View metadata, citation and similar papers at core.ac.uk

Escuela de Economía y Finanzas

Documentos de trabajo Economía y Finanzas

Centro de Investigación Económicas y Financieras

No. 14-20Innovation and its Effects on Employment2014Composition: Microeconomic Evidence fromColombian Firms
Mejía, Juan F.; Arias, Yurani

Innovation and its Effects on Employment Composition: Microeconomic

Evidence from Colombian Firms^{*}

Juan Felipe Mejia, Ph.D in Economics[†]

Yurani Arias Granada, MSc.(c). in Economics[‡]

Abstract

This study analyses the effects of innovation on employment in Colombian firms for the manufacturing and service sectors in two different periods: 2007-2010 for the manufacturing industry, and 2010-2011 for the service industry. Based on the theoretical framework proposed by Harrison et al.(2014), we test this relationship using instrumental variables techniques. Data proceed from *The Annual Manufacturing Survey*, *The Development and Technological Innovation Industrial Survey*, and *The Development and Technological Innovation Services Survey*, all of them collected by the Colombian National Administrative Department of Statistics (DANE).Our empirical results show that sales growth due to new products positively affects employment growth, and process innovation has not a displacement effect on employment growth. This is robust to different specifications and the inclusion of control variables.

JEL Classification: O31, O33 Keywords: Employment Growth, Process Innovation, Product Innovation, Colombian Firms.

^{*}We thank Mery Tamayo, Gustavo Canavire and Andrés Ramírez for comments and recommendations, and Departamento Administrativo Nacional de Estadstica (DANE), National Administrative Department of Statistics who has provided the data used in the econometric estimations. All remaining errors are our own.

[†]Department of Economics, School of Economics and Finance, Universidad EAFIT. Carrera 49 7 Sur - 5 Medellín, Colombia. Phone: +57 4 2619500 Ext. 9354. Fax: +57 4 2664284. email: jfmejia@eafit.edu.co

[‡]Departament of Economics, School of Economics and Finance, Universidad EAFIT. Carrera 49 7 Sur - 5 Medellín, Colombia. email: yariasgr@eafit.edu.co

Introduction

Mainstream economic theories and other approaches consider innovation as a fundamental cause of economic growth (e.g. new growth and neo-Schumpeterian theories). Innovation boosts growth through the diffusion of technology from the developed to the less-developed countries; in addition, combined with other factors improves living standards and boosts economic performance (Verspagen, 2006). Similarly, several studies shed light on the relationship between GDP (Gross Domestic Product) and investment in Research and Development (R & D), suggesting a positive and significant impact on the former. Firms, regions and countries benefit from others R & D processes through international trade, coalitions, foreign ownership of firms, workers mobility, etc (Coe and Helpman, 1995; Keller, 1998; van Pottelsberghe and Lichtenberg, 2001).

In many countries companies developed the majority of innovations using the networks with other actors of the innovation systems (e.g. universities, research centers, public administration, financial systems etc.). Firms undertake innovations looking for profits: they create new products and gain a higher market share. Later, other firms improve these former innovations or introduce new ones generating a process of creative destruction, enhancing technological progress which generates growth (Aghion and Howitt, 1992). The levels of uncertainty when companies invest in R & D and innovation activities are high but generate higher rates of returns.

Developed countries base their production systems in science, technology and innovation activities. On the contrary, the majority of developing countries continue producing the same basket of low value added goods and services. Increasing productivity levels is of paramount importance for developing countries, since it leads to spurring innovation and promoting organizational change. Different determinants of innovation have been highlighted in the literature, such as current and past levels of investment in R & D, knowledge flows (Griliches, 1979), firm size, level of exports, foreign ownership, cooperation and access to funding (Crespi and Zuniga, 2012).

Romer (1990), and Aghion and Howitt (1992), define innovation as the driving force behind growth which affects the entire economy. Innovations developed by firms have an impact in variables such as productivity, per capita income, distribution, capabilities and opportunities of individuals. The latter two are related to employment. Thus, technological change might generate both job gains and losses. This effect depends on the dynamics behind innovation and factors such as the speed of adoption, industries and sectors affected, necessary skills, speed of adjustment in the employment which may lead to frictional or technological unemployment, creating mismatches in the job market (Pianta, 2006).

Different empirical studies have tried to identify the impact and the effects of innovation on employment. The direction and magnitude of these effects are related to the type of innovation and the way it is measured. As has been discussed in the literature, there are different channels through which innovation can either generate or destroy jobs.

This paper analyzes the effects of innovation on employment in Colombian firms for the manufacturing and service sectors using *The Annual Manufacturing Survey*, *The Development and Technological Innovation Industrial Survey*, and *The Development and Technological Innovation services Survey*. The discussion around the effects that technological change has on employment is still open. Hence, it is important to highlight that previous studies conducted at different levels -e.g. firms, industries, or at the macroeconomic level- show results that are similar in some cases. In other cases, remarkable differences are present. The latter could be explained by differences in terms of the sample of countries, the period analyzed, and the data availability.

The research question addressed in this paper is of particular interest in a country like Colombia, where the labor market faces structural problems. One indicator of that is the striking level of informality: Approximately, 50% of Colombian workers are employed in the informal economy. Coupled with that, efforts have recently been undertaken in Colombia in terms of investment in science, technology and innovation. This also implies the necessity of understanding the relationship between innovation and employment.

The remainder of the paper is structured as follows. We briefly discuss the literature and most relevant empirical findings related to innovation and its effects on employment. This is followed by a description of our empirical strategy, which is based on Harrison et al. (2014) theoretical framework that assesses the relationship between innovation and employment growth at the firm level. Our results show that *sales growth due to new products* affects positively employment growth, this is robust to different specifications and the inclusion of control variables. Besides that, process innovations have not a displacement effect on employment growth in Colombia.

1 Literature Review

Firms innovate when they perceive a commercial opportunity in a new project. To transform an invention into an innovation, they need to combine knowledge, resources capabilities, and skills. As noted by Fagerberg (2006) these factors might be combined in different ways, to produce innovations more complex and sophisticated, firms must analyze the social and economic implications of these innovations. The latter taking into account that a radical innovation requires extensive infrastructure investments (e.g. research infrastructure) and the introduction of organizational and social change (e.g relations with the private and public sector, employees skills) to be successful.

Innovation in OECD countries and some emerging economies is mainly carried out by firms. Between 65% and 75% of total I & D activities in countries like Finland, Japan and the United States are undertaken by companies. In China and South Korea, this figure is around 70%, while in Chinese Taipei it is 65% and in Spain, 55% (OECD, 2013). Policies geared towards promoting innovation at the firm level play a key role in several countries, with the expectaction of improving economic performance. However, the effects of innovation on employment might differ across countries -that is, between developed and developing countries-, since the structure of the labor markets and the underlying economic conditions differ deeply.

Hence, it is important to understand the effect of innovation at the firm level on employment generation and its composition. This is of particular interest in Colombia, where the participation of companies in I & D activities is low: 30%, which is the same level of South Korea in the 1970s and China in the 1980s. The Colombian figure is also below the Latin American average, which goes up to 40% (OECD, 2013).

As it is all around the world, Colombian firms currently face big challenges such as the increasing competition in the majority of industries, in contrast to their low productivity levels. The current economic and political scenario, characterized by globalization and the signature of Free Trade Agreements (FTAs), needs to be carefully considered. Consequently, firms need to increase their productivity levels if they want to compete in global markets. At the same time, they need to be knowledge processors, requiring significant investment levels in innovation. Despite this reality, the Colombian innovation system is small, inefficient and excessively centralized. It shows a low performance in terms of the required level for a sustainable growth (OECD, 2013). However, new investments in science and technology could boost the innovation system and improve public and private innovation.

The relationship between innovation and employment has been addressed by different strands in the literature. Moreover, empirical studies have studied this relationship from different perspectives and levels of analysis (firm and industry level). Indirect effects that arise within industries, as well as effects macroeconomic effects, have also been considered. The factors that run between these variables might differ deeply across time and countries, due to national policies, institutions, laws and incentives, market labor and economic conditions, as well as other such as education, training process, firms features, etc.

At first, the effects of innovation on employment can be evaluated from a macroeconomic perspective. This approach allows to measure direct and indirect effects through compensation mechanisms. Economic policies are provided with instruments to assure the recovery of jobs when technological change generates losses. Besides that, the negative effects of innovation in terms of job losses have been considered (Pianta, 2006). Tancioni and Simonetti (2002) developed macroeconomic models where they found different impacts for each country and each compensation mechanism, in those countries where there is a higher rate of investment in innovation activities, innovation in products is high. Consequently, the reduction in prices derived from innovation boosts demand, implying a positive effect in terms of employment. An open economy implies more complexity: since innovations might create and destroy jobs in different countries, the benefits are distributed in several places. Besides that, imports might rise if foreign innovations are more competitive while in the opposite case, exports and local competitiveness can increase (Pianta, 2006).

Moreover, studies that shed light on the relationship between innovation and employment have tended to focus on the analysis at industry and firm level. Antonucci and Pianta (2002) highlight the possibility of technological unemployment, situation that happens when process innovation and weak demand dominates. These authors found for some European countries in the late 1990s job losses in the manufacturing industry due to technological change; because of an active price competitiveness strategy, technological efforts were associated to restructuring and the market expansion effect of new products was modest. Greenan and Guellec (2000) states that for France, at the firm level, process innovation creates more jobs than product innovation while the opposite occurs at the sectoral level. However, innovative firms perform better than the others on the medium-run.

Besides that, Evangelista and Savona (2003), Carried out estimations related to innovation in services, they found an overall negative impact of innovation on employment, nevertheless results differ vastly depending on the services sector, and at the micro level, depending on the type of strategy implemented by firms. on the other hand, is very common to all the services sectors that high skilled jobs substitute low skilled jobs. Besides that, innovation might generate employment in knowledge-intensive sectors, but can have a negative impact in financial sectors, capital intensive service industries such as transport-related services and traditional services, for instance, trade and waste disposal.

From a microeconomic perspective, the existing literature emphasizes on the different effects associated to product and process innovation where the total effect for each type of innovation remains unclear in theoretical models. Initially, an improvement in technology allows to produce the same amount of output with less productive factors for instance capital and labor, and loss of employment is an outcome of the progress; however, compensation effects as a result of reduction in output prices lead to an increase in demand and a possibility to rise employment; that is, depending on the demand elasticity firms may demand new employment (van Reenen, 1997; Peters, 2005; Harrison et al., 2014).¹

Most of the research in the field highlights the displacement and compensation effects coming from both types of innovation on employment at the firm level; process innovation improves productivity, firms need fewer inputs. As a result of that, they will be able to produce the same output with less workers leading to the destruction of jobs. From the previous effect could be inferred that process innovation has a negative effect on employment. Nevertheless, due to cost reduction and the increase in productivity, firms can reduce their prices, increase production, finally leading to job generation by means of hiring additional workers.

¹See e.g. Vivarelli (2011) for an overview of the literature.

On the other hand, if the firm introduces product innovations on the market, an increase in demand would be possible, leading again to job creation. On the contrary, it could happen that the firm introduces a product completely new to the market, so until competitors enter with similar or better products, the company can increase price, reduce the quantity sold, and require fewer workers. Concerning these effects at the firm level, studies have been conducted for several countries based on the theoretical model of (Harrison et al., 2014). The proposed model takes into account the effect of process innovation and sales growth (coming from old products and innovation through new products) on employment, empirical estimations were conducted for France, Germany, Spain and the UK for the period 1998-2000. The main findings across countries suggest a positive effect of product innovation on employment, in this case the compensation effect dominates when firms introduce new products -despite old products destruction- boosting employment growth. On the other hand, process innovation effects are not clear because the results vary across countries and sectors, that is, sometimes dominates the displacement effect and in other cases the compensation effect.

Based on the same theoretical model, Peters (2005) conducts a study for German manufacturing and services firms. She finds similar results to those obtained for Spain. Moreover, product innovations new to the firm but not to the market (imitation strategies) stimulate employment, thus, product novelty degree does not affect employment in this case. The process innovations findings are negative in manufacturing, especially innovations that reduce average production costs (rationalization innovations); the result is positive in the services sector but not significant. Other studies have been conducted for Spain (Jaumandreu, 2003) and Italy (Hall et al., 2008) suggesting positive impacts of product innovation in both countries and displacement effects of process innovation only in Spain.

