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Abstract

This paper is focused on introducing a hill-climbing algorithm as a way to

solve the problem of generating typical testors -or non-reducible descriptors-

from a training matrix. All the algorithms reported in the state-of-the-art

have exponential complexity. However, there are problems for which there

is no need to generate the whole set of typical testors, but it suffices to find

only a subset of them. For this reason, we introduce a hill-climbing algorithm

that incorporates an acceleration operation at the mutation step, providing a

more efficient exploration of the search space. The experiments have shown

that, under the same circumstances, the proposed algorithm performs better

than other related algorithms reported so far.
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1. Introduction1

Data dimensionality reduction has become very important in machine2

learning over the past few decades. Many problems related to image pro-3

cessing, text mining and bioinformatics -among other disciplines- involve4

handling large datasets which instances can be described as a set of features.5

A number of dimension-reduction techniques have emerged as a pre-6

processing step in tasks dealing with large datasets, such as: data analysis7

and supervised classification. Some of these techniques are about feature8

subset selection. The main difference between these techniques and other9

reduction techniques (like projection and compression) is that the first ones10

do not transform the input features, but they select a subset of them [17].11

Feature selection is a significant task in supervised classification and other12

pattern recognition areas. It identifies those features that provide relevant13

information for the classification process.14

The problem of feature subset selection has been treated using meta-15

heuristics [11, 13, 30], multi-objective point of view [19], etc. Nevertheless,16

results at this time are not conclusive.17

Zhuravlev [9] introduced the concept of test to pattern recognition prob-18

lems. He defined a test as a subset of features that allows differentiating19

objects from different classes. This concept has been extended and general-20

ized in several ways [14, 43].21

In Logical Combinatorial Pattern Recognition approach [18, 25], feature22

selection is addressed using Testor Theory [14].23
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In the eighties, Ruiz-Shulcloper introduced a typical testor characteriza-24

tion for computing all the typical testors of a training matrix, with object25

descriptions defined in terms of any kind of features, not only booleans [4, 26].26

The first algorithms to generate the entire set of typical testors of a training27

matrix were then developed [27, 2, 3].28

The concept of testor and typical testor have also been used by V. Valev,29

under the names of descriptor and non-reducible descriptor, respectively [44].30

Typical testors have been widely used in voting algorithms for object31

classification, based on partial-precedence determination [28].32

Besides, they have been used for evaluating the relevance of features on33

differential diagnosis of diseases [21], and for estimating stellar parameters34

with remotely sensed data [36]. In addition, typical testors have been em-35

ployed for: feature selection on natural-disaster texts classifications [5], di-36

mensionality reduction on image databases [20], text categorization [23], and37

automatic summarization of documents [22].38

There are some real world problems which do not require the entire set39

of typical testors, but only a subset. Some examples include:40

• Determination of risk factors associated to pregnant Mexican women41

[40]. In this work, a problem of finding the most relevant features42

concerning neonatal morbidity on pregnant women is introduced. A43

genetic algorithm to find typical testors was used. Some of the features44

considered in this problem include: mother’s age and weight, number45

of pregnancies, number of deliveries, bled, Apgar test within the first46

minute of the baby’s life, and gestational age. The matrix employed to47

generate the typical testors has 32,768 rows and 29 columns.48
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• Determination of factors associated with Transfusion Related Acute49

Lung Injury (TRALI) [39]. This paper describes the determination50

of informational weight of features related to TRALI, using a hybrid51

genetic algorithm for the identification of risk factors and the establish-52

ment of an assesment to each variable. In this problem, each typical53

testor denotes a set of features that best differentiates patients who will54

present TRALI from those who will not. The matrix used to generate55

the typical testors has 174 rows and 31 columns.56

• Medical electrodiagnostic using pattern recognition tools [16]. This57

work introduces a medical diagnosis problem using neuroconduction58

studies, electromyography, signs and symptoms. The objects are as-59

signed one of the following classes: lumbosacral radiculopathy, neu-60

ropathies, Guillain-Barre, myopathies, traumatic injuries of sciatic and61

Charcot-Marie-Tooth. This work used typical testors as support sets62

system, in the second step of a voting classification algorithm. The63

matrix used to generate the typical testors has 1,215 rows and 10564

columns.65

The number of rows of the matrix employed in the first example is too66

large. An algorithm capable to generate the whole set of typical testors takes67

several days.68

The second example introduces a cut-off criterion for calculating the in-69

formational weight of features obtained from the generated typical testors.70

This criterion can be automatically calculated.71

In the last example presented, the entire set of typical testors has not72

been found yet. The authors divided the matrix in three parts to find other73
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typical testors, but without taking into account all features described in the74

