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Abstract

The development of numerical techniques for obtaining approximate
solutions of partial differential equations has very much increased in the
last decades. Among these techniques are the finite element methods
and finite difference. Recently, wavelet methods are applied to the nu-
merical solution of partial differential equations, pioneer works in this
direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among
others. In this paper, we employ the Wavelet-Petrov-Galerkin method
to obtain the numerical solution of the equation Korterweg-de Vries
(KdV).
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1 Introduction

The main objective of this paper is to present a numerical solution of Korteweg-
de Vries equation(KdV)

∂u

∂t
+ μu

∂u

∂x
+ ε

∂3u

∂x3
= 0, x ∈ R, t > 0, (1)
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where μ and ε are positive constants, using the method of Petrov-Galerkin-
Wavelet. This equation appears in the study of waves in shallow water in the
fluid dynamics [9, 10, 15]. Equation KdV satisfied the property that the non
linear term uux and the dispersion uxxx balance each other thereby generating
wave solutions which propagate maintaining same form throughout. The term
soliton was coined by Zabusky and Kruskal to describe this solitary wave,
solution of the KdV equation [2, 9, 11].

Daubechies presents a method to construct wavelets with compact support
and scale functions with arbitrary regularity and zero momentum [8]. However,
the price for these good properties is the absence of symmetry and ample
support. This disadvantage disappears in the context of biorthogonal wavelets,
a concept introduced by Cohen, Daubechies and Feauveau in [6]. In this
context, two non orthogonal base functions ψj,k and ψ∗

j,k, also called wavelets,
are constructed based on the translated scale functions ψ y ψ∗.

As opposed to Galerkin’s method, where the same base functions are used
as both test and admissible, in the Petrov-Galerkin method, test and trial
functions are different. In the Petrov-Galerkin approximation by biorthogonal
wavelets, the idea is to have one of the families of base functions as admissible
and its dual as test functions. The advantage of this method is the precondi-
tioning and discretization of the wavelets for adaptive algorithms [5, 17, 19].
Therefore, the technique wavelets provide efficient numerical methods, as al-
ternative to the classical methods [1, 7, 12, 13, 17].

The aim of this paper is to study the precision of Petrov-Galerkin’s method
by using biorthogonal wavelets, in the solution of KdV equation ut + μ uux +
ε uxxx = 0 with the initial condition u(x, 0) = u0(x). Instead of multi-level
wavelet bases, we expand the approximate solutions in terms of scale functions
φm,k(x) of only one level as a basis for admissible functions, while the dual
φ∗

m,k(x) are the test functions. The study of convergence is realized through
the Fourier analysis.

The paper is organized as follows: After some preliminary remarks in Sec-
tion 1, in Section 2, we give and discuss some facts showing where the method
fundamental ideas come from. In Section 3 we discuss some aspects and re-
sults concerning convergence and stability in the context of Petrov-Galerkin,
related to KdV equation

2 Wavelet-Petrov-Galerkin method

The method of Petrov-Galerkin is a particular case of a more general method,
known as Weighted Residue Method [10, 15]. Let us consider now the weak
formulation of KdV equation (1). Let 0 ≤ α ≤ 3 y β = 3 − α, for any test
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function v, β−regular, we have∫
�

v
∂u

∂t
dx+ μ

∫
�

vu
∂u

∂x
dx + ε

∫
�

v
∂3u

∂x3
dx = 0.

Then the weak formulation can be expressed as(∂u
∂t
, v
)

+ μ
(
u
∂u

∂x
, v
)

+ ε(−1)β
(∂αu

∂xα
,
dβv

dxβ

)
= 0, (2)

where (·, ·) is the inner product in L2(R). Recall that a function g is r−regular,
if there is a constant Ms,n > 0 with

∣∣g(s)(x)
∣∣ ≤Ms,n(1+ |x|)−n, for each x ∈ R,

all index s with 0 ≤ s ≤ r and all n ∈ N [16].
Applying now Petrov-Galerkin method, taking as admissible functions φh,k(x) =

h−1/2φ(h−1x− k), k ∈ Z, where φ is a real valued function, r− regular, r ≥ 1
and h > 0 is the discretization step. The approximation spaces Vh ⊂ L2(R)
are generated by {φh,k(x), k ∈ Z}, and the exact solution of equation KdV
(1) is approximated by the expression uh(x, t) =