Besides the previous studies, recent studies has been conducted for Latin America. Crespi and Tacsir (2012) conduct estimations for the manufacturing sector in Argentina, Chile, Costa Rica and Uruguay, besides a positive effect of product innovation on employment, they find that process innovation is not significant for all the countries, only for Costa Rica with a positive impact and Uruguay where the displacement effect dominates. Beyond that, Castillo et al. (2011) evaluate the relationship for Argentina, Benavente and Lauterbach (2008) and Alvarez et al. (2011) for Chile,

and Aboal et al. (2011) for Uruguay.

It is common that empirical studies find a positive impact of product innovation on employment and an ambiguous effect of process innovation. In contrast to this line of argumentation, a different estimation strategy is proposed by Lachenmaier and Rottmann (2011). they used a dataset from German manufacturing companies to undertake a dynamic panel analysis including input and output measures for innovation, the results suggest higher positive impacts on employment for process innovation rather than product innovation. These outcomes go in another direction to those obtained in studies mentioned above, proposing that countries should not specialize and invest only in product innovations, process innovations might also play a key role depending on country conditions. van Reenen (1997), Smolny (1998), and Piva and Vivarelli (2005) also carried out estimations with a different theoretical setting. However, The main finding was that technological innovation is associated with higher employment at the firm level. This result showed to be robust when control variables were included and different specifications were tested.

2 Methodology

We use (Harrison et al., 2014) theoretical framework to assess the relationship between innovation and employment growth at the firm level. This approach suggests a theoretic relationship where employment growth is explained by process innovations and *sales growth due to new products*. The model analyzes a firm in two periods, t = 1 and t = 2, at the beginning of the reference period the firm only produces old products. However, it might introduce product innovations between the periods, in the second period the firm can produce old products and new products. Firms use identical separable production technologies that have constant returns to scale in capital, labor, and intermediate inputs in order to produce old and new products. New products are produced with higher or lower efficiency than old products, thus the firm may affect the efficiency of its production investing in process innovation. Employment growth is going to be affected by the efficiency increase in the production of the old product, the rate of change in the production of the old product, the expansion in production due to new products and the impact of old product unanticipated productivity shocks (Harrison et al., 2014; Peters, 2005). Real output is not observed, for that reason nominal sales are used. The first equation to estimate is:

$$\ell_i = \alpha_0 + \alpha_1 d_i + g_{1i} + \beta g_{2i} + \mu_i \tag{1}$$

where

 ℓ_i : employment growth rate α_0 : average efficiency growth α_1 : average efficiency growth for process innovations d_i : dummy variable indicating process innovation g_{1i} : nominal rate of sales growth due to old products g_{2i} : nominal rate of sales growth due to new products β : relative efficiency of the production of old and new products μ_i : unobserved disturbance

Equation 1 suggests that firms that do not innovate in process can also achieve efficiency gains, perhaps due to exogenous technological progress, organizational changes, improvements in human capital, learning or spill-over effects (Peters, 2005). Nominal rate of sales growth due to old products g_1 has a coefficient equal to one, therefore can be subtracted from employment growth rate, thus the new dependent variable is $(\ell_i - g_{1i})$. On the other hand, endogeneity problems may appear since innovation decisions depend on the firms productivity, productivity inherent to each firm which is differentiated out in the theoretical model and unobservable productivity shocks, the latter ones depend on the timing of technological investments (lagged values of the explanatory variables or technological investments). Other complications may occur because real growth sales of old products are not observed, one way to resolve this problem is using firm-level prices, which in our study are available in *The Annual Manufacturing Survey*. Consequently, the dependent variable will be $\ell_i - (g_{1i} - \pi_i)$ and the equation to estimate is:

$$\ell_i - (g_{1i} - \pi_i) = \alpha_0 + \alpha_1 d_i + \beta g_{2i} + \mu_i$$
(2)

We also study the effect that other variables exert on employment such as organizational changes, the latter can boost managerial occupations and reduce the demand for unskilled workers (Caroli and Reenen, 2001). Additionally, according to Dachs and Peters (2014) foreign-owned firms have higher job losses than domestically owned firms because of productivity increases and process

innovations. Moreover, product innovation creates more jobs for foreign-owned firms. Other control variables which have been included in the estimations are a dummy, which takes the value of 1 if the firm exports, and another dummy variable that takes the value of 1 if firms are located in the capital city. Two other dummy variables have been included: one form medium-sized firms, which takes the value of 1 when it is defined by the Colombian legislation as a medium-sized firm. The other dummy takes the value of 1 it is considered as a large-sized firm.

We take *fixed assets growth* as a proxy for capital formation. The assumption of constant input prices is relaxed, by including *labor costs growth*. Equation 2 is estimated by ordinary least squares and instrumental variables. Firms stablished during the period of analysis, and firms with sales or employment equal to zero or missing in the initial years were excluded. Additionally, instruments used should be correlated with sales growth due to new products but uncorrelated with price changes.

3 Data

We explore the relationship between innovation and employment for Colombian manufacturing and service firms, using data from *The Annual Manufacturing Survey* for the period 2007-2010, two waves of *The Development and Technological Innovation Industrial Survey* for the periods 2007-2008 and 2009-2010, and *The Development and Technological Innovation services Survey* for the period 2010-2011. These three surveys are conducted by the Colombian National Administrative Department of Statistics -DANE. *The Annual Manufacturing Survey* is a national survey of industrial establishments with information for more than 8,000 plants. We select firms with a balanced panel from 2007 to 2010. The survey collects detailed information on employment disaggregated by gender, professional level, labor costs and expenditures, stocks, investments, assets, production, quantities produced and sold, unit sales and total sales, exports, and intermediate consumption.

The Development and Technological Innovation Industrial Survey has been linked to The Annual Manufacturing Survey to obtain detailed information on innovation and technological activities developed by firms in Colombia. The innovation survey for the manufacturing industry is carried out every two years and includes detailed information on innovation outputs, types of innovation, objectives when investing and developing innovations, investment on innovation activities, sources of ideas, obstacles to innovation, financial sources, access to public funding, relations to other actors of the innovation system and intellectual property. Employment growth is obtained of *The Annual Manufacturing Survey*, which includes information related to skilled, unskilled, full-time, part-time, female and male labor, and the labor costs associated to each type of employment. These costs are defined as the total remuneration plus the social benefits and fiscal contributions that are mandatory to companies in Colombia.

Growth sales due to new and old products for manufacturing firms were calculated with the information available in *The Annual Manufacturing Survey*, comparing the products for each firm in the period 2006-2010. The survey also includes prices for each firm, which allowed calculating growth prices and avoiding endogeneity concerns related to this variable. The rest of the information was obtained from *The Development and Technological Innovation Industrial Survey*.

Concerning employment participation by economic sector, in the year 2013 the manufacturing sector participated with 12% of the total employment in Colombia, while the services sector participation went up to 64% and the agricultural sector contribution was of 18%.² This shows the relevance of the services sector in terms of employment generation in the country. Taking into account this significant participation of the services sector, we also carried out some estimations for the services sector with information available on *The Development and Technological Innovation services Survey* 2010-2011. In the latter survey, we obtained different variables such as employment growth, skilled and unskilled labor growth, sales growth due to new and old products, science and technology expenditure, innovation outputs like process innovations, product innovations, organizational changes and commercialization changes. In the service industry the price changes could not be obtained at the firm level. For that reason, the different components of the Colombian consumer price index have been used as a proxy. Detailed information related to the variables and their definitions is depicted in table 16.

According to the Colombian Observatory for Science and Technology -OCYT, expenditure in scientific, technological and innovation activities as a percentage of the GDP amounted to 0.5% in 2013, while expenditure in R & D was 0.22% for the same year. It should be highlighted that the public sector financed 58% of all the science and technology activities in the country, while the

²This information is based on Colombian great integrated household survey (DANE, 2014)

private sector financed 35%. It is important to notice that the Colombian private sector has shown a decreasing trend of investment in these type of activities since 2009: in 2008, the private sector's share was 47%. Another interesting fact is related to the expenditure in science and technology activities by sector: In 2013, firms invested 30% of these resources, higher education institutions 26%, government organizations 25%, research and technology development centers 13%, and other institutions 6% (OCYT, 2014).

Descriptive statistics are presented in table 17. During the two waves of *The Development and Technological Innovation Industrial Survey* (2007-2008, 2009-2010), manufacturing firms were in high proportion non-innovators, only 4% innovated both in processes and product. In contrast, when analyzing the 2010-2011 wave of *The Development and Technological Innovation services Survey*, its is found that 10% of the firms innovate both in products and processes. As depicted in table 17, another important aspect related to manufacturing firms is that they tend to undertake more innovation just in processes, rather than product innovation. On the other hand, in the service industry firms tend to innovate more introducing new or improved products or services rather than new or improved processes. This is due to the structure of the service industry.

When analyzing the data, we found that the productive structure is somewhat different for both types of industries. In the case of the manufaturing sector, 51% of the companies have between 11 and 50 employees, 34% have between 51 and 200 employees, and 15% have more than 200 employees. In the case of the services sector, small-sized firms represent 35% of the sample, while medium-sized firms represent 37% and large-sized firms, 28%. In spite of that difference, it is striking to notice how in the service industry sector 65% of the firms alre also non-innovators.

Regarding employment growth in the period 2007-2010, it was in average of 3% in the manufacturing sector, where skilled labor grew more rapidly than the unskilled labor. The former grew 12%and the latter 4%. Additionally, in the period of time analyzed part-time employment presented an important potive growth rate: it showed an average increase of 47%, while full-time employment just had an average increase of 12%. Furthermore, female employment rose in average 10% almost doubling male employment. In the service industry sample, employment growth was in average of 6%, where the growth of skilled employment went up to 14% and in the case of unskilled labor, 2%. Here, it is interesting to analyze the behavior of the sales growth derived either from old or new products in both industries. As can be observed in table 17, sales growth due to old products is more important in the manufacturing than in the service industry. In the former, sales growth proceeding from new products was of just 4%, while sales growth due to old products was of 9.6%. In the case of the service industry, sales growth linked to new products was of 6%, while sales growth of old products was of 2.7%. Besides that, the R & D intensity and the innovation intensity were considerably higher in the service industry in contrast with the manufacturing industry. Nevertheless, it is important to clarify that the periods of analysis are different. Moreover, industries which introduced more process and product innovations during the period of analysis were food products and beverages, printing and reproduction of recorded media, chemical products, and rubber and plastics products. Table 18 presents more detailed information by type of innovation and industry.

4 Results

Concerning the empirical strategy, a pooled OLS (POLS) estimation was first conducted: the same firms were considered in the two waves of the innovation survey. Here, the purpose has been mainly to show some benchmark estimates and to see if results vary considerably when using other methodologies. When the theoretical model with the dependent variable $\ell_i - (g_{1i} - \pi_i)$ is estimated, the sales growth due to new products g_2 has a positive impact on employment growth. This means that new products are produced more efficiently than old products and the compensation effect dominates the displacement effect. These results are depicted in table 1, where the variable process innovation only is not significant. Innovation in commercialization shows to be positive and significant in equation 9. Labor costs exert a negative impact on employment growth and showed to be significant in equations 8 and 16, which goes in line with previous empirical studies. The fixed assets growth variable has a negative and significant effect on employment growth. But, as will be shown later, this effect disappears when instrumental variables are included.

As can be observed, the empirical analysis also comprises the inclusion of the variable *process* and product innovation, taking into account that based on the available information, it is not possible to differentiate between process innovations applied to old or new products. According to Peters (2005) the process innovation dummy may have additional efficiency gains, this dummy could include the effects of changes in the production of the old products. We divide the effect by estimating with *process innovation only*, where the effect corresponds to old products, and estimating with *process and product innovation*, where the changes are related to old and new products. Table 2 suggests a positive and significant effect of the *process and product innovation* variable, and a slight decrease in the coefficient of g_2 , this indicates a lower effect of new products on employment growth.

As has been previously explained in the methology section, the model presents some endogeneity problems. Hence, it is necessary to conduct estimations instrumenting the variable g_2 . As is shown in table 2, the instruments used were *client*, *innovation intensity* interacted with *increased market share*, *increased range* and the *obstacles to innovate*. Sargan-Hansen overidentification tests were performed and the obtained results validate the instruments. The results are similar to those obtained in table 1. It is also interesting to notice that when estimating using instrumental variables, *process innovation only* showed to be negative and significant -in comparison to OLS, where it was negative but not significant.