problem. This fact affects the accuracy of the classification.75

The computation of the entire set of typical testors requires exponential76

time [41]. In general, two approaches have been developed to address this77

problem: a) algorithms that generate the entire set (LEX (Lexicographic Or-78

der Algorithm)[35], CT EXT (Complete elements extended)[31], BR (binary79

operations)[15], and Fast-CT EXT (Fast-Complete elements extended)[34]);80

and b) algorithms that find only a subset of typical testors (GA (Simple Ge-81

netic Algorithm)[32], UMDA (Evolutionary Strategy)[1] and AGHPIA (Ge-82

netic algorithm with evolutionary mechanisms)[38]).83

Nevertheless, these global-search heuristics become too slow as the num-84

ber of features grows significantly. One reason is because the goal of this85

techniques is to reach the global maximum which, in this case, refers to the86

entire set of typical testors. However, each typical testor can be considered87

a local maximum for this particular problem.88

This paper introduces a local-search heuristic based on the Hill-Climbing89

algorithm, that incorporates an acceleration operation, useful to find a subset90

of the entire set of typical testors. The goal of this Hill Climbing technique91

is to generate a single typical testor, iteratively, across the space search.92

Preliminary results of this algorithm were presented in [7], but this work93

explains in detail typical-testor concepts, and shows experimentally the sta-94

bility of the proposed algorithm when different values of its parameters are95

handled, using different basic matrices.96

The classic concept of testor, in which classes are assumed to be both97

hard and disjointed, is used. The comparison criteria used for all features98
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are Boolean, regardless of the feature type (qualitative or quantitative). The99

similarity function used for comparing objects demands similarity in all fea-100

tures. These concepts are formalized in the following section.101

2. Background102

Let TM = {O1, O2, · · · , Om} be a training matrix containing m objects,103

each belonging to a class Ki ∈ {K1, K2, · · · , Kc}, described in terms of n104

features R = {x1, x2, · · · , xn}. Each feature xi ∈ R takes values in a set Mi,105

i = 1, · · · , n. A comparison criterion of dissimilarity Di : Mi ×Mi → {0, 1}106

is associated to each xi (0=similar, 1=dissimilar) [8, 29].107

An example of training matrix which was taken from [43] is the following:108

Example109

A medical doctor can tell whether a patient suffers from a step throat or110

from a flu by the presence or absence of the following symptoms: sore throat,111

cough, cold and fever.112

In this example, patients are the objects (O1, O2, · · · , O7), symptoms are113

the features (x1, x2, x3, x4), and diseases are the classes (K1, K2).114

The training matrix (shown in table 1) stores the information of seven115

patients; the first two suffers from strep throat (class K1), and the last five116

suffers from a flu (class K2).117

Each row in the training matrix denotes the presence (1) and absence (0)118

of every symptom on a patient.119

Definition 1. If a feature subset T ⊆ R allows to distinguish objects belong-120

ing to different classes, then T is called a testor (or descriptor) [9].121
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Table 1: Training matrix of patients

Objects x1 x2 x3 x4 Class

O1 1 1 0 0 K1

O2 1 0 1 0 K1

O3 0 0 1 1 K2

O4 1 0 1 1 K2

O5 0 0 1 0 K2

O6 0 1 1 0 K2

O7 0 1 1 1 K2

Definition 2. If a given testor T , does not allow to distinguish objects122

belonging to different classes after removing any attribute xi ⊂ R, then T is123

called typical testor (or non-reducible descriptor), and it is denoted by TT124

[9].125

In the training matrix of patients, the set of features {x1, x2, x4} is a126

testor. Also, the set {x1, x4} is a typical testor of this training matrix.127

In addition, a comparison criterion of dissimilarity D : Mi×Mi → {0, 1}128

is associated to each xi (0=similar, 1=dissimilar), where Mi is the admissible129

values set of xi.130

Definition 3. The dissimilarity matrix (denoted as DM) for the objects131

Oi ∈ TM , is a Boolean matrix, where the rows are obtained by feature132
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comparison between every pair of objects, using a dissimilarity comparison133

criteria [8].134

The DM corresponding to the training matrix of patients was obtained135

for all the features using he comparison criteria Ds shown in (2). Such DM136

is the following:137

DM =



1 1 1 1

0 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

0 0 0 1

1 0 0 0

1 1 0 0

1 1 0 1



(1)