∑
k Uk(t)φh,k(x). Similarly,

test functions are taken in the form φ∗
h,k(x), defined in terms of a r∗−regular

function dual φ∗, with r + r∗ ≥ 3.
In the weak formulation (2), we choose α ≤ r such that β ≤ r∗. If we

replace u by the solution uh(x, t) and v for each test function φ∗
h,l(x), we obtain(

∂u

∂t
, v

)
+ μ

(
u
∂u

∂x
, v

)
+ ε(−1)β

(
∂αu

∂xα
,
dβv

dxβ

)
=∫

�

∂

∂t

(∑
k

φh,k(x)Uk(t)

)
φ∗

h,l(x)dx+

+ μ

∫
�

(∑
s

Us(t)φhs(x)

)(
∂

∂x

∑
k

Uk(t)φhk(x)

)
(φ∗

h,l(x))dx+

+ (−1)βε

∫
�

(
∂α

∂xα

∑
k

Uk(t)φhk(x)

)(
dβ

dxβ
φ∗

h,l(x)

)
dx

= h−1
∑

k

∫
�

φ(h−1x− k)φ∗(h−1x− l)
dUk(t)

dt
dx +

+ μh−3/2
∑

s

∑
k

∫
�

φ(h−1x− s)φ∗(h−1x− l)
d

dx
φ(h−1x− k)Us(t)Uk(t)dx+

+ h−1ε(−1)β
∑

k

∫
�

dα

dxα
φ(h−1x− k)

dβ

dxβ
φ∗(h−1x− l)Uk(t)dx = 0.

If now Uk(t) = Uk and introduce the change of variable y = h−1x − k, the
above expression can now be written as∑

k

a(k)
dUk

dt
+ μh−3/2

∑
s

∑
k

b(l, k)UsUk + h−3ε
∑

k

c(k)Uk = 0,
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where a(k) =
∫
�
φ(y)φ∗(y − k)dy, b(l, k) =

∫
�

dφ(y)
dy

φ(y − l)φ∗(y − k)dy,

c(k) = (−1)β
∫
�

dαφ(y)
dyα

dβφ∗(y−k)
dyβ dy. The coefficients Uk are determined from the

following system of ordinary differential equations∑
k

a(l − k)
d

dt
Uk + μh−3/2

∑
s

∑
k

b(s− k, l − k)UsUk + h−3ε
∑

k

c(l − k)Uk = 0.

(3)

In matrix form, this last equation is

d

dt
LU + μUTMU + εNU = 0 (4)

where U =
(
Uk

)
, L(l, k) = a(l − k), M(l, k, s) = h−3/2b(l − k, l − s), N(l, k) =

h−3c(l−k). The initial conditions Uk(0), k ∈ Z, are the coefficients of uh(x, 0) =
Rhu0 ∈ Vh, where Rh is some initial approximation scheme to be fixed below.

With a time increment Δt = tn+1− tn and applying the trapezoidal rule we
obtain dU

dt
= Un+1−Un

Δt
, where Un = U(nΔt), n ≥ 0, and equation (4) becomes

L

[
Un+1 − Un

Δt

]
+ μUTMU + εNU = 0.

Now setting G(U) = μUTMU + εNU we have

L
(
Un+1 − Un

)
+
G(Un+1) +G(Un)

2
Δt = 0, (5)

and this equation is finally solved by using Newton’s iteration method.

3 Convergence and stability results

So far we have only required that functions φ and φ∗ enjoy some regularity.
However, to obtain good approximation results, additional conditions to be
discussed in this section are necessary.

Let us begin solving linearized KdV equation by method of the Fourier
transform [13]. That is applying Fourier transform to equation

ut + μ ux + ε uxxx = 0 (6)

with the same initial condition u(x, 0) = u0(x), we obtain the differential
equation ût + i(μω − ε ω3)û = 0, where û = û(ω, t) is the Fourier transform,
whose solution is then û(ω, t) = û0(ω)e−it(μω−ε ω3).

Now, u(x, t) is obtained by using inverse Fourier transform, that is,

u(x, t) = F−1
(
e−it(μω−ε ω3)û0(ω)

)
.
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Defining the bounded linear operator E(t) on L2(R) by

E(t)v := F−1
(
e−it(μω−ε ω3)v̂(ω)

)
the solution u can be written as u(x, t) = E(t)u0(x).

