
Proof Reconstruction: Parsing Proofs

Alejandro Gómez-Londoño

Universidad EAFIT
agomezl@eafit.edu.co

Abstract. Automated theorem provers (ATP) and proof assistants are
among the developed sub-areas on automated reasoning, despite their
approaches being certainly opposite, many new developments combine
both techniques allowing a sub-proof to be automated using an ATP
from within a proof assistant. Acting as a bridge between proof assis-
tants and ATP, these systems known as hammers tend to enhance the
functionality of an existing proof assistant, adding ATP capabilities into
the interactive logical reasoning process. Agda a well known dependently
typed functional programming language that can also be use as a proof
assistant lacks in some degree of a hammer-like tool, and hence our goal
is to fill part of this gap with a tool that can translate from an ATP
generated proof into idiomatic Agda code, and doing so provide a base
for further development.

1 Introduction

Automated theorem provers (ATP) and proof assistants has been around for
decades (Davis 2001; Geuvers 2009). Despite the obvious differences between
the two, both approaches share a fundamental goal which is to aid humans with
complex proofs in an automatic or interactive manner, is maybe due to this rela-
tionship that in recent years various tools have been developed using a mixture
of both systems. Such tools, some times referred to as hammers (Blanchette,
Kaliszyk, and Paulson 2014) allow the users to write proofs in an interactive
manner from within a proof assistant, but with the option of sending sub-proofs
to an ATP.

Hammers by themselves aren’t ATP nor poof assistants, they act more like
a plugin that sits on top of the proof assistant and allows the communication
with various ATP for proof automation, hammer-like tools typically consists on
three mayor components (Blanchette, Kaliszyk, and Paulson 2014):

1. Premise selector : it gathers relevant theorems from the available libraries
that can help with the current proof.

2. Translation module: takes the premises and the goal and translates them
into the ATP input syntax (a common syntax to represent ATP problems
is TPTP(Sutcliffe 2009)) this translation in most cases involves mapping a
subset of the proof assistant logic into the ATP logic.

3. Proof reconstruction module: processes the proof returned by the ATP re-
constructing it in the proof assistants syntax/logic.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad EAFIT

https://core.ac.uk/display/47246883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

As shown in Figure 1, hammers act as a bridge between the interactive and
the automated process, constituting a more robust system capable of a more
smooth interaction with logical reasoning process.

Interactive AutomaticHammer

reconstruction

Proof assistant ATP

translation

premise selector

Fig. 1. Architecture of the various components involved in a hammer-like tool

2 Previous Work

As stated before, the development of ATPs and proof assistants dates from
decades ago, but in comparison, the mixture of this two approaches (as ham-
mers) is relatively new, nonetheless some exponents of this trend have been
developed in the later years. Perhaps the best precedent in this category is
Sledgehammer (Blanchette and Paulson 2014) a tool that sits on top of the Is-
abelle/HOL proof assistant (Nipkow, Wenzel, and Paulson 2002) and allows the
translation/reconstruction of proofs to/from multiple ATPs. Another similar ex-
ample for the Agda proof assistant is a work by Foster and Struth that proposes
the integration of Agda with Waldmeister (Foster and Struth 2011) a theorem
prover for equational logic (Buch, Hillenbrand, and Fettig 1996). The usefulness
and convenience of the hammers can truly improve the way proof assistants
work, taking most of the boilerplate and tediousness of proofs out of the way,
an thus allowing to get more work done faster.

Currently Agda unlike Isabelle lacks of a true hammer, but this is an issue
that is being addressed by the aforementioned work by Foster and Struth, and
by some developments like the Apia tool (Sicard-Ramı́rez, Bove, and Dybjer
2014), which allows to prove first-order theorems from within Agda translating
the formulae to TPTP and then sending it to multiple ATPs.