Another important aspect is to shed light on the relationship between the innovation variables and the different types of labor. Namely, in table 3 and 4 the results of skilled and unskilled employment are presented. When estimating through pooled OLS (POLS), the effect of g_2 does not vary, maybe due to the possible downward bias in the coefficients. when instruments are used to correct the endogeneity like in the case of table 2, the positive impact of g_2 on employment growth is higher on employees with higher qualifications. In table 4, process innovation only has a negative effect but it is not significant, and labor cost growth estimated for each type of labor has a negative impact on employment growth. The variables commercialization change and fixed assets growth have positive and negative impacts respectively. Instrumental variables estimations suggest a larger impact of innovation on employment growth in the case of skilled workers, this also happened with full-time employees as can be seen in table 19 available in the annex. In the case of female and male employment growth. This suggests that innovation exerts a stronger effect on male employment, despite of the fact that female employment growth was -in average- higher in the period analyzed. Table 5 and 6 present the results obtained when the sample for the manufacturing sector is divided between high or low tech firms, this classification is obtained calculating the innovation intensity of each company and after that, estimating the median value. Firms over the median are high tech and below or in the median are low tech. These estimations show some interesting results: in the high tech group *organizational and commercialization changes* always have a positive and significant impact on employment, contrary to low tech firms. Besides that, for low-tech firms (table 6) g_2 are not always significant, and the coefficients suggest that old products are produced more efficiently than new products. In addition, *process and product innovation* always have a positive impact on employment only in high tech firms, *labor cost growth* has a significant and negative effect in low tech firms, and large firms in both cases generate more employment than its counterparts with fewer employees. Instrumental variable estimations also suggest a higher impact of g_2 on employment growth.

In all the manufacturing industry estimations, if the firm exports or not has not an additional effect on employment growth. This is possible, because the number of exporting firms in the Colombian manufacturing sector is not very high. The variables *located in the capital* and *foreign owned* are in almost all the estimations not significant, despite of the differentiation among different types of industries and different types of labor. In some cases, being a large or medium-sized company has an additional effect on employment growth, and it is also very common the negative impact of *labor costs growth* or *fixed assets growth*.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Constant	0.320	0.328	0.333	0.353	0.306	0.317	-0.066	0.772*	0.743*	0.313	0.321	0.326	0.346	0.309	0.314	-0.063	0.767^{*}	0.740*
	(0.575)	(0.574)	(0.574)	(0.574)	(0.576)	(0.559)	(0.096)	(0.454)	(0.427)	(0.575)	(0.575)	(0.574)	(0.574)	(0.576)	(0.564)	(0.096)	(0.454)	(0.429)
Process Innovation	0.028	0.020	0.015	-0.005	0.009	0.009	-0.002	0.001	-0.008	0.036	0.027	0.023	0.002	0.021	0.020	0.005	0.005	-0.002
Only																		
	(0.060)	(0.051)	(0.047)	(0.041)	(0.045)	(0.046)	(0.040)	(0.039)	(0.038)	(0.062)	(0.053)	(0.048)	(0.042)	(0.048)	(0.049)	(0.042)	(0.040)	(0.038)
Sales growth dt new	0.307***	0.308***	0.308***	0.306***	0.307***	0.307***	0.306***	0.294***	0.293***	0.295***	0.296***	0.297***	0.297***	0.296***	0.296***	0.297***	0.288***	0.287***
products	(0.004)	(0.005)	(0.005)	(0.004)	(0.004)	(0.004)	(0.00.4)	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.001)	(0.000)	(0.000)	(0.001)	(0.007)	(0.007)
Located in the coni	(0.094)	(0.095)	(0.095)	(0.094)	(0.094)	(0.094)	(0.094)	(0.089)	(0.088)	(0.090)	(0.090)	(0.091)	(0.091)	(0.090)	(0.090)	0.062	(0.087)	(0.087)
Located in the capi-		-0.070	-0.008	-0.000	-0.009	-0.070	-0.004	0.010	0.015		-0.008	-0.000	-0.005	-0.007	-0.008	-0.002	0.017	0.015
Udl		(0.088)	(0.086)	(0.086)	(0.087)	(0.088)	(0.086)	(0.038)	(0.037)		(0.087)	(0.086)	(0.086)	(0.087)	(0.087)	(0.086)	(0.038)	(0.037)
Foreign Owned		0.051	0.020	-0.016	0.049	0.049	-0.016	-0 137**	-0 101**		0.048	0.021	-0.014	0.048	0.048	-0.014	-0.136**	-0.102**
roroign o whou		(0.051)	(0.028)	(0.031)	(0.050)	(0.050)	(0.031)	(0.054)	(0.046)		(0.050)	(0.021)	(0.031)	(0.049)	(0.049)	(0.031)	(0.054)	(0.046)
Exports dummy		()	0.066	()	()	()	()	()	()		(****)	0.060	()	()	()	()	(****)	()
L U			(0.075)									(0.074)						
Medium size				0.117			0.115	-0.006					0.114			0.111	-0.008	
				(0.081)			(0.081)	(0.032)					(0.080)			(0.080)	(0.032)	
Big size				0.178^{**}			0.176^{**}	0.117^{*}					0.168^{**}			0.166^{**}	0.111^{*}	
				(0.072)			(0.072)	(0.063)					(0.070)			(0.070)	(0.064)	
Organizational					0.033									0.019				
change					()									()				
a					(0.028)	0.011								(0.026)	0.000			0.050
Commercialization						0.044			0.077*						0.030			0.070
Change						(0.020)			(0.049)						(0.020)			(0.042)
Labor goot Crowth						(0.050)	0 101**	0.040	(0.042)						(0.028)	0 101**	0.040	(0.045)
Labor cost Growin							-0.191	-0.049	-0.031							-0.191	-0.049	-0.031 (0.080)
Fixed Assets Growth							(0.002)	-0 768***	-0 768***							(0.002)	-0 768***	-0 768***
TIXCU TISSUS OTOWIN								(0.125)	(0.125)								(0.125)	(0.125)
Process and Product								(0.120)	(0.120)	0.173***	0.165***	0.152***	0.122***	0.159***	0.158***	0.124***	0.083**	0.089**
Innovation										01210	01200	0110	0.122	01200	0.100	0.121	01000	01000
										(0.067)	(0.059)	(0.048)	(0.046)	(0.056)	(0.056)	(0.046)	(0.041)	(0.039)
Number of firms	8266	8266	8266	8266	8266	8266	8264	8240	8240	8266	8266	8266	8266	8266	8266	8264	8240	8240
Robust standard error	s are report	ed in brack	ets. All reg	ressions inc	lude industr	ry dummies												
Significance at the $***$	1%, **5%	and * 10%	level.															
Source: Authors' estim	nations																	

Table 1: Manufacturing firms. OLS estimations. Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

Table 2: Manufacturing firms. IV estimations. Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Constant	0.389	0.387	0.387	0.387	0.383	0.380	0.391	0.387	0.380	0.372	0.371	0.371	0.371	0.370	0.365	0.376	0.371	0.364
	(0.454)	(0.455)	(0.455)	(0.454)	(0.455)	(0.455)	(0.454)	(0.454)	(0.454)	(0.454)	(0.454)	(0.454)	(0.454)	(0.455)	(0.454)	(0.453)	(0.454)	(0.454)
Process Innovation Only	-0.041*	-0.039*	-0.039*	-0.038*	-0.039*	-0.041*	-0.037	-0.037	-0.040*	-0.024	-0.022	-0.022	-0.023	-0.022	-0.024	-0.021	-0.022	-0.023
	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)	(0.023)
Sales growth dt new prod-	0.295***	0.302***	0.303***	0.306***	0.302***	0.301***	0.306***	0.306***	0.300***	0.294***	0.300***	0.300***	0.304***	0.301***	0.299***	0.305***	0.304***	0.299***
ucts																		
	(0.101)	(0.100)	(0.100)	(0.100)	(0.100)	(0.100)	(0.100)	(0.100)	(0.100)	(0.101)	(0.100)	(0.100)	(0.100)	(0.100)	(0.100)	(0.100)	(0.100)	(0.100)
Located in the capital	()	0.021	0.021	0.023	0.021	0.021	0.025	0.025	0.022	· · /	0.023	0.023	0.024	0.023	0.022	0.026	0.026	0.024
*		(0.022)	(0.022)	(0.022)	(0.022)	(0.022)	(0.022)	(0.022)	(0.022)		(0.022)	(0.022)	(0.022)	(0.022)	(0.022)	(0.022)	(0.022)	(0.022)
Foreign Owned		0.006	0.004	-0.017	0.006	0.005	-0.019	-0.018	0.005		0.005	0.005	-0.015	0.005	0.005	-0.017	-0.016	0.004
0		(0.033)	(0.035)	(0.035)	(0.033)	(0.033)	(0.035)	(0.035)	(0.033)		(0.033)	(0.035)	(0.035)	(0.033)	(0.033)	(0.035)	(0.035)	(0.033)
Exports dummy		(0.000)	0.005	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)		(0.000)	0.001	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
			(0.023)									(0.023)						
Medium size			(01020)	0.005			0.002	0.002				(0.0=0)	0.003			-0.000	-0.000	
				(0.024)			(0.024)	(0.024)					(0.024)			(0.024)	(0.024)	
Big size				0.061**			0.060**	0.060**					0.055*			0.054*	0.053*	
218 0120				(0.029)			(0.029)	(0.029)					(0.030)			(0.029)	(0.030)	
Organizational change				(0.020)	0.004		(0.025)	(0.020)					(0.000)	0.001		(0.025)	(0.000)	
organizational change					(0.001)									(0.001)				
commercialization Change					(0.022)	0.017			0.010					(0.022)	0.014			0.016
commercialization change						(0.024)			(0.024)						(0.024)			(0.024)
Labor cost Growth						(0.024)	0 190***	0 199***	0.199***						(0.024)	0 120***	0 199***	0.1224)
Labor cost Growin							-0.120	-0.122 (0.022)	(0.022)							-0.120	-0.122 (0.022)	-0.122 (0.032)
Fired Accets Crowth							(0.052)	0.002)	0.010							(0.052)	0.010	0.010
Fixed Assets Glowin								(0.009	(0.010								(0.010	(0.010
Drogog and Droduct Inno								(0.007)	(0.007)	0 10/**	0 10/**	0.10/**	0.006**	0 10/**	0 109**	0.006**	0.007)	(0.007)
Process and Product Inno-										0.104	0.104	0.104	0.090	0.104	0.105	0.090	0.098	0.104
vation										(0.044)	(0.044)	(0.045)	(0.045)	(0.045)	(0.045)	(0.045)	(0.045)	(0.045)
Number of firms	2010	2019	2010	2010	2010	2010	2010	2009	2009	(0.044) 2010	(0.044) 2010	(0.040)	(0.040)	(0.040)	(0.040)	(0.040)	(0.040)	2009
Number of nrms	3812 0.472	3812	3812 0.900	3812 0.500	3812	3812 0.727	3810	3802	3802 0.642	3812	3812	3812 0.641	3812 0.414	3812 0.020	3812 0 500	3810	3802	3802 0 F1F
Sargan test	0.4/3	0.835	0.809	0.509	0.818	0.131	0.447	0.440	0.043	0.308	0.042	0.041	0.414	0.039	0.590	0.300	0.354	0.515
P-value	0.925	0.841	0.847	0.917	0.845	0.865	0.930	0.931	0.886	0.947	0.887	0.887	0.937	0.887	0.897	0.948	0.950	0.916
Durbin-Wu-Hausman test	0.778	0.915	0.931	0.957	0.912	0.879	0.968	0.962	0.878	0.960	1.100	1.100	1.140	1.106	1.074	1.155	1.153	1.082
P-value	0.378	0.339	0.335	0.328	0.340	0.348	0.325	0.327	0.349	0.327	0.294	0.294	0.286	0.293	0.300	0.282	0.283	0.298

Robust standard errors are reported in brackets. All regressions include industry dummies.