The first row of the DM above was obtained from comparing O1 and O3.138

In the same way, the second row was obtained comparing O1 and O4, the139

third row by the comparison of O1 and O5, and so on. Finally, the last row140

was obtained from comparing O2 and O7.141

Ds(xs(Oi), xs(Oj)) =

 1 if xs(Oi) 6= xs(Oj)

0 otherwise
(2)

[10] shows additional comparison criteria useful to create a DM .142
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Remark 1. Computationally, it is faster to work with the DM instead of143

their belonging TM . Because, for creating the DM , the comparison between144

two arbitrary objects of TM is performed only once, and theDM is a Boolean145

matrix.146

Definition 4. We say that p is a subrow of q if: ∀j[qj = 0 ⇒ pj = 0] and147

∃i[pi = 0⇒ qi = 1] [29].148

Definition 5. A row p of DM is called basic if no row in DM is a subrow149

of p [29].150

Definition 6. The submatrix obtained of DM containing all its basic rows151

(without repetitions), is called a basic matrix (denoted by BM) [29].152

The BM obtained of the DM (1) is the following [33]:153

BM =

 0 0 0 1

1 0 0 0

 (3)

Only rows 7th and 8th of DM (1) are basic; thus, BM (3) is comprised of154

these rows.155

Remark 2. The typical testor set of a TM may be obtained using DM or156

BM . A theorem introduced in [14] proves that the set of all typical testors157

generated using DM is the same as that using BM . This theorem is shown158

below:159

Let τ(DM) be the set of all the typical testors of a training matrix TM160

making use of its belonging dissimilarity matrix DM . Let τ(BM) be the set161

of all the typical testors of TM making use of its corresponding basic matrix162

BM .163
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Theorem 1. τ(DM) = τ(BM)164

Commonly, algorithms used for computing typical testors make use of165

BM instead of DM , due to the substantial reduction of rows (see remark 1).166

Now, the characterization of a typical testor working with the basic matrix167

is presented.168

Definition 7. Columns j1, j2, · · · , jd of an arbitrary matrix A = a[i, j]; i =169

1, · · · , s, j = 1, · · · , n form a covering if there is no row p = 1, · · · , s from170

matrix A such that ap,jq = 0, for each q = 1, · · · , d [42].171

Definition 7 means that a subset of columns of a matrix forms a covering172

if there are no rows containing only zeros in this subset of columns.173

Let E be a matrix created from a subset of columns of the basic matrix174

BM , generated from TM .175

Theorem 2. If the columns j1, · · · , jd of the matrix E form a covering of176

BM , then the set T = {xj1 , · · · , xjd
} is a testor of TM . [42].177

Theorem 2 means that a testor is a subset of features T = {xi1 , · · · , xis} of178

TM for which a full row of zeros does not appear in the remaining submatrix179

of BM , after eliminating all the columns corresponding to the features in180

R\T [42].181

Definition 8. Two elements a[i1, j1] and a[i2, j2] belonging to the basic ma-182

trix BM are called compatible elements, if:183

1. a[i1, j1] = a[i2, j2] =1, for i1 6= i2 and j1 6= j2,184

2. a[i1, j2] = a[i2, j1] = 0.185
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[8].186

Definition 9. Elements a[i1, j1], a[i2, j2], · · · , a[id, jd] are called a sequence of187

compatible elements (SCE), if:188

1. for d = 1, a[i1, j1] = 1,189

2. for d > 1, each pair of elements is a pair of compatible elements.190

[8].191

Definition 9 means that the every row i1, · · · , id and every column j1, · · · , jd192

from the matrix E are comprised by d− 1 zeros and a one [8].193

Definition 10. The number of compatible elements d of a SCE is called a194

rank of this SCE and it is denoted by SCEd [42].195

The matrix E formed by the rows 1 and 2, and columns 1 and 4 belonging196

to BM (3), which form a SCE2 is the following:197

E =

 0 1

1 0

 (4)

