
Objectives
q-exponential statistical Banach manifold

Induced Geometry manifold

A Riemannian Geometry in the q-Exponential Banach Manifold
Induced by q-Divergences

Gabriel I. Loaiza O.
Hector R. Quiceno

Universidad EAFIT

August 28, 2013

Gabriel I. Loaiza O. Hector R. Quiceno A Riemannian Geometry in the q-Exponential Banach Manifold



Objectives
q-exponential statistical Banach manifold

Induced Geometry manifold

Table of Contents

1 Objectives

2 q-exponential statistical Banach manifold

3 Induced Geometry manifold

Gabriel I. Loaiza O. Hector R. Quiceno A Riemannian Geometry in the q-Exponential Banach Manifold



Objectives
q-exponential statistical Banach manifold

Induced Geometry manifold

Objectives

Objective

Give new mathematical developments to characterize the geometry induced by the
q-exponential Banach manifold, by using q-divergence functionals, such that this
geometry turns out to be a generalization of the geometry given by Fisher information
metric and Levi-Civita connections.

Specific objectives

1 Introduce the metric.
2 Introduce the connections induced by the q-divergence functional, using the

Eguchi relations.
3 Show the zero curvature of the manifold.
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Let q a real number such that 0 < q < 1.
1 We consider the q-deformed exponential and logarithmic functions which are

respectively defined by

ex
q = (1 + (1− q)x)1/(1−q), if

−1
1− q

≤ x and lnq(x) =
x1−q − 1
1− q

, if x > 0.

2 We consider the operations defined for real numbers x and y by

x ⊕q y := x + y + (1− q)xy and x 	q y :=
x − y

1 + (1− q)y
, for y 6=

1
q − 1

.

3 It holds that e(x1	qx2)
q =

ex
q

ex2
q

and e(x1	qx2)
q =

ex
q

ex2
q

.
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Let (Ω,Σ, µ) be a probability space. Denote by Mµ the set of strictly positive
probability densities µ-a.e.
For each p ∈Mµ consider the probability space (Ω,Σ, p · µ), where
(p · µ)(A) =

∫
A pdµ. Denote ‖ · ‖p,∞ the norm in L∞(p · µ), with which

Bp := {u ∈ L∞(p · µ) : Ep [u] = 0},

is a closed normed subspace so is a Banach space.

The probability densities p, z ∈Mµ are connected by a one-dimensional q-exponential
model if there exist r ∈Mµ, u ∈ L∞(r · µ), a real function of real variable ψ and
δ > 0 such that for all t ∈ (−δ, δ), the function f defined by

f (t) = etu	qψ(t)
q r ,

satisfies that there are t0, t1 ∈ (−δ, δ) for which p = f (t0) and z = f (t1). The
function f is called one-dimensional q-exponential model.

Gabriel I. Loaiza O. Hector R. Quiceno A Riemannian Geometry in the q-Exponential Banach Manifold



Objectives
q-exponential statistical Banach manifold

Induced Geometry manifold

q-exponential statistical Banach manifold

We define the mapping Mp given by

Mp(u) = Ep [e(u)
q ],

denoting its domain by DMp ⊂ L∞(p · µ). Also we define the mapping

Kp : Bp,∞(0, 1)→ [0,∞],

for each u ∈ Bp,∞(0, 1), by
Kp(u) = lnq [Mp(u)].

If restricting Mp to Bp,∞(0, 1), this function is analytic and infinitely Fréchet
differentiable.
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Let (Ω,Σ, µ) be a probability space and q a real number with 0 < q < 1. Let be
Vp := {u ∈ Bp : ‖u‖p,∞ < 1}, for each p ∈ Mµ. We define the maps
eq,p : Vp →Mµ by

eq,p(u) := e(u	qKp(u))
q p,

which are injective and their ranges are denoted by Up . For each p ∈Mµ the map
sq,p : Up → Vp given by

sq,p(z) := lnq

(
z
p

)
	q Ep

[
lnq

(
z
p

)]
,

is precisely the inverse map of eq,p . Maps sq,p are the coordinate maps for the
manifold and the family of pairs (Up , sq,p)p∈Mµ define an atlas on Mµ; and the
transition maps, for each u ∈ sq,p1 (Up1

⋂
Up2 ), are given by

sp2 (ep1 (u)) =
u ⊕q lnq( p1

p2
)− Ep2 [u ⊕q lnq( p1

p2
)]

1 + (1− q)Ep2 [u ⊕q lnq( p1
p2

)]
.
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Given u ∈ sq,p1 (Uq,p1
⋂

Uq,p2 ), we have that
D(sq,p2 ◦ s

−1
q,p1 )(u) · v = A(u)− B(u)Ep2 [A(u)], where A(u), B(u) are functions

depending on u.