Significance at the ***1%, *5% and *10% level.

instruments used are client, increase market share interacted with innovation intensity, increased range and obstacles to innovate

 Table 3: Manufacturing firms. OLS estimations by Type of Labor (Skilled and Unskilled).
 Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

			Skilled E	mployme	nt			τ	Jnskilled	Employm	ent	
	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(2)	(3)	(4)	(5)	(6)
Constant	-0.146	-0.098	-0.271	0.378	1.136	1.290	0.170	0.186	0.081	0.094	1.472^{*}	1.552^{*}
	(0.168)	(0.187)	(0.190)	(0.587)	(1.060)	(1.070)	(0.168)	(0.167)	(0.182)	(0.175)	(0.873)	(0.879)
Process Innovation	0.016	0.005	-0.025	-0.022	-0.035	-0.043	0.041	0.033	0.012	0.012	0.017	0.003
Only												
	(0.063)	(0.055)	(0.047)	(0.047)	(0.041)	(0.035)	(0.063)	(0.054)	(0.044)	(0.044)	(0.043)	(0.042)
Sales growth dt new	0.343^{***}	0.343^{***}	0.342^{***}	0.338^{***}	0.328^{***}	0.326^{***}	0.348***	0.349^{***}	0.347^{***}	0.346^{***}	0.334^{***}	0.332^{***}
products												
	(0.076)	(0.076)	(0.074)	(0.075)	(0.070)	(0.069)	(0.103)	(0.104)	(0.104)	(0.103)	(0.097)	(0.097)
Located in the capi-		-0.105	-0.100	-0.091	0.008	0.005		-0.073	-0.070	-0.071	0.009	0.007
tal		<i></i>										
		(0.091)	(0.089)	(0.090)	(0.044)	(0.044)		(0.090)	(0.087)	(0.088)	(0.039)	(0.038)
Foreign Owned		0.025	-0.063	-0.060	-0.185***	-0.129**		0.054	-0.006	0.000	-0.128**	-0.101*
		(0.056)	(0.042)	(0.045)	(0.064)	(0.052)		(0.056)	(0.032)	(0.037)	(0.060)	(0.052)
Exports dummy			0.023						0.016			
			(0.072)						(0.063)			
Medium size			0.117	0.121	0.012				0.103	0.106	-0.018	
			(0.074)	(0.086)	(0.040)				(0.072)	(0.083)	(0.034)	
Big size			0.215**	0.219**	0.175**				0.133**	0.141**	0.083	
a			(0.085)	(0.090)	(0.083)				(0.053)	(0.072)	(0.063)	0.050*
Commercialization						0.097**						0.079*
Change						(0.045)						(0.014)
				0.100**	0 100***	(0.045)				0.049	0.000	(0.044)
Labor cost Growth				-0.133***	-0.138****	-0.140				-0.043	-0.000	0.000
				(0.052)	(0.050)	(0.052)				(0.083)	(0.084)	(0.084)
Fixed Assets Growth					-0.781	-0.781					-0.769	-0.769
Number of firms	0010	0019	0019	914E	(0.117)	(0.117)	8101	9101	9101	8071	(0.125)	(0.125)
Number of firms	8213	8213 stad in hea	8213	8140	8121	8121	8101	8101	8101	8071	8047	8047
Robust standard error	s are repor	teu in bra	ckets. All r	egressions	include indi	istry dumm	ies.					

Significance at the *** 1%, **5% and * 10% level.

 Table 4: Manufacturing firms. IV estimations by Type of Labor (Skilled and Unskilled).
 Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

			Skilled	Employme	ont		1	U	nskilled F	mployme	nt	
	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(2)	(3)	(4)	(5)	(6)
Constant	0.411	0.411	0.409	0.410	-0.177	0.392	0.212	0.212	0.196	0.178	0.175	0.204
Constant	(0.905)	(0.906)	(0.906)	(0.905)	(0.644)	(0.906)	(0.402)	(0.403)	(0.405)	(0.404)	(0.405)	(0.404)
Process Innovation	-0.062	-0.062	-0.061	-0.057	-0.058	-0.059	-0.015	-0.014	-0.015	-0.013	-0.013	-0.017
Only	0.002	0.002	0.001	0.001	0.000	0.000	0.010	0.011	0.010	0.010	0.010	0.011
omj	(0.045)	(0.046)	(0.046)	(0.046)	(0.046)	(0.046)	(0.029)	(0.029)	(0.029)	(0.029)	(0.029)	(0.029)
Sales growth dt new	0.441**	0.450**	0.459**	0.459**	0.457**	0.454**	0.418***	0.423***	0.421***	0.418***	0.418***	0.413***
products				01200	01201	01-0				0		0
Producto	(0.194)	(0.194)	(0.194)	(0.194)	(0.194)	(0.194)	(0.126)	(0.126)	(0.126)	(0.126)	(0.126)	(0.126)
Located in the capi-	(0.202)	-0.012	-0.007	-0.003	-0.005	-0.009	(0.220)	0.002	0.002	-0.000	-0.001	-0.001
tal												
		(0.044)	(0.044)	(0.044)	(0.044)	(0.044)		(0.028)	(0.028)	(0.028)	(0.028)	(0.028)
Foreign Owned		-0.036	-0.074	-0.068	-0.064	-0.037		-0.003	-0.013	-0.015	-0.015	0.001
0		(0.066)	(0.071)	(0.069)	(0.069)	(0.066)		(0.043)	(0.046)	(0.045)	(0.045)	(0.043)
Exports dummy		()	0.040	. ,	()	· /		· /	-0.024	. ,	. ,	· /
			(0.049)						(0.031)			
Medium size			0.034	0.040	0.039				-0.028	-0.034	-0.035	
			(0.049)	(0.048)	(0.048)				(0.031)	(0.030)	(0.030)	
Big size			0.064	0.078	0.077				0.045	0.035	0.034	
			(0.063)	(0.059)	(0.059)				(0.040)	(0.037)	(0.037)	
Commercialization						0.010						0.032
Change												
						(0.047)						(0.030)
Labor cost Growth				-0.103***	-0.102***	-0.103***				0.025	0.025	0.026
				(0.029)	(0.029)	(0.029)				(0.029)	(0.029)	(0.029)
Fixed Assets Growth					0.027	0.027					0.003	0.003
					(0.017)	(0.017)					(0.009)	(0.009)
Number of firms	3795	3795	3795	3783	3776	3776	3747	3747	3747	3736	3728	3728
Sargan test	4.237	5.010	4.307	4.051	3.993	4.433	1.912	2.289	2.226	2.022	2.097	1.892
P-value	0.237	0.171	0.230	0.256	0.262	0.218	0.591	0.515	0.527	0.568	0.552	0.595
Durbin-Wu-	0.783	0.886	0.973	0.995	0.974	0.947	1.931	2.064	1.977	1.927	1.921	1.845
Hausman test												
P-value	0.376	0.347	0.324	0.319	0.324	0.331	0.165	0.151	0.160	0.165	0.166	0.174
Robust standard error	s are repo	orted in b	rackets. A	ll regression	ns include in	ndustry dun	nmies.					
Significance at the ***	* 1%, **5	% and * 1	0% level.									
instruments used are o	client, inn	ovation in	tensity in	teracted wit	th increased	market sha	are, increas	ed range a	nd obstacle	s to innova	tion	
Source: Authors' estin	nations.											

Table 5: Manufacturing firms. OLS estimations by Type of sector (low-Tech and High-Tech).Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