Theorem 3. If the set TT = {xj1 , · · · , xjd
} is a testor of TM (generated by198

columns j1, · · · , jd of matrix Z, which form a covering of BM), and rows199

i1, · · · , id of E, whose elements a[i1, j1], · · · , a[id, jd] form a SCEd, then the200

set TT = {xj1 , · · · , xjd
} is a typical testor of TM. [42].201

Theorem 3 means that TT is a typical testor if there is no proper subset of202

any subset of features T that meets the testor condition. Thus, each typical203

testor is of minimal length. Therefore, each typical testor can no longer be204

reduced [42].205
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2.1. Hill Climbing algorithm206

The Hill-Climbing algorithm [12, 37] is a local-search stochastic method207

which, in general, uses a bit string to represent either a set of prototypes or,208

in some experiments, a collection of features.209

Hill-Climbing can be considered as an evolutionary strategy with one210

individual which was intended to solve complex optimization problems arising211

from engineering design problems [6].212

Consider the set213

P (R) = {∅, {x1}, · · · , {xn}, {x1, x2}, · · · , {xn−1, xn}, · · · , {x1, ..., xn}} (5)

where P (R) is the power set of feature set R, and n is the cardinal of R.214

Now, consider the follow set215

SS(R) = P (R) \ {∅} (6)

where SS(R) is the entire search space of the setR. Then, SS(R) contains216

all possible combinations of features that can form in the set R.217

Let BM be the Basic Matrix obtained from a Training Matrix TM , and218

mBM be the number of rows of BM . Let Z = {xi1 , · · · , xis}, Z ⊆ R and219

Z ∈ SS(R).220

We want to obtain a set Z that minimizes the absolute value of the221

performance index.222

J(Z) = 1− (

mBM∑
p=1

zrp +
1

(
∑is

q=i1
orq) + 1

) (7)
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zrp refers those rows having only zeros at columns i1, · · · , is such that223

they do not allow to form a covering of BM ; orq refers to those columns224

from i1, · · · , is not having compatible elements and not allowing to form a225

sequence of compatible elements (SCE).226

Remark 3. Notice that for any feature subset Z, v ≤ J(Z) < 1, v ≤ 0. If227

the performance index J(Z) reaches the value 0, then Z is a typical testor228

(Z meets theorem 2 and theorem 3). If J(Z) is a positive value, then Z just229

a testor, but it is not typical testor (Z only meets theorem 2). Otherwise, if230

J(Z) is negative, Z is not a testor (Z does not meets theorem 2).231

Considering this problem of feature selection as a problem of location of232

zeros, the hill climbing algorithm is designed to obtain the feature subsets Z,233

such that the performance index J(Z) proposed in this paper reaches a zero234

(i.e. to find a feature subset Z ⊆ R and Z ∈ SS(R), such that J(Z) = 0).235

3. The proposed Hill Climbing algorithm for generated typical236

testors237

3.1. The acceleration operation238

The proposed Hill-Climbing algorithm incorporates an acceleration oper-239

ator at the mutation step. This operator improves the exploration capability240

of the mutation, being able to find a feature subset Z = {xi1 , · · · , xis} which241

meets the typical testor property, with a lower number of computations.242

The accelerator operator is independent to the mutation operator because243

the latter can be performed without the accelerator operator proposed, as is244

done in simple Hill Climbing algorithm.245
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This acceleration operator is applied differently. It depends on the perfor-246

mance index found and based on the behavior of the combination of feature247

subset, according to the following rules:248

Rule 1. If J(Z) = 0 (Z is a typical testor), then:249

a) one feature xj is removed from Z, such that j = i1, · · · , is250

b) one feature xp is added to Z, such that p 6= j, p = i1, · · · , is251

Rule 2. If J(Z) > 0 (Z is a testor), then kt-features xj, j = i1, · · · , is,252

0 < kt < is are removed of Z.253

Rule 3. If J(Z) < 0 (Z is not a testor), then knt-features xp, p = i1, · · · , is254