The collection of pairs {(Up , sq,p)}p∈Mµ is a C∞-atlas modeled on Bp , and the
corresponding manifold is called q−exponential statistical Banach manifold.

Finally, the tangent bundle of the manifold, is characterized, (Proposition 15), by
regular curves on the manifold, where the charts (trivializing mappings) are given by

(g , u) ∈ T (Up)→ (sq,p(g),A(u)− B(u)Ep [A(u)]),

defined in the collection of open subsets Up × Vp of Mµ × L∞(p · µ).
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The q-divergence functional is given as follow. Let f be a function, defined for all
t 6= 0 and 0 < q < 1, by f (t) = −t lnq

( 1
t

)
and for p, z ∈Mµ. The q-divergence of

z with respect to p is given by

I (q)(z||p) :=

∫
Ω
p f
(
z
p

)
dµ =

1
1− q

[
1−

∫
Ω

zqp1−q dµ
]
, (1)

which is the Tsallis divergence functional.

We have that the manifold is related with the q-divergence functional as

sq,p(z) =

(
1

1 + (q − 1)I (q)(p||z)

)(
lnq

(
z
p

)
+ I (q)(p||z)

)
.

Proposition

Let p, z ∈ Mµ then (du)z I (q)(z||p)|z=p = (dv )p I (q)(z||p)|z=p = 0, where the
subscript p, z means that the directional derivative is taken with respect to the first
and the second arguments in I (q)(z||p), respectively, along the direction u ∈ Tz (Mµ)
or v ∈ Tp(Mµ).
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According to Proposition (16), the functional I (q)(z||p) is bounded, since:

I (q)(z||p) ≥ 0 and equality holds iff p = z and I (q)(z||p) ≤
∫

Ω
(z − p) f ′

(
z
p

)
dµ.

Then, together with previous proposition, the q-divergence functional induces a
Riemannian metric g and a pair of connections, see Eguchi, given by:

g(u, v) = −(du)z (dv )p I (q)(z||p)|z=p (2)

〈5wu, v〉 = −(dw )z (du)z (dv )p I (q)(z||p)|z=p , (3)

where v ∈ Tp(Mµ), u ∈ Tp(Mµ) and w is a vector field.
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Denote Σ(Mµ) the set of vector fields u : Up → Tp(Up), and F (Mµ) the set of C∞
functions f : Up → R. The following result establish the metric.
By direct calculation over I (q)(z||p), we obtain

(dv )p I (q)(z||p) = 1
1−q

∫
Ω

[
(1− q)− (1− q)p(−q)z(q)

]
vdµ and

(du)z (dv )p I (q)(z||p) = −q
∫

Ω

[
p(−q)z(q−1)

]
uvdµ, so by (2), it follows

g(u, v) = q
∫

Ω

uv
p

dµ. Ten we have the follow result.

Proposition

Let p, z ∈ Mµ and v , u vector fields, the metric tensor (field)
g : Σ(Mµ)× Σ(Mµ)→ F (Mµ) is given by

g(u, v) = q
∫

Ω

uv
p
dµ.
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Proposition

The connections are characterized as follows. The family of covariant derivatives
(connections) 5(q)

w u : Σ(Mµ)× Σ(Mµ)→ Σ(Mµ), is given as

5(q)
w u = dwu −

(
1− q
p

)
uw .

It is easy to prove that the associated conjugate connection is given by
5∗(q)

w u = dwu − q
p uw . Notice that taking q = 1−α

2 yields to the Amaris’s
one-parameter family of α−connections in the form

5(α)
w u = dwu −

(
1 + α

2p

)
uw ;

and taking q = 1
2 the Levi-Civita connection results.
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Proposition

Finally, we characterize this geometry by calculating the curvature and torsion tensors,
for which it will be proved that equals zero, i.e, for the q-exponential manifold and the
connection given in the previous proposition, the curvature tensor and the torsion
tensor satisfy R(u, v ,w) = 0 and T (u, v) = 0.
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