						Low-	Tech					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Constant	-0.174	-0.187	-0.243	-0.178	-0.185	-0.226	-0.183	-0.198	-0.247	-0.188	-0.196	-0.230
D I	(0.183)	(0.185)	(0.185)	(0.191)	(0.188)	(0.193)	(0.177)	(0.179)	(0.182)	(0.185)	(0.182)	(0.189)
Only Innovation	-0.035	-0.032	-0.045	-0.024	-0.029	-0.041	-0.033	-0.031	-0.044	-0.020	-0.026	-0.040
Sales growth dt new	(0.033)	(0.034) 0.623***	(0.034)	(0.029)	(0.031)	(0.034) 0.622***	0.616***	(0.034)	(0.035)	(0.030)	(0.031)	(0.034) 0.618***
products	0.025	0.025	0.015	0.024	0.025	0.022	0.010	0.015	0.010	0.015	0.015	0.010
1	(0.065)	(0.065)	(0.064)	(0.065)	(0.065)	(0.063)	(0.065)	(0.065)	(0.064)	(0.065)	(0.065)	(0.064)
Located in the capi-		0.026	0.030	0.025	0.026	0.031		0.027	0.031	0.026	0.027	0.031
tal		()	()	(()	()		()	()	()	()	()
		(0.026)	(0.026)	(0.027)	(0.026)	(0.026)		(0.026)	(0.026)	(0.027)	(0.026)	(0.026)
Foreign Owned		(0.014)	(0.022)	(0.015)	(0.014)	-0.034 (0.041)		(0.014)	(0.022)	(0.016)	(0.014)	-0.033
Exports dummy		(0.001)	-0.044	(0.001)	(0.001)	(01011)		(0.001)	-0.045	(0.000)	(0.001)	(0.011)
Medium size			(0.010) (0.054) (0.036)			0.043 (0.029)			(0.010) (0.053) (0.036)			0.043 (0.029)
Big size			(0.060) (0.067)			(0.023) (0.053)			(0.067)			(0.020) (0.137^{**}) (0.054)
Organizational change			()	-0.023		()			(****)	-0.029		()
0				(0.033)						(0.033)		
commercialization Change					-0.012						-0.016	
					(0.040)						(0.041)	
Labor cost Growth						-0.225* (0.117)						-0.225* (0.117)
Fixed Assets Crowth						(0.117)						(0.117)
Fixed Assets Glowth						(0.024)						(0.024)
Process and Product						(0.021)	0.046	0.050	0.023	0.061*	0.054	0.024
Innovation												
							(0.034)	(0.035)	(0.038)	(0.036)	(0.036)	(0.037)
Number of firms	4217	4217	4217	4217	4217	4203	4217	4217	4217	4217	4217	4203
						high	-tecn					
	(13)	(14)	(15)	(16)	(17)	(18)	(10)	(20)	(21)	(22)	(22)	(24)
Constant	(13) 0.251	(14) 0.272	(15) 0.305	(16) 0.209	(17) 0.249	(18)	(19) 0.238	(20) 0.259	(21) 0.294	(22) 0.210	(23) 0.242	(24)
Constant	(13) 0.251 (0.583)	(14) 0.272 (0.580)	(15) 0.305 (0.577)	(16) 0.209 (0.585)	(17) 0.249 (0.549)	(18) -0.284 (0.234)	(19) 0.238 (0.584)	(20) 0.259 (0.581)	(21) 0.294 (0.577)	(22) 0.210 (0.585)	(23) 0.242 (0.557)	(24) -0.281 (0.236)
Constant Process Innovation Only	$(13) \\ 0.251 \\ (0.583) \\ 0.097$	$(14) \\ 0.272 \\ (0.580) \\ 0.076$	$(15) \\ 0.305 \\ (0.577) \\ 0.043$	$(16) \\ 0.209 \\ (0.585) \\ 0.046$	$(17) \\ 0.249 \\ (0.549) \\ 0.054$	(18) -0.284 (0.234) -0.042	$(19) \\ 0.238 \\ (0.584) \\ 0.111$	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \end{array}$	$(21) \\ 0.294 \\ (0.577) \\ 0.054$	$\begin{array}{c} (22) \\ 0.210 \\ (0.585) \\ 0.064 \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \end{array}$	(24) -0.281 (0.236) -0.036
Constant Process Innovation Only	$(13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110)$	$(14) \\ 0.272 \\ (0.580) \\ 0.076 \\ (0.089)$	$(15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067)$	$(16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075)$	$(17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081)$	$(18) -0.284 \\ (0.234) \\ -0.042 \\ (0.039)$	$(19) \\ 0.238 \\ (0.584) \\ 0.111 \\ (0.116)$	$\begin{array}{r} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ (0.094) \end{array}$	$\begin{array}{r} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \end{array}$	$\begin{array}{r} (22) \\ 0.210 \\ (0.585) \\ 0.064 \\ (0.083) \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \end{array}$	$\begin{array}{r} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ (0.041) \end{array}$
Constant Process Innovation Only Sales growth dt new	(13) 0.251 (0.583) 0.097 (0.110) 0.231****	$(14) \\ 0.272 \\ (0.580) \\ 0.076 \\ (0.089) \\ 0.233^{***}$	$(15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***}$	$(16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***}$	$(17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081) \\ 0.232^{***}$	$(18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218****	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ \end{array} \\ (0.094) \\ 0.221^{***} \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \end{array}$	$\begin{array}{c} (22) \\ 0.210 \\ (0.585) \\ 0.064 \\ (0.083) \\ 0.221^{***} \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \end{array}$	$\begin{array}{c} (24) \\ -0.281 \\ (0.236) \\ -0.036 \\ (0.041) \\ 0.214^{***} \end{array}$
Constant Process Innovation Only Sales growth dt new products	$(13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084)$	$\begin{array}{c} (14) \\ 0.272 \\ (0.580) \\ 0.076 \\ (0.089) \\ 0.233^{***} \\ (0.086) \end{array}$	$(15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087)$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \end{array}$	$(17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081) \\ 0.232^{***} \\ (0.086)$	$(18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075)$	$(19) \\ 0.238 \\ (0.584) \\ 0.111 \\ (0.116) \\ 0.218^{***} \\ (0.077) \\ (0.077) \\ (10) \\ (0.077) \\ $	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ (0.094) \\ 0.221^{***} \\ (0.070) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.082) \end{array}$	(22) 0.210 (0.585) 0.064 (0.083) 0.221*** (0.070)	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.070) \end{array}$	$\begin{array}{c} (24) \\ -0.281 \\ (0.236) \\ -0.036 \\ (0.041) \\ 0.214^{***} \\ (0.072) \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi-	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	(14) 0.272 (0.580) 0.076 (0.089) 0.233*** (0.086) -0.168	(15) 0.305 (0.577) 0.043 (0.067) 0.231*** (0.087) -0 165	(16) 0.209 (0.585) 0.046 (0.075) 0.232*** (0.085) -0.167	$\begin{array}{c} (17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081) \\ 0.232^{***} \\ (0.086) \\ -0.167 \end{array}$	(18) -0.284 (0.234) -0.042 (0.039) 0.218*** (0.075) 0.052	$\begin{array}{c} (19) \\ 0.238 \\ (0.584) \\ 0.111 \\ (0.116) \\ 0.218^{***} \\ (0.077) \end{array}$	(20) 0.259 (0.581) 0.090 (0.094) 0.221*** (0.079) -0 165	(21) 0.294 (0.577) 0.054 (0.070) 0.223*** (0.083) -0.164	(22) 0.210 (0.585) 0.064 (0.083) 0.221*** (0.079) -0.165	(23) 0.242 (0.557) 0.071 (0.088) 0.221*** (0.079) -0.165	$\begin{array}{c} (24) \\ -0.281 \\ (0.236) \\ -0.036 \\ (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	(14) 0.272 (0.580) 0.076 (0.089) 0.233*** (0.086) -0.168	$\begin{array}{c} (15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087) \\ -0.165 \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \end{array}$	$\begin{array}{c} (17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081) \\ 0.232^{***} \\ (0.086) \\ -0.167 \end{array}$	$\begin{array}{c} (18) \\ \hline -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	(20) 0.259 (0.581) 0.090 (0.094) 0.221*** (0.079) -0.165	(21) 0.294 (0.577) 0.054 (0.070) 0.223*** (0.083) -0.164	$\begin{array}{c} (22)\\ 0.210\\ (0.585)\\ 0.064\\ (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ \end{array}$	(23) 0.242 (0.557) 0.071 (0.088) 0.221*** (0.079) -0.165	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ \hline (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal	$\begin{array}{c} (13)\\ \hline 0.251\\ (0.583)\\ 0.097\\ \hline (0.110)\\ 0.231^{***}\\ (0.084) \end{array}$	$\begin{array}{c} (14) \\ 0.272 \\ (0.580) \\ 0.076 \\ (0.089) \\ 0.233^{***} \\ (0.086) \\ -0.168 \\ (0.177) \end{array}$	$\begin{array}{c} (15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087) \\ -0.165 \\ (0.174) \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \end{array}$	$\begin{array}{r} (17) \\ \hline 0.249 \\ (0.549) \\ 0.054 \\ \hline (0.081) \\ 0.232^{***} \\ (0.086) \\ -0.167 \\ \hline (0.177) \end{array}$	(18) -0.284 (0.234) -0.042 (0.039) 0.218*** (0.075) 0.052 (0.037)	$(19) \\0.238 \\(0.584) \\0.111 \\(0.116) \\0.218^{***} \\(0.077)$	$\begin{array}{c} (20) \\ \hline 0.259 \\ (0.581) \\ 0.090 \\ \hline (0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \end{array}$	$\begin{array}{c} (22) \\ \hline 0.210 \\ (0.585) \\ 0.064 \\ \hline (0.083) \\ 0.221^{***} \\ \hline (0.079) \\ -0.165 \\ \hline (0.176) \end{array}$	$\begin{array}{c} (23) \\ \hline 0.242 \\ (0.557) \\ 0.071 \\ \hline (0.088) \\ 0.221^{***} \\ \hline (0.079) \\ -0.165 \\ \hline (0.176) \end{array}$	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ (0.037) \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned	$\begin{array}{c} (13)\\ \hline 0.251\\ (0.583)\\ 0.097\\ (0.110)\\ 0.231^{***}\\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ \end{array}$	$\begin{array}{c} (15)\\ 0.305\\ (0.577)\\ 0.043\\ (0.067)\\ 0.231^{***}\\ (0.087)\\ -0.165\\ (0.174)\\ -0.035\\ \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \end{array}$	$\begin{array}{c} (17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081) \\ 0.232^{***} \\ (0.086) \\ -0.167 \\ (0.177) \\ 0.079 \end{array}$	$\begin{array}{c} (18) \\ \hline & \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20)\\ \hline 0.259\\ (0.581)\\ 0.090\\ \hline (0.094)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ \hline (0.176)\\ 0.076\\ \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \end{array}$	$\begin{array}{c} (22)\\ \hline 0.210\\ (0.585)\\ 0.064\\ \hline (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ \hline (0.176)\\ 0.075\\ \end{array}$	$\begin{array}{c} (23)\\ \hline 0.242\\ (0.557)\\ 0.071\\ \hline (0.088)\\ 0.221^{***}\\ \hline (0.079)\\ -0.165\\ \hline (0.176)\\ 0.074\\ \end{array}$	(24) -0.281 (0.236) -0.036 (0.041) 0.214*** (0.073) 0.052 (0.037) -0.189*