On the other hand, the weak formulation of linearized KdV equation (6) is∫
�

vutdx+ μ

∫
�

vuxdx+ ε

∫
�

vuxxxdx = 0, (7)

where v ∈ C∞
0 (R) is a β−regular test function, 0 ≤ α ≤ 3 and β = 3−α. The

equation (7) can be expressed as
(

∂u
∂t
, v
)

+ μ
(

∂u
∂x
, v
)

+ ε(−1)β
(

∂αu
dxα ,

dβv
dxβ

)
= 0,

where (·, ·) is the inner product on L2(R).
As in the non linear case, considering spaces Vh ⊂ L2(R) with the ap-

proximate solution uh(x, t) =
∑

k Uk(t)φhk(x) and replacing u by uh and v by
φ∗

hl(x) = h−1/2φ∗(h−1x− l) we arrive at∫
�

vutdx+ μ

∫
�

vuxdx+ ε(−1)β

∫
�

(
∂αu

dxα

∂βv

∂xβ

)
dx =

= h−1
∑

k

∫
�

φ∗(h−1x− l)φ(h−1x− k)
dUk(t)

dt
dx +

+ μh−1
∑

k

∫
�

φ∗(h−1x− l)
d

dx
φ(h−1x− k)Uk(t)dx

+ ε(−1)βh−1
∑

k

∫
�

dα

dxα
φ(h−1x− k)

dβ

dxβ
φ∗(h−1x− l)Uk(t)dx = 0

and with the change of variable y = h−1x− k and Uk(t) = Uk one obtains∑
k

a(l − k)
dUk

dt
+ h−1μ

∑
k

d(l − k)Uk + ε(−1)βh−3
∑

k

c(l − k)Uk = 0

which finally can be written as∑
k

[
a(l − k)

dUk

dt
+ h−1

[
μd(l − k) + h−2εc(l − k)

]
Uk

]
= 0, (8)

where d(k) =
∫
�

dφ(x)
dx

φ∗(x − k)dx. In analogous manner, we get the system
equivalent to (5)

∑
k

a(l − k)
[
Un+1

k − Un
k

]
+ h−1Δt

∑
k

[
μd(l − k) + h−2εc(l − k)

]Un+1
k + Un

k

2
= 0.

(9)



3416 J. Villegas et al

Equations (8) and (9) are in the form of discrete convolution. Hence, us-
ing again discrete Fourier transform ã(ω) =

∑
k∈�a(k)e

−ikω =
∑

k∈�ake
−ikω,

where a = (. . . , a−1, a0, a1, . . . ) ∈ 	2(Z), we have respectively

ã(ω)
d

dt
Ũ(ω, t) + h−1[μd̃(ω) + h−2εc̃(ω)]Ũ(ω, t) = 0

ã(ω)[Ũn+1(ω) − Ũn(ω)] + h−1Δt[μd̃(ω) + h−2εc̃(ω)]
Ũn+1(ω) + Ũn(ω)

2
= 0,

the first of these equations can be written as

d

dt
Ũ(ω, t) + h−1

[μd̃(ω) + h−2εc̃(ω)

ã(ω)

]
Ũ(ω, t) = 0

or in shorter form d
dt
Ũ(ω, t) + Wh(ω)

h
Ũ(ω, t) = 0 where

Wh(ω) =
μd̃(ω) + h−2εc̃(ω)

ã(ω)
(10)

the solution of differential equation is Ũ(ω, t) = ce
−
�

Wh(ω)t

h

�
and the initial

condition for t = 0 is Ũ(ω, 0) = c hence Ũ(ω, t) = Ũ(ω, 0)e
−
�

Wh(ω)t

h

�
. Now, as

to the second equation, we have

Ũn+1(ω) − Ũn(ω) + h−1Δt
[μd̃(ω) + h−2εc̃(ω)

ã(ω)

] Ũn+1(ω) + Ũn(ω)

2
= 0

and grouping terms it follows that

Ũn+1(ω)

[
1 + Δt

Wh(ω)

2h

]
− Ũn(ω)

[
1 − Δt

Wh(ω)

2h

]
= 0

therefore, the solution of the difference equation with the given initial value is

Ũn(ω) =

[
1 − (Δt

2h

)
Wh(ω)

1 +
(

Δt
2h

)
Wh(ω)

]n

Ũ(ω, 0)

or more concisely Ũn(ω) = [Ah(ω)]nŨ(ω, 0), where

Ah(ω) =

[
1 − (Δt

2h

)
Wh(ω)

