robust differentiator based on a high-order sliding mode. We analyzed the
performance of the proposed control schemes by using bio-inspired walking patterns and simulations.
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1. Introduction
In the area of humanoid robotics, one of the most important issues is dynamic walking control that
mimics human-like walking patterns. For the generation and control of such stable and human-like
walking by humanoid robots, researchers have proposed various solutions. One of the most widely
accepted and used approaches, proposed by Vukobratovic et al.1 in 1970 for generating a reliable hip
trajectory for stable biped walking is a walking trajectory based on the zero-moment point (ZMP)
stability criterion. With this approach, it is common to define first the ZMP trajectory,2–7 and then
combine it with the biped’s dynamics. The preview controller proposed by Kajita et al.,2, 3 with
the idea of previewable optimal control published in 1985, is one such method used to produce a
stable hip trajectory. This approach is already used for many types of humanoids to achieve dynamic
walking. The main advantage of using this method is its use of the future information about the target
signal.8 In our work, we focus on the control of bipedal walking. But instead of using a preview
control for the generation of walking patterns, we use as reference bio-inspired reference signals.
Controlling a bipedal walking robot is a complex task due to several degrees of freedom (DOF), the
highly nonlinear dynamics, and a complicated model to describe the behavior of the walking robot.
For this reason, we analyze each leg of the biped robot as a serial robotic system and synthesize the
dynamic model via the Lagrange equations using the conformal geometric algebra (CGA) approach.
A major contribution of this paper is the development of algorithms using the CGA framework.
Our work differs from current works because we use the novel CGA framework. The CGA approach
allows us to obtain, through a simple procedure, a compact representation of the dynamics of a robotic
mechanism. This is due to a simple representation of rigid transformations (rotations, translations,
screw motions, etc.) and geometric entities (points, lines, planes, circles, spheres, point pairs, etc.) in
this framework.9
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210 Robust tracking of bio-inspired references for a biped robot

We obtained the references for each joint of the biped robot using the Humanoid Robots Simulation
Platform (HRSP), a Simulink toolbox developed by the group of Aleksander Rodic (http://www.pupin.
rs/RnDProfile/robotics/hrsp.html; http://www.pupin.rs/RnDProfile/rodic-pub.html). In addition, the
first- and second-order sliding mode controllers were designed to perform tracking of bio-inspired
references for biped robot.

Sliding mode control is widely used in uncertain or disturbed systems, featuring robustness and
accuracy.10 An important drawback of the standard sliding mode controller is the presence of high-
frequency components in control signals due to the switching function used in its design. In order to
attenuate this effect, we use sigmoid functions in the proposed controller as well as a super-twisting
technique as another solution to reduce high frequencies.16, 17

This paper is organized as follows. Section 2 presents a brief introduction to CGA; Section 3
explains the representation of rigid transformations using versors. The dynamic model for the pose
of robotic manipulators is obtained in Section 4. The design of the error variables and sliding mode
controllers in CGA is presented in Section 5; the structure for the exact robust differentiator is also
explained. Section 6 includes an analysis of the application of the designed controllers in a 12-DOF
biped robot. Finally, conclusions are given in Section 7.

2. Conformal Geometric Algebra
In order to work in CGA advantageously, we represent the Euclidean vector space IR3 in the geometric
algebra G4,1.9 This algebra has an orthonormal vector basis given by {ei} and a bivectorial basis defined
as eij = ei ∧ ej , ei ∧ e∞ for i, j = {0, 1, 2, 3}.

The bivectors e23, e31, and e12 correspond to the Hamilton basis, and E = e∞ ∧ e0 is the Minkowski
plane. The unit Euclidean pseudo-scalar I := e1 ∧ e2 ∧ e3, and the conformal pseudoscalar Ic = IeE

is used for computing the inverse and duals of multivectors. For more about CGA, see refs. [9, 13].
Let xe = [x, y, z]T be a point expressed in IR3. The representation of this point in the geometric

algebra G4,1 is given by

xc = xe + 1

2
x2

e e∞ + e0, (1)

where the null vectors are the points at infinity e∞ and the origin point e0, with the properties
e2
∞ = e2

0 = 0 and e∞ · e0 = 1.
Given two conformal points xc and yc, their difference in Euclidean space can be defined as

xe − ye = (yc ∧ xc) · e∞, (2)

and, consequently, the following equality

(xc ∧ yc + yc ∧ zc) · e∞ = (xc ∧ zc) · e∞ (3)

is fulfilled, as well.
The line can be obtained in its standard form as

L = nI e − e∞mI e, (4)

where n is the orientation and m the moment of the line.