0 < knt < is are added to Z.255

Remark 4. According to different experiments with several algorithms, we256

could observe that, in most cases, two different typical testors, could be257

equated to perform a permutation of two features xi, xj, i 6= j as follows: if258

xi = 1 and xj = 0 then set xi = 0 and xj = 1. This reasoning is applied to259

Rule 1.260

Remark 5. If a feature subset Z is a testor, but it is not a typical testor,261

then Z does not satisfy theorem 3. This means that Z can be reduced, and262

some features can be removed from Z. In Rule 2, this reasoning is applied.263

Remark 6. Finally, if a feature subset Z is not a testor, then Z does not264

satisfy theorem 2. Thus, Z needs more features to satisfy theorem 2, and265

some features can be added to Z. This reasoning is applied to Rule 3266
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The Hill-Climbing algorithm includes two parameters to calculate the267

number of features to either add or remove to Z, namely, the mutation prob-268

ability for non-testors and the mutation probability for testors, respectively.269

Such parameters can be fixed or calculated based on the value of the270

performance index J(Z). In the latter case, the number of features to add o271

remove to/from Z would be proportional to the absolute value of J(Z), i.e.,272

if J(Z) is large, a considerable amount of attributes would then be added or273

removed to/from Z; otherwise, this amount would be small.274

Besides, the proposed algorithm allows to find typical testors:275

a) of minimum length or weight [32],276

b) with a specified length (e.g. length = 3), or277

c) without any of the restrictions mentioned above.278

Step 4 of the algorithm shown below verifies such restrictions.279

The algorithm will stop if, either the maximum number of iterations is280

reached, or the expected number of typical testors is found. The algorithm281

is designed as follows:282

Input : BM (basic matrix); Iter (number of iterations); NumTT (number of283

typical testors to find); pt (mutation probability for a testor); pnt (mutation284

probability for a non testor); CondTT (condition about what type of typical285

testor should be found)286

Ouput: TT (list of typical testor subset found)287
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1. Prototypes representation and initialization. A feature combination Z288

is encoded in an n-dimensional binary array as: A = [a1, · · · , an], where289

each aj = 1 means that feature xj is present in Z. Otherwise, if aj = 0290

indicates the absence of feature xj in Z.291

The performance index J(Z) will be handled as the fitness value F (A).292

Start from an empty list of typical testors TT ; Iter ← 1.293

2. Array initialization. Each component aj of array A, is generated ran-294

domly. Call this array best-evaluated and calculate the fitness value295

F (A) (i.e. the belonging performance index J(Z) is obtained). If296

F (A) = 0 then, add A to the list TT .297

3. Mutation. First, the values of mutated array are assigned as Amut(ai) =298

A(ai), i = 1, · · · , n. Second, the value of some components of the299

mutated array are randomly mutates using a Uniform random variable,300

according to the rules defined below in the acceleration operator, using301

a procedure as follows: Mutate(Amut, F (A), pt, pnt). If probabilities302

pt, pnt are not fixed, then these will be calculated regarding the value303

of F (A).304

4. Fitness calculation. Compute the Fitness of the mutated array Amut,305

as F (Amut). If F (A) = 0, verify whether A is already in the list TT ; if306

not, verify if CondTT holds for add it to the list.307

5. Compare the fitness obtained. If abs(F (Amut)) < abs(F (A)), where308

abs(F ) indicates the absolute value of F , or if F (Amut) = 0, then set309

the mutated array as best-evaluated (A(ai) = Amut(ai), i = 1, · · · , n).310

6. Stop condition. If the maximum number of iterations has been reached311

(Iter > MaxIter), or the expected number of typical testors has been312
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found, then return the list of typical testors TT . Otherwise, go to step313

3.314

4. Experiments315

The first experiment consists on a performance comparison between four316

different algorithms: 1) Genetic Algorithm [32], 2) Univariate Marginal Dis-317

tribution Algorithm [1], 3) Hill-Climbing algorithm without the acceleration318

operator, and 4) the method proposed in this paper. These algorithms are319

denoted hereafter as GA, UMDA, HC and HCTT, respectively. The per-320

formance is measured as the number of evaluations required to find a given321

number of typical testors. All the experiments were conducted in a PC, with322

a Pentium IV 2Ghz processor, and 1 Gbyte of RAM.323

Remark 7. This experiment is intended to compare the number of evalua-324

tions required by each algorithm to find a fixed amount of typical testors, as325

carried out in [32] and [1]. An evaluation involves all the required steps to326

determine whether a feature combination satisfies the property to be testor,327

typical testor or none of the above. The execution time of the algorithms is328

not included due to hardware variations.329

Please note that we do not make comparisons with the GA published in330

[38], because the authors did not provide the algorithm to make comparisons331

with the proposal Hill Climbing algorithm.332

The experiments were carried out with four basic matrices described in333

[32] and [1]. In this case, the parameters were: pt = 0.2 and pnt = 0.01, which334

