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Abstract 
 
We review recent developments in Space Mapping (SM) 
optimization.  The Aggressive Space Mapping (ASM) technique 
is illustrated through a step-by-step numerical example based on 
the Rosenbrock function.  The Trust Region Aggressive Space 
Mapping (TRASM) algorithm is described.  TRASM integrates 
a trust region methodology with the ASM technique.  It 
improves the uniqueness of the extraction phase by utilizing a 
recursive multi-point parameter extraction process.  The 
algorithm is illustrated by the design of an HTS filter using 
Sonnet’s em.  The new Hybrid Aggressive Space Mapping 
(HASM) algorithm is briefly reviewed.  It is based on a novel 
lemma that enables smooth switching from SM optimization to 
direct optimization if SM is not converging.  It is illustrated by 
the design of a six-section H-plane waveguide filter. 
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Basic Concepts of Space Mapping 
(Bandler et al., 1993, 1994) 
 
it is assumed that the circuit to be designed can be simulated 
using two models: a “fine” model and a “coarse” model 

 

the fine model is accurate but computationally intensive 
 
x f  is the vector of fine model design parameters 
 
the coarse model is fast but less accurate 
 
xc  is the vector of coarse model design parameters 
 
Space Mapping aims at avoiding the computationally intensive 
direct optimization of the fine model by iteratively developing a 
mapping between x f and xc  
 
we present illustrations and progress to date on this exciting 
concept applied to accelerated optimization of mixed EM/circuit 
structures 
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Aggressive Space Mapping (ASM) Concept 

 

fx )( ff xR
fine

model
coarse
model

cx )( cc xR

 

Start

Choose the coarse optimal
solution as a starting point

for the fine model

x xf c *

Calculate the fine
response

 R xf f

PARAMETER EXTRACTION:
Find the optimal value of

such that

COARSE OPTIMIZATION:
Find the optimal response using

the coarse model

 R xc c
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   R x R xc c f f

xc

End

?

x xc c *
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An Aggressive Space Mapping (ASM) Algorithm 
(Bandler et al., 1995) 
 
the initial fine model design is taken as x*

c  
 
 

 

 
 
at the jth iteration 
 

hxx )()()1( jj
f

j
f 

 

 
h )( j  is obtained by solving 
 

)( )()()( xfhB
j

f
jj   

where                               
xxf *)(
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and x )( j
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ASM Algorithm 
 

Step 0. Initialize *)1(
cf xx  , 1B )1( , 1j . 

Step 1. Evaluate )( )1(
ff xR . 

Step 2. Extract )1(
cx  such that )()( )1()1(

ffcc xRxR  . 
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cc xxf  .  Stop if )1(f . 
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Step 5. Set )()()1( jj
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j
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Step 7. Extract )1( j
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j

cc xRxR . 
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c

j
c
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)()1(
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jTj

Tjj
jj
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BB


  . 

Step 10. Set 1 jj ; go to Step 4. 
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Parameter Extraction 
 
single point parameter extraction aims at matching the responses 
of both models at a single point 
 
 
 
 
 
 
 

it can be formulated as 
 

)()( xRxR
x

ccff

c

minimize   

 

multi-point parameter extraction aims at simultaneously 
matching the responses at a number of corresponding points 
 
 

 
 
 
 
 
the extracted parameters should satisfy 
 

)())(( xRxxBxR ffcc   
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Coarse Model Example: Rosenbrock Function 
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Fine Model : Shifted Rosenbrock Function 
2

1
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Multi-Point Parameter Extraction 
 
we minimize a parameter extraction objective function  

p
E  

considering five matching points, with error functions 
 

)Δ()Δ( *)(
icfi

j
ci RRE xxxBx   

where 
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since the matrix 1B )( j  for the first parameter extraction 
optimization, the corresponding five error functions are taken as 
 