1 +
(

Δt
2h

)
Wh(ω)

]
.
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The Fourier transform of the solution uh(x, t) =
∑

k Uk(t)φhk(x) is given
by

ûh(ω, t) =
∑

k

Uk(t)h
−1/2

∫
�

φ(h−1x− k)e−ixωdx, k ∈ Z

and with the change of variable y = h−1x− k it becomes

ûh(ω, t) =
∑

k

Uk(t)h
1/2

∫
�

e−i(y+k)hωφ(y)dy = h1/2Ũ(hω, t)φ̂(hω)

= Ũ(hω, 0)e−
(

Wh(hω)t

h

)
h1/2φ̂(hω)

since uh(x, 0) = Rhu0(x), ûh(ω, 0) = F(Rhu0

)
(ω) = Ũ(hω, 0)h1/2φ̂(hω) and

hence, ûh(ω, t) = e−
(

Wh(hω)t

h

)
F(Rhu0

)
(ω). By taking inverse Fourier transform,

we obtain uh(x, t) = F−1
[
e−
(

Wh(hω)t

h

)
F(Rhu0

)
(ω)
]
. Now, if the operator Fh(t)

is defined by Fh(t)v = F−1
[
e−
(

Wh(hω)t

h

)
v̂
]

the solution uh(x, t) can be expressed

as uh(x, t) = Fh(t)
[
Rhu0(x)

]
.

Observe that Fh(t)v can be written in terms of discrete convolution, that

is, Fh(t)v(x) =
∑

k fk

(
t
h

)
v(x − kh), where fk(t/h) are the Fourier coeffi-

cients of the exponential e−Wh(ω) t/h. In the same way, the discrete solution
un

h(x) =
∑

k U
n
k φhk(x) has Fourier transform ûn

h(ω) =
∑

k h
−1/2Un

k

∫
�
φ(h−1x−

k)e−ixωdx. Again setting y = h−1x− k yields

ûn
h(ω) =

∑
k

Un
k e

−iωkhh1/2

∫
�

φ(y)e−ihωydy = Ũn(hω)h1/2φ̂(hω),

but Ũn = Ũ(ω, 0)[An(ω)]n, and thus, ûn
h(ω) = Ũ(hω, 0)[An(hω)]nh1/2φ̂(hω) =

[An(hω)]nF(Rhu0

)
(ω) so when applying inverse Fourier transform one obtains

un
h(x) = F−1

(
[An(hω)]nF(Rhu0

)
(ω)
)

= Gn
h

(
Rhu0(x)

)
,

where Gn
hv = F−1

(
[An(hω)]nv̂

)
.

Note that the method is stable if Re
(
Wh(ω)

) ≥ 0 for each real ω; here Re(z)
is the real part of the complex number z. The method is called conservative if
Re
(
Wh(ω)

)
= 0 for each ω, or dissipative if Re

(
Wh(ω)

)
> 0 over some interval.

Finally we will study pointwise convergence of the approximate solutions
uh(x, t) and un

h(x) at the mesh points x = hk. With the propose of avoiding
errors due to the approximation of the initial data, we will assume that Rhu0

interpolates u0 at such points.
We will also assume that φ is r−regular, φ̂(0) �= 0 and φ̂(ω) has zeros of

order p+1 for all points ω = 2kπ, k ∈ Z nonzero, for some integer p ≥ 0. The
set of all functions satisfying these properties is denoted by Hr,p.



3418 J. Villegas et al

3.1 Convergence

Let us suppose now that φ ∈ Hr,p and φ∗ ∈ Hr∗,p∗. For 0 ≤ α ≤ r and
0 ≤ β ≤ r∗, let us define the 2π−periodic function ζα,β(ω) =

∑
k∈�Iα,β(k)e−ikω

where Iα,β(k) =
∫∞
−∞

dαφ
dxα (x)dβφ∗

dxβ (x−k)dx, then ζα,β(ω) defines a C∞−function

and ζα,β(ω) = iα−βωα+βφ̂(ω)φ̂∗(ω) +O
(
ωp+p∗+2

)
, when ω → 0.

In fact, to apply Parceval’s relation we let f(x) = dαφ
dxα (x) and g(x) =

dβφ∗
dxβ (x− k), and so,

Iα,β(k) =

∫ ∞

−∞

dαφ

dxα
(x)

dβφ∗

dxβ
(x− k)dx =

∫ ∞

−∞
f(x)g(x− k)dx

= 2π

∫
�

f(x)

[∫
�

ĝ(ω)e−iω(x−k)dω

]
dx = 2πF[f̂ ĝ ](−k).

