
EAFIT UNIVERSITY, NOVEMBER 2014 1

Formalization of Programs with Positive Inductive
Types

E. Lobo-Vesga

Abstract—Proof assistants are computer systems that allows
a user to do mathematics on a computer helping with the
development of formal proof by human-machine collaboration,
however most of them only work with strictly positive types, this
restriction limits the number of problem that can be formalized.
This is perhaps the reason why verification of programs that
use positive (and negative) types is uncommon. Hence, we use
the programming logic created by Bove, Dybjer and Sicard-
Ramı́rez that accept positive types to formalize the termination
of a breadth-first search in a binary tree using continuations data
type which is positive.

Keywords—Inductive Types, Positive Types, Programming Logic,
Continuations.

I. INTRODUCTION

Types are ranges of significance of propositional func-
tions [6] i.e. they are domains of predicates. For practice
reasons we understand a type as a classification of data, and
operations on them, which is useful to tell the compiler or
interpreter how the programmer intends to use an specific
data. Types supported by most programming languages include
Booleans, Integers, Floating points numbers, Characters and
Strings.

Each programming language has a form to represent and
build types, then we say that a system or language has
inductive types if we can create elements of a type with
constants and functions of itself, for example, natural numbers
using Peano’s encoding can be represented as

data N : Set where
zero : N
suc : (n : N) → N

where a natural number is created either from the constant
“zero” or by applying the function “suc” to another natural
number.

Inductive types can be represented as least fixed-points of
appropriated functions (functors) [8]. For instance let 1 be
the unity type and + operator for the disjoint union, then the
functor that represents the natural numbers is

N = µX.1 +X

That is, if we have a type

data D : Set where
lam : (D → D) → D

E. Lobo-Vesga is student of Mathematics Engineering, EAFIT University,
Medellı́n, e-mail: elobove@eafit.edu.co.

its respective functor will be D = µX.X → X . Based on
that representations of inductive types as least fixed-points
of a functor we can define negative, positive and strictly
positive inductive types as follow: “The occurrence of a type
variable is positive iff it occurs within an even number of left
hand sides of →-types, it is strictly positive iff it never occurs
on the left hand side of a →-type” [1]. In this context, the
occurrence of a type variable is negative iff it occurs within
an odd number of left hand sides of →-types.

At this point we have a set of inductive types that can be
classified as Negative or Positive and the positives can be
Strictly positive or just Positives (see Fig. 1).

Inductive Types

Negative

Positive

Strictly
Positive

Fig. 1: Diagram sets of Inductive Types

Now, proof assistants are computer systems that allow a user
to do mathematics on computer, helping with the development
of formal proof by human-machine collaboration [2]. However
most of them as COQ, AGDA and ISABELL only work with
(or require) strictly positive inductive types. They do not use
or accept negative types in order to avoid non-terminating
functions, in other words, looping computation, and the
positive (non-strictly positives) are exclude because they
cannot be understood predicatively in general [1]. This
constraint limits the number of programs that can be
formalized.

Recently a programming logic where positive inductive
types (as well as strictly positive ones) was developed by Bove,
Dybjer and Sicard-Ramı́rez [7]. They built a computer-assisted
framework, called Apia, for prove first-order theorems written
in Agda using automatic theorem provers for first-order logic
(ATPs).

We propose to identify and formalize some problem that
make use of positive types using Apia.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad EAFIT

https://core.ac.uk/display/47245349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
elobove@eafit.edu.co


EAFIT UNIVERSITY, NOVEMBER 2014 2

II. CONTINUATIONS AS EXAMPLE

Basic concepts of continuations were discovered several
times by different computers scientists in different contexts,
for this reason, continuations were found useful for a
variety of settings: “They underline a method of program
transformations (into continuation passing-style), a style of
definitional interpreter (defining one language by an interpreter
written in another language), and a style of denotational
semantics (in the sense of Scott ans Strachey)” [5]. For each
setting, continuations respresent “the rest of the program” as
a function or procedure.

We will understand continuations in the sense of HASKELL’s
continuations or Continuation Passing Style (CPS) which is a
style of programming in which functions do not return values;
rather, they pass control onto a continuation, which specifies
what happens next. They are used to manipulate and alter the
control flow of a program [3].