)Δ()Δ( *
icfici RRE xxxx   

 
considering only 1l and 2l  norms, the corresponding objective 
functions can be taken as 
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l1 Objective Function for the Parameter Extraction Problem 
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l2 Objective Function for the Parameter Extraction Problem 
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Space Mapping Solution Process 
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Fine Model Example: Transformed Rosenbrock Function 
2
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First l1 Parameter Extraction 
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First l2 Parameter Extraction 
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Space Mapping Solution Process 
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Space Mapping Solution Process (continued) 
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Space Mapping Solution Process (continued) 
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Second l1 Parameter Extraction 
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Second l2 Parameter Extraction 
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Third Parameter Extraction 
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The Trust Region Aggressive Space Mapping (TRASM) 
Algorithm (Bakr et al., 1998) 

 
TRASM integrates a trust region methodology with ASM 
 
a certain success criterion must be satisfied in each iteration to 
accept the predicted step 
 
a recursive multi-point parameter extraction procedure is 
introduced 
 
all available fine model simulations are utilized to improve 
parameter extraction uniqueness 
 
available mapping information is integrated into this extraction 
procedure 
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Illustration of the TRASM Algorithm 
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TRASM Algorithm 
(Bakr et al., 1998) 
 
using xxPf *)()( )( c

i
f

i   

solve ( )( ) ( ) ( ) ( )
( )ii T i i T i B B I h B f    for 

( )ih  
 

this corresponds to minimizing 
2

2( ) ( ) ( )i i if B h  subject to  

2
( )ih    where   is the size of the trust region 

 
 , which correlates to , can be determined (Moré et al., 1983) 
 
single point parameter extraction is performed at the new point 

hxx )()(1)( ii
f

i
f   to get ( 1)if  

 
if ( 1)if  satisfies a certain success criterion for the reduction in 

the l2 norm of the vector f, the point x 1)( i
f is accepted and the 

matrix ( )iB  is updated using Broyden’s update 
 
otherwise a temporary point is generated using x 1)( i

f and ( 1)if  

and is added to the set of points to be used for multi-point 
parameter extraction 
 
a new ( 1)if is obtained through multi-point parameter extraction
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TRASM Algorithm (continued) 
 
the last three steps are repeated until a success criterion is 
satisfied or the step is declared a failure 
 
step failure has two forms 
  
 (1)  f may approach a limiting value without satisfying the 

success criterion or 
 (2)  the number of fine model points simulated since the 

last successful step reaches n+1 
 
Case (1): the parameter extraction is trusted but the linearization 
used is suspect; the size of the trust region is decreased and a 
new point x 1)( i

f  is obtained 

 
Case (2): sufficient information is available for an 
approximation to the Jacobian of the fine model responses w.r.t. 
the fine model parameters used to predict the new point x 1)( i

f  

 
the mapping between the two spaces is exploited in the 
parameter extraction step by solving 
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simultaneously for a set of points x 
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The Current Implementation 
 
the algorithm is currently implemented in MATLAB 
 
OSA90 is used as a platform for the multi-point parameter 
extraction and for the fine model simulations   
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 High-Temperature Superconducting Filter 
(Westinghouse, 1993) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20 mil thick substrate 
 
the dielectric constant is 23.4 
 
passband specifications:S21 0.95 for f  3.967 GHz and  
4.099 GHz  f 
 
stopband specifications:S21 0.05 for 4.008 GHz  f 4.058 
GHz 
 
designable parameters L1, L2, L3, S1, S2 and S3; L0 and W are kept 
fixed 
 
coarse model exploits the empirical models of microstrip lines, 
coupled lines and open stubs available in OSA90/hope 
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High-Temperature Superconducting Filter Fine Model 
 
the fine model employs a fine-grid Sonnet em simulation 
 
the x and y grid sizes for em are 1.0 and 1.75 mil 
 
100 elapsed minutes are needed for em analysis at single 
frequency on a Sun SPARCstation 10 
 
final design is obtained in 5 TRASM iterations, requiring 8 em 
simulations 
 
15 frequency points are used per em simulation 
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High-Temperature Superconducting Filter Responses 
 
the optimal coarse model () response and the fine model 
response () at the initial and final designs 
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Passband Details for the High-Temperature 
Superconducting Filter 
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Motivation for a Hybrid Algorithm 
 