3 Problem Description

Agda (Norell 2007)(Agda Team 2015) as a proof assistant lacks of a hammer-
like tool, but programs like Apia which allows to prove first-order theorems from
within Agda using ATPs are closing this gap. Unfortunately Apia only works as
a translation module and as a front-end for the ATPs. Some further development
has to be done to achieve an Agda-hammer tool and one of the missing pieces
in this enterprise is a proof reconstruction module, this would allow proofs to
be verified from within Agda and jointly with a tool like Apia it could provide
a fully functional hammer for Agda. Our goal is then to build a reconstruction
module for Agda in order to fill this gap.

4 Procedure

The construction of a proof reconstruction module in his essence is just the
translation of the output from an ATP-generated proof into the native language
of a proof assistant, thus, the selection of both systems constitute a crucial design
decision. In our case a proof assistant has already been chosen, but a number of
criterias were taken into account when deciding what ATP to choose:

– Good performance, in terms of time needed to perform a proof.
– TPTP input, since is the most broadly used format.
– TSTP output, as a relatively new and promising standard for representing

proofs (Sutcliffe, Zimmer, and Schulz 2004).
– Concise proofs.

Thus the most convenient input and output format are (as shown in Figure 2)
TPTP/TSTP since they stand as the more common format among many ATP,
and the amount of useful tools and documentation is significant

ATP

TPTP TSTP

Fig. 2. ATP Input and Output formats

In terms of performance, a quick response time is an imperative requirement
for any interactive system, and since the intended use for the chosen ATP will
involve some level of interaction with the user, this criteria is of considerable
importance. The last criteria refers to how concise a proof is in terms of how many
rules or tactics are required to completed it, this helps for both the understanding
of the proof, as for a more compact and simple implementation.

The reconstruction of a proof involve a series of steps (Figure 3) each of
which perform some transformation over previous steps of the process, starting

Reconstruction

TSTP

Parser AST DAG

Agda

Fig. 3. Internals of a reconstruction module

with the TSTP input, and resulting in the final Agda code as output. The
following sections describe the various steps planned for our implementation of
a reconstruction module.

4.1 Parser and AST construction

In this two closely related steps the main objective is to analyze the TSTP input,
in order to translate the proof into some suitable data structure allowing further
manipulation from within the programing language used. This data structure is
often called Abstract Syntax Tree (AST) and his main purpose is to represent
only the relevant information from the input format in a concise and structured
manner.

formula(s_0 ,plain ,(x & y), conjunction(a_0 ,a_1)).

formula(s_1 ,plain ,(z),modus_ponens(a_2 ,s_0)).

formula(r_0 ,plain ,($true),simplify(s_1 ,c_0)).

Listing 1.1. TSTP-like proof fragment

F {name = "s_0",

role = Plain ,

formula = "x" (:&:) "y",

annotations = Conjunction ["a_0","a_1"]

}

Listing 1.2. Haskell data type representing a single TSTP formula

The conversion from TSTP format into a more concise data type is shown
in Listings 1.1 and 1.2. After this translation, further analysis can be performed
from within the programing language without using the original input file, since
all the information is now represented in the corresponding data type.

4.2 DAG

A directed acyclic graph (DAG) is intended to be used to represent the relation-
ship between each step of the proof. The process for constructing a DAG takes
a list of formulas from the AST, and uses some of the information on each proof
to construct a graph that effectively resembles the logical steps in the original
proof.

fof(a_0 ,axiom ,x).

fof(a_1 ,axiom ,y).

fof(a_2 ,axiom , ((x & y) => z)).

fof(c_0 ,conjecture , z).

Listing 1.3. TPTP problem

fof(s_0 ,plain ,(x & y),

inference(conj ,[],[a_0 ,a_1])).

fof(s_1 ,plain ,(z),

inference(modp ,[],[a_2 ,s_0])).

fof(r_0 ,plain ,($true),

inference(simplify ,[],[s_1])).

Listing 1.4. TSTP proof

a 0 a 1 a 2

s 0

s 1

r 1

Fig. 4. DAG

x y
x ∧ y x ∧ y ⇒ z

z

Fig. 5. Actual proof

Listings 1.3 and 1.4 and Figures 3 and 4 present a complete example of how
a DAG structure is capable of resemble the actual proof.