In 2000 Matthes uses continuations to do a breadth-first
binary tree search [4]. In his example Matthes cites Hofmann’s
unpublished work (Approaches to recursive data types - a case
study, 1995) that defines the type of continuations as:
cont = D | C of (cont → list) → list

which is a non-strictly positive type because it occurs in the left
hand of a →-type, but it is an interesting non-strictly positive
type because it is a positive one.

III. CONTINUATIONS IN AGDA

Matthes implements his example of continuations in the
functional language SML, then we translated it to HASKELL
(see Appendix A) for understand the implementation.

Also, Matthes states several questions about the code and
one of them is: “Does the program terminate for every input
tree?”. We pretend to answer this question using Apia, but
initially we implement the example in AGDA to clarify why
this cannot be formalized using it.

First of all we create a data type that represent a binary tree
of natural numbers and continuations.
data Btree : Set where
L : (x : N) → Btree
N : (x : N) (l r : Btree) → Btree

data Cont : Set where
D : Cont
C : ((Cont → List N) → List N) → Cont

As we said before, Cont is a non-strictly positive types and
we need to use the flag -no-positivity-check, to use this
type.

Later we implement four functions, apply and breadth are
used to search in the binary tree; ex takes a continuation
and generates a List of naturals, this function is used by
breadthfirst that takes a binary tree, traverses it using the
breadth function which result is passed to ex and it extracts
the route of the search in a List.

apply : Cont → (Cont → List N) → List N
apply D g = g D
apply (C f) g = f g

breadth : Btree → Cont → Cont
breadth (L x) k =
C $ λ g →x :: (apply k g)

breadth (N x s t) k =
C $ λ g →
x :: (apply k (g ◦ breadth s ◦ breadth t))

ex : Cont → List N
ex D = []
ex (C f) = f ex

breadthfirst : Btree → List N
breadthfirst t = ex (breadth t D)

Note that ex function is not structural recursive then we need
to use NO TERMINATION CHECK pragma. Finally we created a
binary natural as shown in Fig 2 and verify that the results of
“breadthfirst” with this tree is the following list of naturals.

exList = [1,2,4,7,3,6,8,5,4,2,9]

1

2

7 3

45

4

6

2

8

9

Fig. 2: Binary tree of natural numbers

All of the previous implementations and procedures were
made in AGDA and it type checked, we might think that this is
enough to formalized that the program terminate, nevertheless
we cannot conclude that because in our implementation we
have to disable AGDA’s termination checker with the flag -no-
positivity-check and the pragma NO TERMINATION CHECK,
this implies that our program is unsound when viewed as logic
and also it weakens the reasoning that can be done about it [9].

IV. CONTINUATIONS IN APIA

Because definitions of Cont data type and ex function run
afoul of Agda’s termination checker we intend to use Apia
to implemented them and call ATPs as VAMPIRE and E to
prove properties of them.

Here we postulate a domain of terms and the term con-
structors using higher-order abstract syntax to represent the
variable binding operator λ as AGDA higher-order function.

postulate
D : Set
zero [] d : D
succ : D → D



EAFIT UNIVERSITY, NOVEMBER 2014 3

_◦_ _::_ : D → D → D
lam : (D → D) → D
node cont : D → D → D → D

Then we represent the inductive predicates N, ListN, Btree
and Cont for total and finite natural numbers, list of natural
numbers, binary tree of natural numbers and continuations
respectively.

-- Natural numbers
data N : D → Set where
nzero : N zero
nsucc : ∀ {n} →N n → N (succ n)

-- List of Natural numbers
data ListN : D → Set where
lnnil : ListN []
lncons : ∀ {n ns} →N n → ListN ns →
ListN (n :: ns)

-- Binary Nat Tree
data Btree : D → Set where
Leaf : ∀ {x} →N x → Btree x
Node : ∀ {x l r} →N x → Btree l →
Btree r → Btree (node x l r)

-- Continuations
data Cont : D → Set where
D’ : Cont d
C’ : ∀ {x xs ys} →((Cont x →
ListN xs) → ListN ys) →
Cont (cont x xs ys)

Then with further work we may be able to implement apply,
breadth, ex and breadthfirst functions and finally formalize
that breadthfirst is (or not) a terminating functions.