Hence, ζα,β(ω) =
∑

k Iα,β(k)e−ikω =
∑

k 2πF[f̂ ĝ ](−k)e−ikω, if we take h(ω) =(
f̂ ĝ
)
(ω), using Poisson summation formula [16] we have ζα,β(ω) =

∑
k f̂(ω +

2kπ)ĝ(ω + 2kπ), Lemarié in [14, Lemme 1, p 159] shows that the function

ζα,β(ω) ∈ C∞. Now, F [dαφ
dxα

]
(ω) = iαωαφ̂(ω) and F

[
dβφ∗
dxβ

]
(ω) = iβωβφ̂∗(ω)

and therefore,

ζα,β(ω) = iα−β
∑
k∈�

(ω + 2kπ)α+βφ̂(ω + 2kπ)φ̂∗(ω + 2kπ). (11)

This last expression can be written as

ζα,β(ω) = iα−β

(
ωα+βφ̂(ω)φ̂∗(ω) +

∑
k �=0

(ω + 2kπ)α+βφ̂(ω + 2kπ)φ̂∗(ω + 2kπ)

)
,

and if now Rα,β(ω) =
∑

k �=0(ω+2kπ)α+βφ̂(ω+2kπ)φ̂∗(ω + 2kπ) it follows that

ζα,β(ω) = iα−β
(
ωα+βφ̂(ω)φ̂∗(ω) + Rα,β(ω)

)
. Since φ̂(ω) and φ̂∗(ω) have zeros

of order p + 1 and p∗ + 1, respectively, Rα,β(ω) has zeros of order p + p∗ + 2,
and moreover it is a C∞−function. So, Rα,β(ω) = O

(
ωp+p∗+2

)
if ω → 0.

Consequently, ζα,β(ω) = iα−βωα+βφ̂(ω)φ̂∗(ω) +O
(
ωp+p∗+2

)
.

Let us assume now that φ ∈ Hr,p and φ∗ ∈ Hr∗,p∗ satisfy interpolation

condition
∑

k φ(k)e−ikω =
∑

k φ̂(ω + 2kπ) �= 0, for all real ω, where r ≥ 1,
r + r∗ ≥ 3, as well as the stability condition Re

(
Wh(ω)

) ≥ 0 for each real
ω. Then, for the smooth initial data u0 and every T > 0, there is a constant
C > 0, independent on h, Δt and u0, such that 0 ≤ t ≤ T and 0 ≤ nΔt ≤ T ,
and it follows that

‖u(·, t) − uh(·, t)‖2,h = ‖u(·, t) − Fh(t)u0(·, t)‖2,h

≤ Chp+p∗−1‖u0‖Hp+p∗+2 (12)
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‖u(·, nΔt)− un
h‖2,h = ‖u(·, nΔt) −Gn

hu0‖2,h

≤ C
(
hp+p∗−1 + Δt2

)‖u0‖Hp+p∗+2 . (13)

In fact, from (11) we have

ζ0,0(ω) = ã(ω) =
∑

k

φ̂(ω + 2kπ)φ̂∗(ω + 2kπ) =
∑

k

a(k)e−ikω

d̃(ω) = ζ1,0(ω) = i
∑

k

(ω + 2kπ)φ̂(ω + 2kπ)φ̂∗(ω + 2kπ)

c̃(ω) = (−1)βζα,β(ω) = −i
∑

k

(ω + 2kπ)α+βφ̂(ω + 2kπ)φ̂∗(ω + 2kπ).

Therefore, by replacing these terms in (10) one obtains

Wh(ω) =
i
∑

k∈�[μ(ω + 2kπ) − h−2ε(ω + 2kπ)3] φ̂(ω + 2kπ)φ̂∗(ω + 2kπ)∑
k∈� φ̂(ω + 2kπ)φ̂∗(ω + 2kπ)

.