3. Rigid Transformations
These transformations between rigid bodies can be obtained in conformal geometry by carrying out
reflections between planes.
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3.1. Reflection
A reflection of a point x with respect to a plane π is

x ′ = −πxπ−1, (5)

and for any geometric entity Q is

Q′ = −πQπ−1. (6)

3.2. Translation
The translation can be carried out by two reflections with respect to the parallel planes π1 and π2 as

Q′ = (π2π1)︸ ︷︷ ︸
Ta

Q
(
π−1

1 π−1
2

)
︸ ︷︷ ︸

T̃a

, T a = 1 + 1
2ae∞ = e− a

2 e∞,
(7)

with a = 2dn, d being the distance of translation, and n the direction of translation.

3.3. Rotation
A rotation is the product of two reflections between the two nonparallel planes π1 and π2 that cross
the origin. The rotation is then defined by

Q′ = (π2π1)︸ ︷︷ ︸
Rθ

Q
(
π−1

1 π−1
2

)
︸ ︷︷ ︸

R̃θ

. (8)

Computing the geometric product of the normal of the planes n1 and n2 yields

Rθ = n2n1 = cos(θ/2) − sin(θ/2)n = e−θn/2, (9)

with n = n1 ∧ n2, and θ is twice the angle between π1 and π2. If we translate the rotor Rθ to a certain
place with the translator T s = 1 + 1

2 tse∞, then the new rotor R is

R = T s Rθ T̃ s = cos(θ/2) − Lsin(θ/2), (10)

where L = n + e∞m is the screw axis, and the bivectors n and m stand for the orientation and the
moment of the screw axis respectively.

3.4. Screw motion
The screw motion, called motor, is a composition of a translation and a rotation, both related to an
arbitrary axis L. The motor is defined as

M = T R. (11)

Therefore, a motor transformation for an entity Q is given by

Q′ = (T R)︸ ︷︷ ︸
Mθ,t

Q (R̃T̃ )︸ ︷︷ ︸
M̃θ,t

. (12)

A more detailed description of CGA can be found in ref. [9, 13].

4. Dynamic Modeling Using CGA
Using the equations of kinetic and potential energy as well as the Euler–Lagrange formulation, we
may synthesize the dynamic model of any n-DOF serial robot manipulator in terms of CGA.12, 13 The
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212 Robust tracking of bio-inspired references for a biped robot

matrix form of the Euler–Lagrange equation is given by

M (q) q̈ + C (q, q̇) q̇ + G (q) = τ. (13)

Defining mi, Ij , L
′
i , and x ′

i as the mass, moment of inertia, current axis of rotation, and current
position of the center of mass for the ith link of the manipulator respectively, we may redefine Eq.
(13) in the CGA framework using the following matrices:

M (q) = Mv + MI, (14)

where

MI = δI =

⎛
⎜⎜⎜⎜⎝

1 1 · · · 1

0 1 · · · 1
...

...
. . .

...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

I1 0 · · · 0

I2 I2 · · · 0
...

...
. . .

...

In In · · · In

⎞
⎟⎟⎟⎟⎠ , (15)

and

Mv = V T mV, (16)

where m = diag{m1, m2, . . . , mn} and

V =

⎛
⎜⎜⎜⎜⎝

x ′
1 · L′

1 0 · · · 0

x ′
2 · L′

1 x ′
2 · L′

2 · · · 0
...

...
. . .

...

x ′
n · L′

1 x ′
n · L′

2 · · · x ′
n · L′

n

⎞
⎟⎟⎟⎟⎠ . (17)

Based on the properties of the matrices M(q), C(q, q̇) as

C = V T mV̇ , (18)

where

V = XL =

⎛
⎜⎜⎜⎜⎝

x ′
1 0 · · · 0

0 x ′
2 · · · 0

...
...

. . .
...

0 0 · · · x ′
n

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

L′
1 0 · · · 0

L′
1 L′

2 · · · 0
...

...
. . .

...

L′
1 L′

2 · · · L′
n

⎞
⎟⎟⎟⎟⎠ . (19)

Therefore,

V̇ = ẊL + XL̇, (20)

where

Ẋ =

⎛
⎜⎜⎜⎜⎝

ẋ ′
1 0 · · · 0

0 ẋ ′
2 · · · 0

...
...

. . .
...