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Example to b	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ (0.090)\\ \end{array}$	$\begin{array}{c} (15) \\ \hline 0.305 \\ (0.577) \\ 0.043 \\ \hline 0.231^{***} \\ (0.087) \\ -0.165 \\ \hline (0.174) \\ -0.035 \\ (0.030) \\ 0.05 \\ \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \end{array}$	$\begin{array}{c} (17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081) \\ 0.232^{***} \\ (0.086) \\ -0.167 \\ (0.177) \\ 0.079 \\ (0.089) \end{array}$	$\begin{array}{c} (18) \\ \hline & \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \end{array}$	$(19) \\ 0.238 \\ (0.584) \\ 0.111 \\ (0.116) \\ 0.218^{***} \\ (0.077)$	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ \end{array} \\ (0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ (0.030) \\ 0.992 \end{array}$	$\begin{array}{c} (22)\\ 0.210\\ (0.585)\\ 0.064\\ (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ (0.176)\\ 0.075\\ (0.087)\\ \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \end{array}$	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ (0.037) \\ -0.189^{*} \\ (0.104) \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	(14) 0.272 (0.580) 0.076 (0.089) 0.233*** (0.086) -0.168 (0.177) 0.082 (0.090)	(15) 0.305 (0.577) 0.043 (0.067) 0.231*** (0.087) -0.165 (0.174) -0.035 (0.030) 0.085 (0.120)	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \end{array}$	$\begin{array}{c} (17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081) \\ 0.232^{***} \\ (0.086) \\ -0.167 \\ (0.177) \\ 0.079 \\ (0.089) \end{array}$	$\begin{array}{c} (18) \\ \hline & (12) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ (0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	(21) 0.294 (0.577) 0.054 (0.070) 0.223*** (0.083) -0.164 (0.174) -0.032 (0.030) 0.080 (0.109)	$\begin{array}{c} (22)\\ 0.210\\ (0.585)\\ 0.064\\ (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ (0.176)\\ 0.075\\ (0.087) \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \end{array}$	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ (0.037) \\ -0.189^{*} \\ (0.104) \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ (0.090) \end{array}$	$\begin{array}{c} (15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087) \\ -0.165 \\ (0.174) \\ -0.035 \\ (0.030) \\ 0.085 \\ (0.120) \\ 0.176 \end{array}$	(16) 0.209 (0.585) 0.046 (0.075) 0.232*** (0.085) -0.167 (0.177) 0.080 (0.089)	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089) \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ (0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	(21) 0.294 (0.577) 0.054 (0.070) 0.223*** (0.083) -0.164 (0.174) -0.032 (0.030) 0.080 (0.119) 0.171	$\begin{array}{c} (22)\\ 0.210\\ (0.585)\\ 0.064\\ (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ (0.176)\\ 0.075\\ (0.087) \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \end{array}$	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ \hline (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ (0.037) \\ -0.189^{*} \\ (0.104) \\ \hline 0.020 \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ (0.090)\\ \end{array}$	$\begin{array}{c} (15)\\ 0.305\\ (0.577)\\ 0.043\\ (0.067)\\ 0.231^{***}\\ (0.087)\\ -0.165\\ (0.174)\\ -0.035\\ (0.030)\\ 0.085\\ (0.120)\\ 0.176\\ (0.139)\\ \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \end{array}$	$\begin{array}{c} (17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081) \\ 0.232^{***} \\ (0.086) \\ -0.167 \\ (0.177) \\ 0.079 \\ (0.089) \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline 0.023 \\ (0.036) \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ (0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	(21) 0.294 (0.577) 0.054 (0.070) 0.223*** (0.083) -0.164 (0.174) -0.032 (0.030) 0.080 (0.119) 0.171 (0.138)	(22) 0.210 (0.585) 0.064 (0.083) 0.221*** (0.079) -0.165 (0.176) 0.075 (0.087)	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \end{array}$	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ \hline (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ \hline (0.037) \\ -0.189^{*} \\ (0.104) \\ \hline \\ 0.020 \\ (0.036) \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ (0.090) \end{array}$	$\begin{array}{c} (15)\\ 0.305\\ (0.577)\\ 0.043\\ (0.067)\\ 0.231^{***}\\ (0.087)\\ -0.165\\ (0.174)\\ -0.035\\ (0.030)\\ 0.085\\ (0.120)\\ 0.176\\ (0.139)\\ 0.186^{**} \end{array}$	(16) 0.209 (0.585) 0.046 (0.075) 0.232*** (0.085) -0.167 (0.177) 0.080 (0.089)	$\begin{array}{c} (17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081) \\ 0.232^{***} \\ (0.086) \\ -0.167 \\ (0.177) \\ 0.079 \\ (0.089) \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline \\ 0.023 \\ (0.036) \\ 0.223^{**} \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ (0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.080 \\ (0.119) \\ 0.171 \\ (0.138) \\ 0.173^{**} \end{array}$	$\begin{array}{c} (22)\\ 0.210\\ (0.585)\\ 0.064\\ (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ (0.176)\\ 0.075\\ (0.087) \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \end{array}$	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ \hline (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ (0.037) \\ -0.189^{*} \\ (0.104) \\ \hline \\ 0.020 \\ (0.036) \\ 0.216^{*} \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ (0.090) \end{array}$	$\begin{array}{c} (15)\\ 0.305\\ (0.577)\\ 0.043\\ (0.067)\\ 0.231^{***}\\ (0.087)\\ -0.165\\ (0.174)\\ -0.035\\ (0.030)\\ 0.085\\ (0.120)\\ 0.176\\ (0.139)\\ 0.186^{**}\\ (0.091) \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \end{array}$	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089) \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.080 \\ (0.119) \\ 0.171 \\ (0.138) \\ 0.173^{**} \\ (0.088) \end{array}$	(22) 0.210 (0.585) 0.064 (0.083) 0.221*** (0.079) -0.165 (0.075 (0.087)	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \end{array}$	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ (0.037) \\ -0.189^{*} \\ (0.104) \\ \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	(14) 0.272 (0.580) 0.076 (0.089) 0.233*** (0.086) -0.168 (0.177) 0.082 (0.090)	$\begin{array}{c} (15)\\ 0.305\\ (0.577)\\ 0.043\\ (0.067)\\ 0.231^{***}\\ (0.087)\\ -0.165\\ (0.174)\\ -0.035\\ (0.030)\\ 0.085\\ (0.120)\\ 0.176\\ (0.139)\\ 0.186^{**}\\ (0.091) \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \\ \end{array}$	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089) \end{array}$	$\begin{array}{c} (18) \\ \hline & (18) \\ \hline & (0.284) \\ (0.034) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline & 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \\ \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ (0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.032 \\ (0.139) \\ 0.171 \\ (0.138) \\ 0.173^{**} \\ (0.088) \end{array}$	$\begin{array}{c} (22)\\ 0.210\\ (0.585)\\ 0.064\\ (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ (0.079)\\ 0.075\\ (0.087)\\ \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \end{array}$	$\begin{array}{c} (24)\\ \hline -0.281\\ (0.236)\\ -0.036\\ \hline (0.041)\\ 0.214^{***}\\ (0.073)\\ 0.052\\ \hline (0.073)\\ -0.189^{*}\\ (0.104)\\ \hline \\ 0.020\\ (0.036)\\ 0.216^{*}\\ (0.114)\\ \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ (0.090) \end{array}$	$\begin{array}{c} (15)\\ 0.305\\ (0.577)\\ 0.043\\ (0.067)\\ 0.231^{***}\\ (0.087)\\ -0.165\\ (0.035)\\ (0.174)\\ -0.035\\ (0.030)\\ 0.085\\ (0.120)\\ 0.176\\ (0.139)\\ 0.186^{**}\\ (0.091)\\ \end{array}$	(16) 0.209 (0.585) 0.046 (0.075) 0.232*** (0.085) -0.167 (0.177) 0.080 (0.089) 0.094* (0.051)	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089) \end{array}$	$\begin{array}{c} (18) \\ \hline & (18) \\ \hline & -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline & 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.080 \\ (0.119) \\ 0.171 \\ (0.138) \\ 0.173^{**} \\ (0.088) \end{array}$	(22) 0.210 (0.585) 0.064 (0.083) 0.221*** (0.079) -0.165 (0.176) 0.075 (0.087) 0.074*	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \end{array}$	$\begin{array}{c} (24)\\ \hline -0.281\\ (0.236)\\ -0.036\\ (0.041)\\ 0.214^{***}\\ (0.073)\\ 0.052\\ (0.037)\\ -0.189^{*}\\ (0.104)\\ \hline \\ 0.020\\ (0.036)\\ 0.216^{*}\\ (0.114)\\ \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change commercialization	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ (0.090) \end{array}$	$\begin{array}{c} (15)\\ 0.305\\ (0.577)\\ 0.043\\ (0.067)\\ 0.231^{***}\\ (0.087)\\ -0.165\\ (0.174)\\ -0.035\\ (0.030)\\ 0.085\\ (0.120)\\ 0.176\\ (0.139)\\ 0.186^{**}\\ (0.091) \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \\ \end{array}$	$\begin{array}{c} (17) \\ 0.249 \\ (0.549) \\ 0.054 \\ (0.081) \\ 0.232^{***} \\ (0.086) \\ -0.167 \\ (0.177) \\ 0.079 \\ (0.089) \end{array}$	$\begin{array}{c} (18) \\ \hline & (18) \\ \hline & -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline & 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ (0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.080 \\ (0.119) \\ 0.171 \\ (0.138) \\ 0.173^{**} \\ (0.088) \end{array}$	$\begin{array}{c} (22)\\ 0.210\\ (0.585)\\ 0.064\\ (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ (0.176)\\ 0.075\\ (0.087)\\ \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \end{array}$	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ \hline (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ \hline (0.037) \\ -0.189^{*} \\ (0.104) \\ \hline 0.020 \\ (0.036) \\ 0.216^{*} \\ (0.114) \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	(14) 0.272 (0.580) 0.076 (0.089) 0.233*** (0.086) -0.168 (0.177) 0.082 (0.090)	$\begin{array}{c} (15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087) \\ -0.165 \\ (0.174) \\ -0.035 \\ (0.130) \\ 0.085 \\ (0.120) \\ 0.176 \\ (0.139) \\ 0.186^{**} \\ (0.091) \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \\ \end{array}$	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089)\\ \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ (0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.080 \\ (0.119) \\ 0.171 \\ (0.138) \\ 0.173^{**} \\ (0.088) \end{array}$	$\begin{array}{c} (22)\\ 0.210\\ (0.585)\\ 0.064\\ (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ (0.176)\\ 0.075\\ (0.087)\\ \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \end{array}$	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ \hline (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ \hline (0.037) \\ -0.189^{*} \\ (0.104) \\ \hline 0.020 \\ (0.036) \\ 0.216^{*} \\ (0.114) \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ (0.090) \end{array}$	$\begin{array}{c} (15)\\ 0.305\\ (0.577)\\ 0.043\\ (0.067)\\ 0.231^{***}\\ (0.087)\\ -0.165\\ (0.174)\\ -0.035\\ (0.030)\\ 0.085\\ (0.120)\\ 0.176\\ (0.139)\\ 0.186^{**}\\ (0.091)\\ \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ 0.080 \\ (0.089) \\ \end{array}$	(17) 0.249 (0.549) 0.054 (0.081) 0.232*** (0.086) -0.167 (0.177) 0.079 (0.089) 0.091** (0.043)	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ (0.094) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.080 \\ (0.119) \\ 0.171 \\ (0.138) \\ 0.173^{**} \\ (0.088) \end{array}$	$\begin{array}{c} (22)\\ 0.210\\ (0.585)\\ 0.064\\ (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ (0.176)\\ 0.075\\ (0.087)\\ \end{array}$	(23) 0.242 (0.557) 0.071 (0.088) 0.221*** (0.079) -0.165 (0.176) 0.074 (0.087) 0.071* (0.087)	$\begin{array}{c} (24) \\ \hline -0.281 \\ (0.236) \\ -0.036 \\ \hline (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ \hline (0.037) \\ -0.189^{*} \\ (0.104) \\ \hline \\ 0.020 \\ (0.036) \\ 0.216^{*} \\ (0.114) \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change Labor cost Growth	$\begin{array}{c} (13)\\ 0.251\\ (0.583)\\ 0.097\\ (0.110)\\ 0.231^{***}\\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ (0.090)\\ \end{array}$	$\begin{array}{c} (15)\\ 0.305\\ (0.577)\\ 0.043\\ (0.067)\\ 0.231^{***}\\ (0.087)\\ -0.165\\ (0.174)\\ -0.035\\ (0.030)\\ 0.085\\ (0.120)\\ 0.176\\ (0.139)\\ 0.186^{**}\\ (0.091)\\ \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \\ \end{array}$	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089)\\ \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \\ \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	$\begin{array}{c} (20) \\ 0.259 \\ (0.581) \\ 0.090 \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.076 \\ (0.087) \end{array}$	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.080 \\ (0.119) \\ 0.171 \\ (0.138) \\ 0.173^{**} \\ (0.088) \end{array}$	(22) 0.210 (0.585) 0.064 (0.083) 0.221*** (0.079) -0.165 (0.176) 0.075 (0.087) 0.074* (0.044)	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \\ \end{array}$	(24) -0.281 (0.236) -0.036 (0.041) 0.214*** (0.073) 0.052 (0.037) -0.189* (0.104) 0.020 (0.036) 0.216* (0.114)