were selected after performing a number of experiments with different values335
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from them. The results are shown in table 2. In this table, EV represents336

the number of evaluations carried out by the algorithm. The dimensions of337

the matrices are expressed as rows × columns. The goal number of typical338

testors to find by the compared algorithms is denoted as TTF.339

Table 2: Number of evaluations required by: GA, UMDA, simple HC and the HCTT

algorithms

Matrices TTF EV-GA EV-UMDA EV-HC EV-HCTT

1215x105 105 22 500 000 336 700 718 356 8 933

269x42 318 5 000 000 89 800 138 564 11 036

40x42 655 1 400 000 142 500 210 879 30 813

209x47 1967 5 000 000 706 900 558 530 80 066

In the same table, (+) denotes that HCTT performed only 400,000 iter-340

ations to find such fixed number of typical testors...341

Table 3 shows a comparison between HCTT and the deterministic algo-342

rithm fast-CT EXT [34]. We employed six basic matrices described in [32].343

For this case, a collection of six matrices described in [32] and [1]. Besides,344

two new basic matrices with a considerable number of features were tested.345

For the first five matrices, the number of all typical testor found is known,346

because fast-CT EXT calculates this set in a relatively short time. For the347

remaining three matrices, the entire set still remains unknown. In table 3,348

(*) denotes that fast-CT EXT algorithm was added a condition that stops349

the execution when a fixed number of typical testors has been found. In350

the same table, (+) denotes that HCTT performed only 400,000 iterations351

to find such fixed number of typical testors. TIME denotes the run time352

execution of the algorithm in seconds. TTF and EV are handled in the same353
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way as in Table 2.354

We carried out 1 000 000 and 10 000 000 iterations respectively, to ver-355

ify the computational complexity growth factor, as well as the proportion356

of typical testors found, when the number of iterations carried out by the357

algorithm is increased.358

Table 3: Run time required and number of typical testors found by fast-CT EXT and

HCTT algorithms

fast CT EXT EV-HCTT = 1 000 000 EV-HCTT = 10 000 000

Matrices TTF TIME TTF TIME TTF TIME

40x42 8 963 0 2 991 106 5 387 1 147

80x42 32 277 2 5 669 117 11 035 1 024

110x42 65 299 6 8 200 127 19 849 1 286

269x42 302 066 120 11 335 174 38 407 1 837

209x47 184 920 72 7 820 149 20 658 1 620

1215x105 11 166 (*) 15 11 166 809

79 467 (*) 348 79 467 9 252

500x160 25 817 (*) 4 246 25 817 (+) 350

10 000 (*) 1 624 10 077 140

300x300 0 259 200 3 552 54 5 575

4.1. Discussion359

In the first experiment, the execution time of HCTT ranged from 2 to 13360

seconds. In all cases, the number of evaluations required by the proposed al-361

gorithm (which can be considered as a constant-time process) is significantly362

lower than that from the compared algorithms.363
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Table 3 shows that deterministic algorithms are not suitable when dealing364

with matrices with a large number of feature (for example, hyperspectral365

images consisting of 256 bands). Unlike them, the proposed hill climbing366

algorithm was developed to process data sets with a great number of features367

in training matrix (with 100 features or more).368

As the matrix dimension grows, the runtime required to find a fixed num-369

ber of typical testors by the proposed algorithm becomes considerably less370

than that of the fast-CT EXT algorithm.371

On the other hand, the typical testors obtained after stopping a determin-372

istic algorithm at a certain moment have no properties in general, because373

these algorithms are intended to find the entire set of typical testors, but374

not to find only minimal typical testors, or to find only those where some375

features appear in most of them, to determine informational weights or the376

relevance in a specific problem. In this sense, the subset of typical testors377

obtained by the proposed hill climbing algorithm, provides an equivalent way378

to calculate the informational weight or relevance of features.379

4.2. Stability of the algorithm380

We introduce the stability of the proposed algorithm experimentally; in381

particular, when modifications are made to the parameters of the acceleration382

operator: pt and pnt, at the mutation step.383

We used two of the basic matrices listed in Table 3 3: BM40x42 and384

BM209x47, varying the value of pt or pnt and the number of iterations of the385

algorithm.386

Using BM40x42, Figure 1(a) shows the number of typical testors found387

with pt = 0.1, varying the value of pnt at 0.01, 0.03, 0.05, 0.07, 0.09, perfor-388
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mance 1000000, 3000000, 5000000, 8000000 and 10000000 iterations.389