0 0 · · · ẋ ′
n

⎞
⎟⎟⎟⎟⎠ , L̇ =

⎛
⎜⎜⎜⎜⎝

L̇′
1 0 · · · 0

0 L̇′
2 · · · 0

...
...

. . .
...

0 0 · · · L̇′
n

⎞
⎟⎟⎟⎟⎠ . (21)

Finally, the vector G(q) is expressed as the following product:

G (q) = V T F, (22)
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Fig. 1. Measurements for tensors.

with

F =

⎛
⎜⎜⎜⎜⎝

m1 0 · · · 0

0 m2 · · · 0
...

...
. . .

...

0 0 · · · mn

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ge2

ge2

ge2

ge2

⎞
⎟⎟⎟⎠ , (23)

where g is the acceleration due to gravity. Thus, Eq. (13) will be rewritten as

δI q̈ + V T m(V q̈ + V̇ q̇ + a) = τ. (24)

Note that by using Eq. (24), we obtain the terms using just inner products between X′
i and L′

i . For
a more detailed explanation of the process to obtain (13), see Zamora and Bayro-Corrochano.13 Using
Eq. (24) and measurements of the X′

i and L′
i , we can compute the involved tensor of Eq. (13). In our

simulation, we compute these tensors step by step in this way (see Fig. 1).

5. Sliding Mode Controller
In this section, the output tracking problem will be developed for the two legs of a biped robot, each
with 6 DOFs, and a sliding mode controller will be proposed.14, 18 Due to space limitations, we will
explain the procedure only for the left leg. Adding a disturbance term P (t) to (13), we can obtain a
state-space representation defining the state variables as x1 = q, x2 = q̇, the output of the system as
y = x1, and the control signal as U = τ . Hence, the resulting state-space model is given by

ẋ1 = x2,

ẋ2 = −M−1 (Cx2 + G) + M−1U + P (t).
(25)

The parentheses were omitted for simplicity and the entries of the tensor were computed using
Eq. (24). We assume that the disturbance term P (t) is bounded as follows:

‖P (t)‖ < β. (26)

5.1. First-order sliding mode control
Define the output tracking error as

e1 = x1 − yref (t) , (27)

where yref is the bio-inspired reference for the biped robot mentioned earlier. Then the dynamics for
e1 is given by

ė1 = x2 − ẏref (t) . (28)

Using x2 as the pseudo-control for this block, we obtain its reference x2ref as

x2ref = −k1 tanh (ε1e1) + ẏref (t) . (29)
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214 Robust tracking of bio-inspired references for a biped robot

Fig. 2. (Colour online) Biped robot with 6 DOFs per leg.

Then if we define the error variable for the second block as

e2 = x2 − x2ref, (30)

we can obtain its dynamics as

ė2 = −M−1 (Cx2 + G) + M−1U + P (t) − ẋ2ref. (31)

The term ẋ2ref is defined as

ẋ2ref = −k1ε1� (x2 − ẏref (t)) + ÿref (t) (32)

with � = diag{1 − tanh2(ε1e11), . . . , 1 − tanh2(ε1e1n) } and e1 = [ e11 · · · e1n ]T .
Finally, we design the control law U as

U = Cx2 + G − k2M sgn (ε2e2) + Mẋ2ref. (33)

Using (33), (31), (29), and (28), we find that the closed-loop dynamics for the error variables is given
by

ė1 = −k1 tanh (ε1e1) ,

ė2 = −k2 sgn (ε2e2) + P (t) .
(34)

If the conditions k1 > 0, k2 > β are fulfilled, then the system (34) is globally asymptotically stable.14

A model of the robot humanoid is presented in Fig. 2. It is a 3D virtual representation of the
MEXONEexone humanoid robot from CINVESTAV, Campus Guadalajara. Each leg of the biped
robot has 6 DOFs: three in the hip, one in the knee, and two in the ankle.