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change Labor cost Growth	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	$\begin{array}{c} (14)\\ 0.272\\ (0.580)\\ 0.076\\ (0.089)\\ 0.233^{***}\\ (0.086)\\ -0.168\\ (0.177)\\ 0.082\\ (0.090) \end{array}$	$\begin{array}{c} (15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087) \\ -0.165 \\ (0.174) \\ -0.035 \\ (0.030) \\ 0.085 \\ (0.120) \\ 0.176 \\ (0.139) \\ 0.186^{**} \\ (0.091) \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \\ \end{array}$	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089)\\ \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \\ \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	(20) 0.259 (0.581) 0.094) 0.221*** (0.079) -0.165 (0.076) (0.087)	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.030 \\ (0.119) \\ 0.171 \\ (0.138) \\ 0.173^{**} \\ (0.088) \end{array}$	(22) 0.210 (0.585) 0.064 (0.083) 0.221*** (0.079) -0.165 (0.176) 0.075 (0.087) 0.074* (0.044)	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \\ \end{array}$	$\begin{array}{c} (24) \\ \hline & -0.281 \\ (0.236) \\ -0.036 \\ \hline & (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ \hline & (0.073) \\ -0.189^{*} \\ (0.104) \\ \hline & 0.020 \\ (0.036) \\ 0.216^{*} \\ (0.114) \\ \hline & -0.041 \\ (0.106) \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change Labor cost Growth Fixed Assets Growth	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	(14) 0.272 (0.580) 0.076 (0.089) 0.233*** (0.086) -0.168 (0.177) 0.082 (0.090)	$\begin{array}{c} (15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087) \\ -0.165 \\ (0.174) \\ -0.035 \\ (0.030) \\ 0.085 \\ (0.120) \\ 0.176 \\ (0.139) \\ 0.186^{**} \\ (0.091) \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \\ \end{array}$	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089)\\ \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ \hline 0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \\ \hline \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	(20) 0.259 (0.581) 0.090 (0.094) 0.221*** (0.079) -0.165 (0.176) 0.076 (0.087)	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.032 \\ (0.130) \\ 0.171 \\ (0.138) \\ 0.173^{**} \\ (0.088) \end{array}$	$\begin{array}{c} (22)\\ 0.210\\ (0.585)\\ 0.064\\ (0.083)\\ 0.221^{***}\\ (0.079)\\ -0.165\\ (0.176)\\ 0.075\\ (0.087)\\ \end{array}$	$\begin{array}{c} (23) \\ 0.242 \\ (0.557) \\ 0.071 \\ (0.088) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.074 \\ (0.087) \\ \end{array}$	(24) -0.281 (0.236) -0.036 (0.041) 0.214*** (0.073) 0.052 (0.037) -0.189* (0.104) 0.020 (0.036) 0.216* (0.114) -0.041 (0.106) -0.664***
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change Labor cost Growth Fixed Assets Growth Process and Product	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	(14) 0.272 (0.580) 0.076 (0.089) 0.233*** (0.086) -0.168 (0.177) 0.082 (0.090)	$\begin{array}{c} (15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087) \\ -0.165 \\ (0.174) \\ -0.035 \\ (0.030) \\ 0.085 \\ (0.120) \\ 0.176 \\ (0.139) \\ 0.186^{**} \\ (0.091) \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \\ \end{array}$	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089)\\ \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \\ \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	(20) 0.259 (0.581) 0.090 (0.094) 0.221*** (0.079) -0.165 (0.176) 0.076 (0.087)	(21) 0.294 (0.577) 0.054 (0.070) 0.223*** (0.083) -0.164 (0.174) -0.032 (0.030) 0.080 (0.119) 0.173** (0.088)	(22) 0.210 (0.585) 0.064 (0.083) 0.221*** (0.079) -0.165 (0.176) 0.075 (0.087) 0.074* (0.044)	(23) 0.242 (0.557) 0.071 (0.088) 0.221*** (0.079) -0.165 (0.176) 0.074 (0.087) 0.071* (0.037)	$\begin{array}{c} (24) \\ \hline (0.281) \\ (0.236) \\ -0.036 \\ \hline (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ \hline (0.073) \\ 0.052 \\ \hline (0.037) \\ -0.189^{*} \\ (0.104) \\ \hline \\ 0.020 \\ (0.036) \\ 0.216^{*} \\ \hline (0.114) \\ \hline \\ 0.020 \\ (0.036) \\ -0.864^{***} \\ (0.041) \\ 0.077 \\ \hline \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change Labor cost Growth Fixed Assets Growth Process and Product Innovation	$\begin{array}{c} (13) \\ 0.251 \\ (0.583) \\ 0.097 \\ (0.110) \\ 0.231^{***} \\ (0.084) \end{array}$	(14) 0.272 (0.580) 0.076 (0.089) 0.233*** (0.086) -0.168 (0.177) 0.082 (0.090)	$\begin{array}{c} (15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087) \\ -0.165 \\ (0.174) \\ -0.035 \\ (0.030) \\ 0.085 \\ (0.120) \\ 0.176 \\ (0.139) \\ 0.186^{**} \\ (0.091) \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \\ \end{array}$	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089)\\ \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \\ \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077)	(20) 0.259 (0.581) 0.090 (0.094) 0.221*** (0.079) -0.165 (0.176) 0.076 (0.087) 0.087)	$\begin{array}{c} (21) \\ 0.294 \\ (0.577) \\ 0.054 \\ (0.070) \\ 0.223^{***} \\ (0.083) \\ -0.164 \\ (0.174) \\ -0.032 \\ (0.030) \\ 0.080 \\ (0.119) \\ 0.171 \\ (0.138) \\ 0.173^{**} \\ (0.088) \end{array}$	$\begin{array}{c} (22) \\ 0.210 \\ (0.585) \\ 0.064 \\ (0.083) \\ 0.221^{***} \\ (0.079) \\ -0.165 \\ (0.176) \\ 0.075 \\ (0.087) \\ \end{array}$	(23) 0.242 (0.557) 0.071 (0.088) 0.221*** (0.079) -0.165 (0.176) 0.074 (0.087) 0.071* (0.037) 0.218**	$\begin{array}{c} (24)\\ \hline (0.281)\\ (0.236)\\ -0.036\\ \hline (0.041)\\ 0.214^{***}\\ (0.073)\\ 0.052\\ \hline (0.037)\\ -0.189^{*}\\ (0.104)\\ \hline 0.020\\ (0.036)\\ 0.216^{*}\\ (0.114)\\ \hline 0.020\\ (0.036)\\ -0.864^{***}\\ (0.041)\\ 0.077\\ \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change Labor cost Growth Fixed Assets Growth Process and Product Innovation	(13) 0.251 (0.583) 0.097 (0.110) 0.231*** (0.084)	(14) 0.272 (0.580) 0.076 (0.089) 0.233*** (0.086) -0.168 (0.177) 0.082 (0.090)	$\begin{array}{c} (15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087) \\ -0.165 \\ (0.174) \\ -0.035 \\ (0.030) \\ 0.085 \\ (0.120) \\ 0.176 \\ (0.139) \\ 0.186^{**} \\ (0.091) \end{array}$	$\begin{array}{c} (16) \\ 0.209 \\ (0.585) \\ 0.046 \\ (0.075) \\ 0.232^{***} \\ (0.085) \\ -0.167 \\ (0.177) \\ 0.080 \\ (0.089) \\ \end{array}$	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089)\\ \end{array}$	$\begin{array}{c} (18) \\ \hline (18) \\ -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \\ \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077) 0.248** (0.022)	(20) 0.259 (0.581) 0.090 (0.094) 0.221*** (0.079) -0.165 (0.176) 0.076 (0.087) 0.236** (0.109)	(21) 0.294 (0.577) 0.054 (0.070) 0.223*** (0.083) -0.164 (0.174) -0.032 (0.030) 0.080 (0.119) 0.173 (0.138) 0.173** (0.088) 0.163**** (0.062)	(22) 0.210 (0.585) 0.064 (0.083) 0.221*** (0.079) -0.165 (0.176) 0.075 (0.087) 0.074* (0.044) 0.214** (0.100)	(23) 0.242 (0.557) 0.071 (0.088) 0.221*** (0.079) -0.165 (0.176) 0.074 (0.087) 0.071* (0.037) 0.218** (0.103)	$\begin{array}{c} (24) \\ \hline (0.281) \\ (0.236) \\ -0.036 \\ \hline (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ \hline (0.037) \\ -0.189^{*} \\ (0.104) \\ \hline \\ 0.020 \\ (0.036) \\ 0.216^{*} \\ (0.114) \\ \hline \\ 0.020 \\ (0.036) \\ -0.864^{***} \\ (0.041) \\ 0.077 \\ (0.065) \\ \end{array}$
Constant Process Innovation Only Sales growth dt new products Located in the capi- tal Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change Labor cost Growth Fixed Assets Growth Process and Product Innovation Number of firms	(13) 0.251 (0.583) 0.097 (0.110) 0.231*** (0.084)	(14) 0.272 (0.580) 0.076 (0.089) 0.233*** (0.086) -0.168 (0.177) 0.082 (0.090)	$\begin{array}{c} (15) \\ 0.305 \\ (0.577) \\ 0.043 \\ (0.067) \\ 0.231^{***} \\ (0.087) \\ -0.165 \\ (0.174) \\ -0.035 \\ (0.130) \\ 0.085 \\ (0.120) \\ 0.176 \\ (0.139) \\ 0.186^{**} \\ (0.091) \end{array}$	(16) 0.209 (0.585) 0.046 (0.075) 0.232*** (0.085) -0.167 (0.177) 0.080 (0.089) 0.094* (0.051)	$\begin{array}{c} (17)\\ 0.249\\ (0.549)\\ 0.054\\ (0.081)\\ 0.232^{***}\\ (0.086)\\ -0.167\\ (0.177)\\ 0.079\\ (0.089)\\ \end{array}$	$\begin{array}{c} (18) \\ \hline & (18) \\ \hline & -0.284 \\ (0.234) \\ -0.042 \\ (0.039) \\ 0.218^{***} \\ (0.075) \\ 0.052 \\ (0.037) \\ -0.190^{*} \\ (0.104) \\ \hline & 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \\ \hline & 0.023 \\ (0.036) \\ 0.223^{**} \\ (0.111) \\ \hline & 0.041 \\ (0.106) \\ -0.864^{***} \\ (0.041) \\ \hline & 4037 \\ \end{array}$	(19) 0.238 (0.584) 0.111 (0.116) 0.218*** (0.077) 0.248** (0.077)	(20) 0.259 (0.581) 0.090 (0.094) 0.221*** (0.079) -0.165 (0.176) 0.076 (0.087) 0.076 (0.087)	(21) 0.294 (0.577) 0.054 (0.070) 0.223*** (0.083) -0.164 (0.174) -0.032 (0.030) 0.080 (0.119) 0.171 (0.138) 0.173** (0.088) 0.163*** (0.062) 4049	(22) 0.210 (0.585) 0.064 (0.083) 0.221*** (0.079) -0.165 (0.176) 0.075 (0.087) 0.074* (0.044) 0.214** (0.100) 4049	(23) 0.242 (0.557) 0.071 (0.088) 0.221*** (0.079) -0.165 (0.176) 0.074 (0.087) 0.071* (0.037) 0.218** (0.103) 4049	$\begin{array}{c} (24) \\ \hline (0.281) \\ (0.236) \\ -0.036 \\ \hline (0.041) \\ 0.214^{***} \\ (0.073) \\ 0.052 \\ \hline (0.037) \\ -0.189^{*} \\ (0.104) \\ \hline \\ 0.020 \\ (0.036) \\ 0.216^{*} \\ (0.114) \\ \hline \\ 0.020 \\ (0.036) \\ -0.864^{***} \\ (0.041) \\ 0.077 \\ \hline \\ (0.065) \\ 4037 \\ \end{array}$