Just as figure 1(a), figures 1(b), 1(c), 1(d) and 1(e) show the number of390

typical testors found varying the values of pt at 0.3, 0.5, 0.7, 0.9, and pnt at391

0.01, 0.03, 0.05, 0.07, 0.09, performing the same number of iterations.392

Likewise, we use second basic matrix BM209x47. In figures 2(a), 2(b),393

2(c), 2(d) and 2(e) the number of typical testors found varying the values of394

pt and pnt is shown, performance 1000000 and 10000000 iterations.395

As shown in figures 1 and 2, the diference among the number of iterations396

required and the runtime of the algorithm is small. In all cases, the best397

results were obtained with pnt = 0.01 and pt = 0.9 (considering a balance398

among the number of typical testors found, number of iterations required and399

run time excecution of the algorithm). Besides, as the number of iterations400

grows, also increases the number of typical testors found.401

The runtime spent on finding a subset of typical testors is similar. As402

the number of iterations grows, the run time of the algorithm increases too.403

In table 4, the maximum and minimum values of the run time required for404

BM40x42 are shown. NI denote the minimum and maximum values, respec-405

tively, of runtime spent by the Hill-Climbing algorithm. Likewise, in Table406

5, the maximum and minimum values of the runtime required for BM209x47407

are shown. NI, MN and MX are used in the same way as in table 4.408

409

410
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Table 4: Execution time in seconds for BM40x42

pt = 0.1 pt = 0.3 pt = 0.5 pt = 0.7 pt = 0.9

NI MN MX MN MX MN MX MN MX MN MX

1000000 30 36 22 30 20 28 18 30 18 27

3000000 90 112 71 91 61 86 56 94 56 80

5000000 153 188 121 151 108 144 95 157 97 140

8000000 252 303 198 244 171 234 156 261 157 217

10000000 313 384 233 314 218 300 201 336 196 270

Table 5: Execution time in seconds for BM209x47

pt = 0.1 pt = 0.3 pt = 0.5 pt = 0.7 pt = 0.9

NI MN MX MN MX MN MX MN MX MN MX

1000000 113 204 113 187 149 299 151 249 153 270

10000000 2100 3810 1961 3985 2021 3743 1841 5105 1860 3692

5. Conclusions411

A new Hill Climbing algorithm that incorporates an acceleration opera-412

tion for generating typical testor from a training matrix was introduced.413

This acceleration operator had a powerful effect on reducing the number414

of computations required to find a given number of typical testors.415

The superior performance of the proposed algorithm over: a) the Genetic416

Algorithm reported in [32], b) the UMDA publised in [1], and c) a simple417

Hill-Climbing was shown in this paper and experimentally demonstrated.418

The Hill Climbing algorithm with the acceleration operator generates the419
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same number of typical testors as the reported heuristics, but with a fewer420

number of evaluations and with significantly less time.421

If the number of features is not big, it is convenient to choose a deter-422

ministic algorithm -such as fast-CT EXT- and go for the entire set of typical423

testors. As this number gets bigger, say over one hundred, the execution424

time required by a deterministic algorithm grows exponentially because of425

the combinatorial explosion, and there is a chance that not a single typical426

testor could be found. In such a case, the proposed hill-climbing algorithm427

will be useful; naturally, if the number of features is bigger, this algoritm428

will run more iterations to find a fixed number of typical testors, but the429

execution time grows polynomially.430

Future work includes the implementation of the hill-climbing algorithm431

on hardware devices, such as Field Programmable Gate Arrays and Graphics432

Processing Units, in order to accelerate the calculation of typical testors.433
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Figure 1: Variation in the number of testors found with different values of pnt and pt, as

follows: (a) pt = 0.1; (b) pt = 0.3; (c) pt = 0.5; (d) pt = 0.7; (e) pt = 0.9
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Figure 2: Variation in the number of testors found performing 1000000 and 10000000

iterations, with different values of pnt and pt, as follows: (a) pt = 0.1; (b) pt = 0.3; (c)

pt = 0.5; (d) pt = 0.7; (e) pt = 0.9
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