5.2. Second-order sliding mode control
One of the advantages of second-order sliding mode control is that it reduces high-frequency
components in the control signal. This technique is known as super twisting.16, 17

Starting from the state-space model (25), the tracking error e1 is defined as

e1 = x1 − yref. (35)

http://dx.doi.org/10.1017/S0263574714000216
Downloaded from http:/www.cambridge.org/core. Open University Libraryy, on 24 Dec 2016 at 04:13:54, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.1017/S0263574714000216
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


Robust tracking of bio-inspired references for a biped robot 215

Then the dynamics for e1 is given by

ė1 = x2 − ẏref = −k1e1. (36)

Using x2 as the pseudo-control for this block, we obtain the reference x2ref as

x2ref = ẏref − k1e1. (37)

Then the error variable for the second block is defined as

e2 = x2 − x2ref. (38)

Its dynamics can be obtained as

ė2 = −M−1 (Cx2 + G) + M−1τ + P (t) − ẋ2ref, (39)

where the control law is proposed as

τ = τ0 + τ1. (40)

τ0 is the control part that eliminates the known terms of the system, and τ1 is designed to absorb
disturbances. Now (39) can be expressed as

ė2 = −M−1 (Cx2 + G) + M−1τ0 + M−1τ1 + P (t) − ẋ2ref, (41)

where

τ0 = (Cx2 + G) + Mẋ2ref. (42)

Then ė2 is expressed as

ė2 = M−1τ1 + P (t), (43)

and the control τ1 is proposed as17

τ1 = M
(
−k2|e2| 1

2 sgn (e2) + μ
)

, (44)

where μ is an auxiliary variable of the super-twisting technique. Finally, (44) is replaced in (43) such
that

ė2 = −k2|e2| 1
2 sgn (e2) + μ + P (t), (45)

μ̇ = −k3 sgn (e2) .

Performing the transformation ξ = μ + P (t), we obtain

ė2 = −k2|e2| 1
2 sign(e2) + ξ (46)

ξ̇ = −k3 sign(e2) + Ṗ (t). (47)

5.2.1. Stability. The stability proof was originally done by Moreno et al.17 It is included here for the
sake of completeness. The perturbation of the system is globally bounded by

|Ṗ (t)| ≤ δ, (48)
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216 Robust tracking of bio-inspired references for a biped robot

where δ ≥ 0. The origin is a strong point of equilibrium, globally and asymptotically stable if the
gains proposed in ref. [19] satisfy

k2 > 0,

k3 > 3δ + 2
δ

k2

2

. (49)

Moreover, all trajectories converge in finite time to the origin, bounded by T̃ = 2V 1/2(x0)
γ̃

, where x0 is
the initial state and γ̃ is a constant that depends on the gains k2, k3, and the disturbance coefficient δ.
The Lyapunov function for the system (45) is expressed as

V = 2k3 |e2| + 1

2

(
k2 |e2|1/2 sgn (e2) − μ

)2
. (50)

The time derivative of (50) is

V̇ = − 1

|e2|1/2 ζ T Qζ + P (t)

|e2|1/2 ηT
1 ζ, (51)

whereηT
1 = [ (2k3 + k2

2
2 ) − k2

2
], ηT

2 = [ −k1 2 ], ζ T = [ (|e2|1/2 sgn(e2)) μ ], and Q = k2
2 [ 2k3 + k2

2 −k2
−k2 1 ].

Using the bound on the disturbance (48) and some algebraic manipulation, one can obtain

V̇ ≤ − 1

|e2|1/2 ζ T Q̃ζ, (52)

where

Q̃ = k2

2

⎡
⎣2k3 + k2

2 − 2δ −
(
k2 + 2δ

k2

)

−
(
k2 + 2δ

k2

)
1

⎤
⎦ . (53)

The function (52) is negative definite if Q̃ > 0; this is fulfilled under the conditions given in (49).
In this way, the state converges to zero in finite time, at most after T = 2V 1/2(x0)

γ̃
units of time, where

γ̃ = λ
1/2
min{P }λmin{Q̃}

λmax{P } . Taking e2 = 0 in (38), x2 = x2ref, and ξ = 0 in ξ = μ + P (t), we get μ = −P (t).
Substituting (37) in (36) proves that

ė1 = −k1e1. (54)

Now the Lyapunov function for (54) is

V1 = 1

2
eT

1 e1, (55)

which is positive definite, and its time derivative is expressed as

V̇1 = eT
1 ė1 = e1

T [−k1e1] = −e1
T k1e1,

≤ −k1 ‖e1‖2 . (56)

If the condition k1 > 0 is fulfilled, (56) is negative definite and its origin is a globally and
asymptotically stable equilibrium point.