(14)

Decomposing the sums of this last expression for k = 0 and k �= 0, we obtain

φ̂(ω)φ̂∗(ω)
[
Wh(ω) − i

(
μω + εh−2ω3

)]
+Wh(ω)O(ωp+p∗+2) =

O(ωp+p∗+2) + h−2O(ωp+p∗+2)

by using properties of asymptotic developments such as Wh(ω)O(ωp+p∗+2) → 0

if ω → 0, φ̂(ω)φ̂∗(ω) = 1+O(ωp+p∗) andO
(
(hω)p+p∗+2

)
= O

(
hp+p∗+2

)
O
(
ωp+p∗+2

)
,

see for example [3], Wh(ω) = i
(
μω + εh−2ω3

)
+ O(ωp+p∗+2) + h−2O(ωp+p∗+2)

and hence

Wh(hω) = i
(
μhω + εh−2(hω)3

)
+O

(
(hω)p+p∗+2

)
+ h−2O

(
(hω)p+p∗+2

)
= ihω(μ− εω2) +O

(
ωp+p∗+2

)[
O
(
hp+p∗+2

)
+ h−2O

(
hp+p∗+2

)]
.

On the other hand,

u(x, t) − uh(x, t) = E(t)v(x) − Fh(t)v(x)

= F−1
[(
eiω(μ−εω2)t − e−Wh(hω)t/h

)
v̂(ω)

]
=

1

2π

∫ ∞

−∞

(
eiω(μ−εω2)t − e−Wh(hω)t/h

)
v̂(ω)eiωxdω
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but
∣∣eiω(μ−εω2)t − e−Wh(hω)t/h

∣∣ ≤ Ce−tO(ωp+p∗+2)O(hp+p∗−1) ≤ Chp+p∗−1|ω|p+p∗+2.
Finally we have

‖u(x, t) − Fh(x, t)‖2,h ≤ 1

2π

∫ ∞

−∞

∣∣eiω(μ−εω2)t − e−Wh(hω)t/h
∣∣|û0(ω)||eiωx|dω

≤ Chp+p∗−1

∫ ∞

−∞
|ω|p+p∗+2|û0(ω)|dω

≤ Chp+p∗−1

∫ ∞

−∞

(
1 + |ω|2)p+p∗+2|û0(ω)|2dω

= Chp+p∗−1‖u0‖Hp+p∗+2 .

Inequality (13) is proved in analogous manner.

3.2 Stability Conditions

Let us begin by giving some hypothesis guaranteing stability conditions. Sup-

pose that φ̂(ω)φ̂∗(ω) is real for all ω ∈ R. Then equation (14) implies that
Re
(
Wh(ω)

)
= 0, which means that the method is stable and conservative.

Suppose now that test functions are obtained from ϕs(x) = φ∗(x − s), trans-

lated version of φ∗, for some s > 0. Since ϕ̂s(ω) = e−isωφ̂∗(ω), ϕ̂s(ω + 2kπ) =

e−is(ω+2kπ)φ̂∗(ω + 2kπ) and so ϕ̂s(ω + 2kπ) = eisωφ̂∗(ω + 2kπ) ξs, where ξs =
ei2ksπ. In this case equation (14) becomes

Wh,s(ω) =
i
∑

k[μ(ω + 2kπ) − εh−2(ω + 2kπ)3]φ̂(ω + 2kπ)φ̂∗(ω + 2kπ) ξs∑
k φ̂(ω + 2kπ)φ̂∗(ω + 2kπ) ξs

,

if we let q = 1 − s, then ξq = ei2kqπ = ei2k(1−s)π = e2kπie−i2ksπ = ξs, hence

bearing in mind that φ̂(ω)φ̂∗(ω) is real, we have Wh,s(ω) = −Wh,q(ω) and this
in turn implies Re(Wh,q(ω)) = −Re(Wh,s(ω)). This property is used in the

following conclusions for φ and φ∗ when it holds that φ̂(ω)φ̂∗(ω) is real

• For s = 1/2, Re(Wh,q(ω)) = 0 for all real ω and the method is stable and
conservative.

• If for some 0 < s < 1, it is stable and conservative, then so it is for
translation parameter 1 − s.

• If for some 0 < s < 1, it is stable and dissipative, then for the translation
parameter 1 − s it becomes unestable.
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Time Error
0 2,53E-18

0,1 0,04114137
0,2 0,04298284
0,3 0,05190608
0,4 0,06032352
0,5 0,07034124
0,6 0,08141202
0,7 0,09275702
0,8 0,10438704
0,9 0,11619728

Error with h = 2−5
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Figure 1 Comparison between the it method and the exact solution

Figure 1 shows the approximate solution and the exact solution, which was

obtain from u(x, t) = c
2
sech2

(√
c

2
(x− ct)

)
, c > 0.
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