4.3 Agda code generation

Once the DAG is completed the next step is to translate the first order proof
that it represents into a representation of FOL in agda. This step is perhaps the
most complex of all and has not been fully designed yet.

5 Results

The current state of the project involves a number of design decisions as well as
some development of the aforementioned steps of the process, all of which can
be summarized as:

– Haskell and Agda has been chosen as the programing languages for the im-
plementation. In Haskell, we will handle the parsing and AST construction,
while in Agda, we will create and analyze the DAG.

– Metis (Hurd 2003) was chosen as our ATP, due to his simple kernel, good
performance, and TPTP/TSTP support.

– A modified version of the logic-tptp1 Haskell library has been used to
implement a TSTP parser capable of analyze Metis proofs. This project is
freely available on github2.

References

Agda Team (2015). The Agda wiki. url: http://wiki.portal.chalmers.se/
agda/pmwiki.php.

Blanchette, Jasmin C., Cezary Kaliszyk, and Lawrence C. Paulson (2014). “Ham-
mering towards QED”. English. In: Draft version.

Blanchette, Jasmin Christian and Lawrence C. Paulson (2014). Hammering
Away. A User’s Guide to Sledgehammer for Isabelle/HOL. Institut für Infor-
matik, Technische Universität München.

Buch, Arnim, Thomas Hillenbrand, and Roland Fettig (1996). “WALDMEIS-
TER: High Performance Equational Theorem Proving”. In: Proceedings of the
International Symposium on Design and Implementation of Symbolic Com-
putation Systems. DISCO ’96. London, UK, UK: Springer-Verlag, pp. 63–
64.

Davis, Martin (2001). “Chapter 1 - The Early History of Automated Deduc-
tion: Dedicated to the memory of Hao Wang”. In: Handbook of Automated
Reasoning. North-Holland, pp. 3 –15.

Foster, Simon and Georg Struth (2011). “Integrating an Automated Theorem
Prover into Agda”. English. In: NASA Formal Methods. Ed. by Mihaela Bo-
baru et al. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 116–130.

Geuvers, H (2009). “Proof assistants: History, ideas and future”. English. In:
Sadhana 34.1, pp. 3–25.

Hurd, Joe (2003). “First-Order Proof Tactics in Higher-Order Logic Theorem
Provers”. In: pp. 56–68.

Meredith, C. A. and A. N. Prior (1968). “Equational logic.” In: Notre Dame J.
Formal Logic 9.3, pp. 212–226.

1 https://hackage.haskell.org/package/logic-TPTP
2 https://github.com/agomezl/tstp2agda

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://hackage.haskell.org/package/logic-TPTP
https://github.com/agomezl/tstp2agda

Nipkow, Tobias, Markus Wenzel, and Lawrence C Paulson (2002). Isabelle/HOL:
A Proof Assistant for Higher-order Logic. Berlin, Heidelberg: Springer-Verlag.
isbn: 3-540-43376-7.

Norell, Ulf (2007). “Towards a practical programming language based on de-
pendent type theory”. PhD thesis. Chalmers University of Technology and
Göteborg University.

Sicard-Ramı́rez, Andrés, Ana Bove, and Peter Dybjer (2014). “Reasoning about
Functional Programs by Combining Interactive and Automatic Proofs”. Un-
published doctoral dissertion. PhD thesis. Uruguay: University of the Repub-
lic.

Sutcliffe, G (2009). “The TPTP Problem Library and Associated Infrastructure:
The FOF and CNF Parts, v3.5.0”. In: Journal of Automated Reasoning 43.4,
pp. 337–362.

Sutcliffe, G., J. Zimmer, and S Schulz (2004). “TSTP Data-Exchange Formats
for Automated Theorem Proving Tools”. In: Distributed Constraint Problem
Solving and Reasoning in Multi-Agent Systems. Ed. by Sorge V Zhang W.
Vol. 112. Frontiers in Artificial In Itelligence and Applications. IOS Press.

	Proof Reconstruction: Parsing Proofs