5.3. Exact robust differentiator
In order to implement the control law defined in (33), we need to know the derivatives ẏref(t), ÿref(t).
Obviously, these are unknown terms because only the reference vector yref(t) was obtained by directly
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Robust tracking of bio-inspired references for a biped robot 217

Fig. 3. Reference signal, first derivative, and second derivative for the six joints of the left leg.

measuring a walking person. This missing information can be found using a robust differentiator based
on high-order sliding modes.15 The structure of a fifth-order differentiator is defined as follows:

ż0 = v0, v0 = −12|z0 − yref (t)|5/6 sgn (z0 − yref (t)) + z1,

ż1 = v1, v1 = −8|z1 − v0|4/5 sgn (z1 − v0) + z2,

ż2 = v2, v2 = −5|z2 − v1|3/4 sgn (z2 − v1) + z3,

ż3 = v3, v3 = −3|z3 − v2|2/3 sgn (z3 − v2) + z4,

ż4 = v4, v4 = −1.5|z4 − v3|1/2 sgn (z4 − v3) + z5,

ż5 = −1.1 sgn (z5 − v4) ,

(57)

where zi is the estimated ith derivative of yref whose initial value is zero.
Figure 3 shows the bio-inspired walking references for the six joints of the left leg and the output

of the robust differentiator for the first and second derivatives. Note that the references for each joint
of the biped robot were obtained using the HRSP, where reference signals at each joint of a walking
person (human) are captured using the VICON system. The signals are adapted via fuzzy logic and
neural network-based inference engine, taking into account the gait and parameter characteristics of
the 106-cm tall humanoid MEXONE.

The walking process of a biped robot includes the swing and the collision phase when the feet
touch the floor. In this study, our walking patterns show a smooth transition between phases; thus,
the control algorithms applied to dynamic equations adapt smoothly to the system. However, due to
the use of the super-twisting sliding mode control, which is robust against unmatched perturbations,
the biped robot will indeed maintain its smooth walking even under these perturbations.

Figure 4 shows the bio-inspired signals for each joint of the legs.

6. Simulations
The proposed control law defined in (33) was applied to the biped robot shown in Fig. 2. The
axes of rotation are proposed in Fig. 5. The initial value of the vector for both legs is x0 = 10−2 ·
[ 5 21 8 62 15 0.003 ]T , and the gains k1, k2 were set as k1 = 10 · [ 1 4 1 4 4 2 ]T and k2 = 10 ·
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218 Robust tracking of bio-inspired references for a biped robot

Fig. 4. (Colour online) Bio-inspired reference signals for the joints of each leg.

Fig. 5. (Colour online) Axes of rotation of the biped robot.

[ 1 28 1 28 14 4 ]T respectively. The slopes ε1, ε2 were chosen as ε1 = 2, ε2 = 5. The initial positions
for the center of mass of each link are

x1 = σ1e1 − σ2e2,

x2 = σ3e1 − σ2e2,

x3 = σ4e1 − σ5e2,

x4 = σ4e1 − σ6e2,

x5 = σ4e1 − σ7e2,

x6 = σ4e1 − σ8e2,

x7 = −σ1e1 − σ2e2,

x8 = −σ3e1 − σ2e2,

x9 = −σ4e1 − σ5e2,

x10 = −σ4e1 − σ6e2,

x11 = −σ4e1 − σ7e2,

x12 = −σ4e1 − σ8e2,

(58)
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Fig. 6. (Colour online) Origins of the frames attached to each link.

and the origins of the frames attached to each link of the biped robot are the following Euclidean
points, which can be expressed in CGA using Eq. (1) as follows:

o1 = σ9e1 − σ2e2,

o2 = σ4e1 − σ2e2,

o3 = σ4e1 − σ3e2,

o4 = σ4e1 − σ10e2,

o5 = σ4e1 − σ8e2 = o6,

o7 = −σ9e1 − σ2e2,

o8 = −σ4e1 − σ2e2,

o9 = −σ4e1 − σ3e2,

o10 = −σ4e1 − σ10e2,

o11 = −σ4e1 − σ8e2 = o12,

(59)

with σ1 = 0.024, σ2 = 0.062, σ3 = 0.079, σ4 = 0.110, σ5 = 0.068, σ6 = 0.188, σ7 = 0.417, σ8 =
0.533, σ9 = 0.049, and σ10 = 0.302, all of which depend on the magnitude of the distances between
the reference frame {e1, e2, e3} and the origins oi , i = 1, . . . , 12, indicated in Fig. 6. The initial
values for the axes of rotation of the biped robot are defined as

L1 = e23 + e∞ (o1 · e23) ,

L2 = e12 + e∞ (o2 · e12) ,

L3 = e31 + e∞ (o3 · e31) ,

L4 = e23 + e∞ (o4 · e23) ,

L5 = e23 + e∞ (o5 · e23) ,

L6 = e12 + e∞ (o6 · e12) ,

L7 = e23 + e∞ (o7 · e23) ,

L8 = e12 + e∞ (o8 · e12) ,

L9 = e31 + e∞ (o9 · e31) ,

L10 = e23 + e∞ (o10 · e23) ,

L11 = e23 + e∞ (o11 · e23) ,

L12 = e12 + e∞ (o12 · e12) .