V. CONCLUSION

The main goal of this research has been to identify and
formalize a problem that make use of positive types (non-
strictly positive) using the programming logic of Bove, Dybjer
and Sicard-Ramı́rez. To achieve this goal, we have worked on
different subjects that we present as main ideas of our work.
• Negative types could generate looping computations and

Positive types cannot be understood predicatively in
general.

• In AGDA when we use flags as -no-positivity-check
or pragmas as NO TERMINATION CHECK we disable the
AGDA’s termination checker and the onus of create
terminating functions is on the developer.

• Apia seems to be an useful framework to broaden the
spectrum of programs that can be formalized.

APPENDIX A
CONTINUATIONS IN HASKELL

-- Binary tree
data Btree = L Int | N Int Btree Btree

-- Continuations : non-strictly positive
data Cont = D | C ((Cont -> [Int]) -> [Int])

apply :: Cont -> (Cont -> [Int]) -> [Int]
apply D g = g D
apply (C f) g = f g

breadth :: Btree -> Cont -> Cont
breadth (L x) k = C $ \g -> x : (apply k g)
breadth (N x s t) k = C $ \g -> x :
(apply k (g . breadth s . breadth t))

-- Iteration on the data type Cont
ex :: Cont -> [Int]
ex D = []
ex (C f) = f ex

breadthfirst :: Btree -> [Int]
breadthfirst t = ex $ breadth t D

-- Example
extree :: Btree
extree = N 1 (N 2 (L 7) (N 3 (L 5) (L 4)))

(N 4 (N 6 (L 2) (L 9)) (L 8))

result :: [Int]
result = breadthfirst extree

exList :: [Int]
exList = [1,2,4,7,3,6,8,5,4,2,9]

ok :: Bool
ok = result == exList

REFERENCES

[1] Abel, A. and Altenkirch, T. (2000). A Predicative Strong Normalisation
Proof for a λ-Calculus with Interleaving Inductive Types, p. 21.

[2] Geuvers, H. (2009). Proof assistants: History, ideas and future. Sadhana
Journal 34, pp 3-25.

[3] Haskell/Continations passing style. Retrieved from Wikibooks Web site:
http://en.wikibooks.org/wiki/Haskell/Continuation passing style

[4] Matthes, R. (2000). Lambda Calculus: A Case for Inductive Definitions
[PDF document]. Retrieved from Lecture Notes Online Web site: http:
//www.irit.fr/∼Ralph.Matthes/papers/esslli.pdf

[5] Reynolds, J. C. (1993). The Discoveries of Continuations. LISP AND
SYMBOLIC COMPUTATION: An International Journal 6, pp 233-247.

[6] Rusell, B. (1908). Mathematical logic as based on the theory of types.
American Journal of Mathematics 30, pp 222-262.

[7] Sicard-Ramı́rez, A. (2014). Reasoning about Functional Programs by
Combining Interactive and Automatic Proofs. Unpublished doctoral
dissertion, University of the Republic, Uruguay.

[8] Sicard-Ramı́rez, A. (2014). Verification of Functional Programs [PDF
document]. Retrieved from Lecture Notes Online Web site: http://www1.
eafit.edu.co/asicard/courses/fpv-CB0683/slides/fpv-slides.pdf

[9] Weirich, S. and Casinghino, C. (2012). Generic Programming with
Dependent Types. J. Gibbons (Ed.): Generic and Indexed Programming,
LNCS 7470, pp 217–258.

http://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
http://www.irit.fr/~Ralph.Matthes/papers/esslli.pdf
http://www.irit.fr/~Ralph.Matthes/papers/esslli.pdf
http://www1.eafit.edu.co/asicard/courses/fpv-CB0683/slides/fpv-slides.pdf
http://www1.eafit.edu.co/asicard/courses/fpv-CB0683/slides/fpv-slides.pdf

	Introduction
	Continuations as example
	Continuations in Agda
	Continuations in Apia
	Conclusion
	Appendix A: Continuations in Haskell
	References