the TRASM algorithm is efficient 
 
the number of fine model simulations needed is of the order of 
the problem dimension 
 
any SM algorithm assumes the existence of a coarse model 
which is fast and has sufficient accuracy 
 
if the coarse model is severely misaligned from the fine model 
SM optimization may not converge 
 
the solution obtained using TRASM for most problems is a near 
an optimal solution 
 
however, optimality can not be guaranteed as the optimal coarse 
model may significantly deviate from the optimal fine model 
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Illustrative Example: A Rosenbrock Function 
 
consider a coarse model as 

)1()(100 1
22

12
2

xxx Rc   

 
and a fine model as 

))(1())()((100 11
2

11
2

22

2
  xxx R f  

 
where 1 and  2  are constant shifts 
 
suppose the target of the direct optimization problem is to 
minimize Rf 

 
the optimal coarse model design is x*

c =[1.0   1.0]T 

 
the optimal fine model design is x*

f =[(11)   (1 2 )]T 

 
the misalignment between the two models is thus given by the 
two shifts 1 and  2 
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Illustrative Example: A Rosenbrock Function 
 
consider the case 1= 2=0.1 
 
 
 
 
 
 
 
 
 
 

ideal contour plot of xxP * 2

2
)( cf   

 
 
 
 
 
 
 
 
 

 
actual contour plot of xxP * 2
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the TRASM algorithm is likely to converge 
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Illustrative Example: A Rosenbrock Function 
 
consider the case 1= 2=1.5 
 
 
 
 
 
 
 
 
 

ideal contour plot of xxP * 2
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the TRASM algorithm is unlikely to converge 
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The Hybrid Aggressive Space Mapping (HASM) Algorithm 
(Bakr et al., 1999) 
 
the HASM algorithm is designed to handle severely misaligned 
cases 
 
it utilizes two different phases 
 
the first phase utilizes the TRASM algorithm 
 
if the TRASM algorithm is not converging smoothly a switch 
takes place to the second phase 
 
this switch utilizes mapping information to supply a Jacobian 
estimate for the fine model response to the second phase 
 
the second phase applies direct optimization to match the fine 
model response to the optimal coarse model response 
 
a switch back to the first phase can take place if SM 
convergence is potentially smooth 
 
the Jacobian of the fine model response and parameter extraction 
are then utilized to recover the mapping matrix B 
 
several switches can take place between the two phases 
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The Hybrid Aggressive Space Mapping (HASM) Algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
to ensure optimality of the final design, minimax optimization is 
applied from the final solution reached by the second phase 

Space 
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Six-Section H-plane Waveguide Filter 
(Matthaei et al., 1964, Bakr et al., 1999) 
 
 

 

the fine model 

 
the coarse model 

 
design specifications are taken as 
|S11|  0.16  for   5.4 GHz  f  9.0 GHz 
|S11|  0.85  for   f  5.2 GHz  and |S11|  0.5  for 9.5 GHz  f 
 
optimizable parameters are the four septa widths W1, W2, W3 and 
W4 and the three waveguide-section lengths L1, L2 and L3 

Y0 2B1B 3B 4B 3B 2B 1B Y0

1 12 2 3  3
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Six-Section H-plane Waveguide Filter 
 
the coarse model consists of lumped inductances and dispersive 
transmission line sections 
 

a simplified version of a formula (Marcuvitz, 1951) is utilized in 
evaluating the inductances 
 
the fine model exploits HP HFSS through HP Empipe3D 
 
the first phase executed 4 iterations requiring a total of 5 fine 
model simulations 
 
the second phase did not produce successful iterations 
 
the optimal fine model design is obtained using minimax 
optimization 
 
the convergence of TRASM is smooth: the fine model response 
at the end of the first phase is almost identical to the optimal fine 
model response 
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Six-Section H-plane Waveguide Filter 
 
 
 
 
 
 
 
 
 
 
 
 

 
the initial fine model design 

 
 
 
 
 
 
 
 
 
 
 
 

the second phase design 
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Six-Section H-plane Waveguide Filter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the optimal fine model design 
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