(60)

The simulation results for the left leg are shown next. The performance and response for the right
leg are very similar to the left leg and thus are not included here. The disturbance signals used in the
simulation can be seen in Fig. 7.
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Fig. 7. Disturbances used in the simulation for each joint of the left leg.

Fig. 8. Tracking response for the six joints of the left leg (first-order sliding mode control).

Fig. 9. Tracking error for the six joints of the left leg (first-order sliding mode control).
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Fig. 10. Control signals (joint torques) for the six joints of the left leg (first-order sliding mode control).

Fig. 11. Tracking response for the six joints of the left leg (super-twisting technique).

6.1. Simulations using first-order sliding mode control
The tracking responses for the six joints of the left leg are depicted in Fig. 8. One can observe that
the control objective has been fulfilled, and with a low settling time. Figure 9 shows that the six
corresponding error variables converge to a small vicinity of zero, demonstrating the robustness of
the proposed control scheme. Figure 10 depicts the control signals (joint torques) of the left leg.

6.2. Simulations using the super-twisting technique
The tracking responses for the six joints of the left leg are depicted in Fig. 11. One can observe that
the control objective has been fulfilled, and with a low settling time. Figure 12 shows that the six
corresponding error variables converge to a smaller vicinity of zero using the super-twisting technique.
Note that this vicinity is smaller than that using first-order sliding mode control, thus demonstrating
the robustness of the super-twisting control technique. In addition, we show how the chattering is
almost eliminated with the super-twisting control technique. This capability is very useful in order
not to damage the actuators of a real robot. In Fig. 13, the control signals (joints torques) of the left
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222 Robust tracking of bio-inspired references for a biped robot

Fig. 12. Tracking error for the six joints of the left leg (super-twisting technique).

Fig. 13. Control signals (joint torques) for the six joints of the left leg (super-twisting technique).

Fig. 14. (Colour online) Sequence of images of the biped robot walking (two steps). The arrows indicate the
feet lifting.
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leg are depicted using the super-twisting technique. The high-frequency components are significantly
attenuated, unlike in Fig. 10, even though the setting time is a bit longer than the control schema using
first-order sliding mode control. Finally, a sequence of images of the biped robot walking is presented
in Fig. 14. In future work, we will use a series of tracking-control analyses based on different gait
characteristic data following more challenging walking paths and under lateral pushing. We will soon
apply these control techniques with our robot in real time.

7. Conclusions
We applied bio-inspired signals as walking waves as reference for the walking of a humanoid robot.
The advantage of using such signals is that they help us to get the robot to accomplish an expected
human-like walking pattern. However, this is jeopardized due to the effect of perturbations and non-
modeled parameters of the robot dynamics. To follow such trajectories, we must resort to a robust
control technique. In addition, the algebraic complexity of the formulation is also an issue, which
we tackle by computing the kinematics and dynamics of the plant in the CGA framework. As a
result, the equations are simple, compact, and comfortable for design algorithms subject to geometric
constraints. In this regard, the use of a robust sliding mode controller becomes easy and natural.
We present simulations subject to perturbations that confirm the robustness of our control schemes.
Future work consists of using more advanced control techniques and real-time implementation.
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14. L. Gonzáles-Jiménez, A. Loukianov and E. Bayro-Corrochano, “Integral Nested Sliding Mode Control
for Robotic Manipulators,” Proceedings of the 17th World Congress of the International Federation of
Automatic Control, Seoul, Korea (2008) pp. 9899–9904.

15. A. Levant, “Higher order modes, differentiation and output feedback control,” Int. J. Control 76, 924–941
(2003).

16. A. Levant, “Sliding order and sliding accuracy in sliding mode control,” Int. J. Control 58, 1247–1263
(1993).

17. J. A. Moreno and M. Osorio “A Lyapunov Approach to Second-Order Sliding Mode Controllers and
Observers,” Proceedings of the 47th Conference on Decision and Control, Cancún, México (Dec. 9–11,
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