Significance at the *** 1%, **5% and * 10% level. Source: Authors' estimations.

						low-	Tech					
<u>a</u>	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Constant	-0.000	-0.148	-0.245	-0.137	-0.151	-0.285	(0.021)	-0.069	-0.243	-0.074	-0.072	-0.262
Process Innovation Only	(0.411) 0.102	(0.529)	(0.550) 0.245	(0.552)	(0.529) 0.230	(0.548) 0.248	(0.435) 0.074	(0.544) 0.155	(0.010)	(0.555)	(0.547) 0.158	(0.594) 0.175
1 locess milovation only	(0.143)	(0.199)	(0.245)	(0.197)	(0.199)	(0.240)	(0.132)	(0.164)	(0.182)	(0.165)	(0.166)	(0.180)
Sales growth dt new prod-	2.830	4.641*	4.756*	4.655*	4.645*	4.767*	3.451	5.154	5.785	5.251	5.191	5.574
ucts												
	(1.912)	(2.670)	(2.744)	(2.656)	(2.673)	(2.752)	(2.762)	(3.401)	(3.873)	(3.507)	(3.472)	(3.714)
Located in the capital		0.065	0.072	0.063	0.066	0.066		0.047	0.062	0.048	0.048	0.054
Foncian Owned		(0.057)	(0.059)	(0.057)	(0.057)	(0.058)		(0.056)	(0.063)	(0.057)	(0.056)	(0.060)
Foreign Owned		(0.031)	(0.087)	(0.034)	(0.031)	(0.001)		(0.012)	(0.110)	(0.011)	(0.012)	(0.103)
Exports dummy		(0.000)	0.017	(0.000)	(0.000)	(0.000)		(0.000)	0.036	(0.000)	(0.000)	(0.103)
			(0.057)						(0.069)			
Medium size			-0.022			-0.027			-0.023			-0.022
			(0.062)			(0.061)			(0.070)			(0.065)
Big size			0.090			0.092			0.146			0.152
0			(0.076)	0.007		(0.073)			(0.105)	0.004		(0.105)
Organizational change				-0.027						(0.004)		
commercialization				(0.051)	-0.035					(0.000)	-0.012	
Change					-0.055						-0.012	
					(0.054)						(0.059)	
Labor cost Growth					. /	-0.316***						-0.316***
						(0.109)						(0.120)
Fixed Assets Growth						0.023						0.022
						(0.016)	0 505	0.01	0.055	0.000	0.000	(0.017)
Process and Product In-							-0.507	-0.817	-0.957	-0.836	-0.823	-0.911
novation							(0.518)	(0.637)	(0.736)	(0.662)	(0.651)	(0.704)
Number of firms	1789	1789	1789	1789	1789	1785	1789	1789	1789	1789	1789	1785
Sargan test	1.173	0.493	0.326	0.460	0.543	0.392	1.124	0.700	0.310	0.680	1.297	0.447
P-value	0.760	0.920	0.955	0.928	0.909	0.942	0.771	0.873	0.958	0.878	0.730	0.930
Durbin-Wu-Hausman test	1.776	4.873	5.035	4.994	4.882	5.054	1.607	4.240	4.899	4.279	1.584	4.727
P-value	0.183	0.027	0.025	0.025	0.027	0.025	0.205	0.039	0.027	0.039	0.208	0.030
	(()	()	(High	-Tech	()	()	()	()	(
	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)
Constant	-0.503	-0.511	-0.549	0.307	-0.507	-0.557	0.330	0.329	0.332	-0.557	-0.505	0.336
	(0 500)	(0,600)	(0,600)	(0.494)	(0,500)	(0, 600)	(0.499)	(0.499)	(0.499)	(0,500)	(0,500)	(0.492)
Process Innovation Only	(0.598)	(0.600)	(0.600)	(0.424)	(0.599)	(0.600)	(0.423) 0.018	(0.423) 0.020	(0.423) 0.017	(0.599) 0.012	(0.599) 0.013	(0.423) 0.018
Process Innovation Only	(0.598) -0.006 (0.029)	(0.600) -0.005 (0.029)	(0.600) -0.006 (0.029)	(0.424) -0.012 (0.029)	(0.599) -0.011 (0.029)	(0.600) -0.004 (0.029)	(0.423) 0.018 (0.029)	(0.423) 0.020 (0.029)	(0.423) 0.017 (0.029)	(0.599) 0.012 (0.029)	(0.599) 0.013 (0.029)	(0.423) 0.018 (0.029)
Process Innovation Only Sales growth dt new prod-	(0.598) -0.006 (0.029) 0.260^{***}	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \end{array}$	(0.599) -0.011 (0.029) 0.254^{***}	(0.600) -0.004 (0.029) 0.259^{***}	$\begin{array}{c} (0.423) \\ 0.018 \\ (0.029) \\ 0.262^{***} \end{array}$	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \end{array}$	$\begin{array}{c} (0.423) \\ 0.017 \\ (0.029) \\ 0.256^{***} \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \end{array}$	(0.599) 0.013 (0.029) 0.255^{***}	$\begin{array}{c} (0.423) \\ 0.018 \\ (0.029) \\ 0.260^{***} \end{array}$
Process Innovation Only Sales growth dt new prod- ucts	(0.598) -0.006 (0.029) 0.260^{***}	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \end{array}$	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \end{array}$	$ \begin{array}{c} (0.423) \\ 0.018 \\ (0.029) \\ 0.262^{***} \end{array} $	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \end{array}$	$\begin{array}{c} (0.423) \\ 0.017 \\ (0.029) \\ 0.256^{***} \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \end{array}$	$\begin{array}{c} (0.599) \\ 0.013 \\ (0.029) \\ 0.255^{***} \end{array}$	$\begin{array}{c} (0.423) \\ (0.018) \\ (0.029) \\ 0.260^{***} \end{array}$
Process Innovation Only Sales growth dt new prod- ucts	$(0.598) \\ -0.006 \\ (0.029) \\ 0.260^{***} \\ (0.090)$	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \end{array}$	$(0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ (0.090)$	$\begin{array}{c} (0.423) \\ (0.018) \\ (0.029) \\ 0.262^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.423) \\ 0.017 \\ (0.029) \\ 0.256^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \end{array}$	$\begin{array}{c} (0.599) \\ 0.013 \\ (0.029) \\ 0.255^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.423) \\ (0.423) \\ 0.018 \\ (0.029) \\ 0.260^{***} \\ (0.090) \end{array}$
Process Innovation Only Sales growth dt new prod- ucts Located in the capital	$\begin{array}{c} (0.598) \\ -0.006 \\ (0.029) \\ 0.260^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.020 \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \end{array}$	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.025 \end{array}$	$\begin{array}{c} (0.423) \\ 0.018 \\ (0.029) \\ 0.262^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.021 \end{array}$	$(0.423) \\ 0.017 \\ (0.029) \\ 0.256^{***} \\ (0.090) \\ 0.020$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \end{array}$	$\begin{array}{c} (0.599) \\ 0.013 \\ (0.029) \\ 0.255^{***} \\ (0.090) \\ 0.020 \end{array}$	$\begin{array}{c} (0.423) \\ (0.423) \\ (0.029) \\ 0.260^{***} \\ (0.090) \\ 0.025 \end{array}$
Process Innovation Only Sales growth dt new prod- ucts Located in the capital	$\begin{array}{c} (0.598) \\ -0.006 \\ (0.029) \\ 0.260^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.020 \\ (0.028) \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \\ (0.028) \end{array}$	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.025 \\ (0.028) \end{array}$	$\begin{array}{c} (0.423) \\ (0.423) \\ (0.029) \\ 0.262^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.021 \\ (0.028) \end{array}$	$\begin{array}{c} (0.423) \\ 0.017 \\ (0.029) \\ 0.256^{***} \\ (0.090) \\ 0.020 \\ (0.028) \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \end{array}$	$\begin{array}{c} (0.599) \\ 0.013 \\ (0.029) \\ 0.255^{***} \\ (0.090) \\ 0.020 \\ (0.028) \end{array}$	$\begin{array}{c} (0.423) \\ (0.423) \\ (0.029) \\ 0.260^{***} \\ (0.090) \\ 0.025 \\ (0.028) \end{array}$
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned	(0.598) -0.006 (0.029) 0.260^{***} (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.011) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.011) \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.014) \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.016 \\ (0.011) \end{array}$	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.642) \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090)	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.011) \end{array}$	$\begin{array}{c} (0.423) \\ 0.017 \\ (0.029) \\ 0.256^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.034 \\ (0.044) \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ (0.599) \\ (0.029) \\ (0.255^{***} \\ (0.090) \\ (0.028) \\ (0.028) \\ (0.013) \\ (0.013) \end{array}$	$\begin{array}{c} (0.423) \\ (0.423) \\ (0.029) \\ 0.260^{***} \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.046 \\ (0.012) \end{array}$
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ 0.025 \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.043) \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090)	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423) \\ 0.017 \\ (0.029) \\ 0.256^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.034 \\ (0.044) \\ 0.024 \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599)\\ 0.013\\ (0.029)\\ 0.255^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.018\\ (0.041)\\ \end{array}$	$\begin{array}{c} (0.423) \\ 0.018 \\ (0.029) \\ 0.260^{***} \\ \hline \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.046 \\ (0.043) \end{array}$
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.043) \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090)	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599)\\ 0.013\\ (0.029)\\ 0.255^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.018\\ (0.041)\\ \end{array}$	$\begin{array}{c} (0.423)\\ (0.423)\\ 0.018\\ (0.029)\\ 0.260^{***}\\ (0.090)\\ 0.025\\ (0.028)\\ -0.046\\ (0.043)\\ \end{array}$
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size	(0.598) -0.006 (0.029) 0.260^{***} (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	(0.600) -0.004 (0.029) 0.259*** (0.090) 0.025 (0.028) -0.047 (0.043)	$\begin{array}{c} (0.423) \\ 0.018 \\ (0.029) \\ 0.262^{***} \\ (0.090) \end{array}$	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ \hline \\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ (0.599) \\ 0.013 \\ (0.029) \\ 0.255^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.018 \\ (0.041) \end{array}$	(0.423) 0.018 (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043)
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size	(0.598) -0.006 (0.029) 0.260^{***} (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.043) \\ \end{array}$	$(0.423) \\ 0.018 \\ (0.029) \\ 0.262^{***} \\ (0.090)$	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ \hline \\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ (0.599) \\ 0.013 \\ (0.029) \\ 0.255^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.018 \\ (0.041) \end{array}$	0.423 0.018 (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031)
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.043) \\ \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090)	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ 0.079^*\\ \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	(0.599) 0.013 (0.029) 0.255*** (0.090) 0.020 (0.028) -0.018 (0.041)	(0.423) (0.423) (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066*
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.043) \\ \hline \\ -0.005 \\ (0.031) \\ 0.075^{**} \\ (0.038) \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090)	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.030\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ 0.079^*\\ (0.041)\\ \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	(0.599) 0.013 (0.029) 0.255**** (0.090) 0.020 (0.028) -0.018 (0.041)	(0.423) (0.029) (0.029) (0.029) (0.020) (0.025) (0.028) (-0.046) (0.043) (-0.009) (0.031) (0.066* (0.038)
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \end{array}$	$\begin{array}{c} (0.424)\\ -0.012\\ (0.029)\\ 0.251^{***}\\ (0.090)\\ 0.021\\ (0.028)\\ -0.014\\ (0.041)\\ \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.043) \\ \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090)	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ 0.079^*\\ (0.041)\\ \end{array}$	$\begin{array}{c} (0.599)\\ 0.012\\ (0.029)\\ 0.253^{***}\\ (0.089)\\ 0.021\\ (0.028)\\ -0.016\\ (0.041)\\ \end{array}$	$\begin{array}{c} (0.599) \\ 0.013 \\ (0.029) \\ 0.255^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.018 \\ (0.041) \end{array}$	(0.423) (0.029) (0.029) (0.029) (0.029) (0.025) (0.028) -0.046 (0.043) -0.009 (0.031) (0.066* (0.038)
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.424)\\ -0.012\\ (0.029)\\ 0.251^{***}\\ \end{array}\\ \begin{array}{c} (0.090)\\ 0.021\\ (0.028)\\ -0.014\\ (0.041)\\ \end{array}\\ \begin{array}{c} 0.054^{*}\\ (0.028)\\ \end{array}$	(0.599) -0.011 (0.029) 0.254^{***} (0.090) 0.020 (0.028) -0.016 (0.041)	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.043) \\ \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090)	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ 0.079^*\\ (0.041) \end{array}$	$\begin{array}{c} (0.599)\\ 0.012\\ (0.029)\\ 0.253^{***}\\ (0.089)\\ 0.021\\ (0.028)\\ -0.016\\ (0.041)\\ \end{array}$	$\begin{array}{c} (0.599) \\ 0.013 \\ (0.029) \\ 0.255^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.018 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ (0.423)\\ 0.018\\ (0.029)\\ 0.260^{***}\\ \end{array} \\ \begin{array}{c} (0.090)\\ 0.025\\ (0.028)\\ -0.046\\ (0.043)\\ \end{array} \\ \begin{array}{c} -0.009\\ (0.031)\\ 0.066^{*}\\ (0.038)\\ \end{array}$
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \end{array}$	(0.599) -0.011 (0.029) 0.254^{***} (0.090) 0.020 (0.028) -0.016 (0.041)	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.043) \\ \hline \\ -0.005 \\ (0.031) \\ 0.075^{**} \\ (0.038) \\ \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090)	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ 0.079^*\\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.599) \\ (0.029) \\ 0.255^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.018 \\ (0.041) \\ \end{array}$	(0.423) (0.423) (0.029) (0.260*** (0.090) (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038)
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \end{array}$	(0.599) -0.011 (0.029) 0.254*** (0.090) 0.020 (0.028) -0.016 (0.041) 0.061**	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.043) \\ \hline \\ -0.005 \\ (0.031) \\ 0.075^{**} \\ (0.038) \\ \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090)	(0.423) 0.020 (0.029) 0.259^{***} (0.090) 0.021 (0.028) -0.016 (0.041)	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ 0.079^*\\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.599) \\ (0.599) \\ 0.013 \\ (0.029) \\ 0.255^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.018 \\ (0.041) \\ \end{array}$	(0.423) (0.423) (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038)
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \end{array}$	(0.599) -0.011 (0.029) 0.254*** (0.090) 0.020 (0.028) -0.016 (0.041) 0.061*** (0.030)	(0.600) -0.004 (0.029) 0.259*** (0.090) 0.025 (0.028) -0.047 (0.043) -0.005 (0.031) 0.075** (0.038)	(0.423) 0.018 (0.029) 0.262*** (0.090)	(0.423) 0.020 (0.029) 0.259^{***} (0.090) 0.021 (0.028) -0.016 (0.041)	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ 0.079^*\\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \\ \end{array}$	(0.599) 0.013 (0.029) 0.255*** (0.090) 0.020 (0.028) -0.018 (0.041) 0.056* (0.030)	0.423) 0.018 (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038)
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change Commercialization Change	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ \end{array} \\ \begin{array}{c} (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \end{array} \\ \begin{array}{c} 0.054^* \\ (0.028) \\ \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.016 \\ (0.041) \\ \end{array}$	(0.600) -0.004 (0.029) 0.259*** (0.090) 0.025 (0.028) -0.047 (0.043) -0.005 (0.031) 0.075** (0.038)	(0.423) 0.018 (0.029) 0.262*** (0.090)	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ 0.079^*\\ (0.041)\\ \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.599) \\ (0.029) \\ (0.029) \\ (0.255^{***} \\ (0.090) \\ (0.028) \\ -0.018 \\ (0.041) \\ \end{array}$	(0.423) (0.423) (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038) -0.084***
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change Commercialization Change Labor cost Growth	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \end{array} \\ \begin{array}{c} (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array} \\ \begin{array}{c} 0.054^* \\ (0.028) \end{array}$	(0.599) -0.011 (0.029) 0.254^{***} (0.090) 0.020 (0.028) -0.016 (0.041) 0.061^{**} (0.030)	(0.600) -0.004 (0.029) 0.259*** (0.090) 0.025 (0.028) -0.047 (0.043) -0.005 (0.031) 0.075** (0.038) -0.084** (0.035) -0.004	(0.423) 0.018 (0.029) 0.262*** (0.090)	$\begin{array}{c} (0.423) \\ 0.020 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \end{array}$	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ 0.079^*\\ (0.041) \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.599) \\ (0.029) \\ (0.029) \\ (0.029) \\ (0.020) \\ (0.028) \\ -0.018 \\ (0.041) \end{array}$	0.423) 0.018 (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038) -0.084** (0.035) -0.003
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change Change Labor cost Growth	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.003^{***} \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \hline \\ 0.054^* \\ (0.028) \\ \end{array}$	(0.599) -0.011 (0.029) 0.254^{***} (0.090) 0.020 (0.028) -0.016 (0.041) 0.061^{**} (0.030)	(0.600) -0.004 (0.029) 0.259*** (0.090) 0.025 (0.028) -0.047 (0.043) -0.005 (0.031) 0.075** (0.038) -0.084** (0.035) -0.004 (0.010)	(0.423) 0.018 (0.029) 0.262*** (0.090)	(0.423) 0.020 (0.029) 0.259^{***} (0.090) 0.021 (0.028) -0.016 (0.041)	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.0079\\ (0.041)\\ \end{array}$	$\begin{array}{c} (0.599) \\ 0.012 \\ (0.029) \\ 0.253^{***} \\ (0.089) \\ 0.021 \\ (0.028) \\ -0.016 \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.599) \\ (0.029) \\ 0.025 \\ 0.255^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.018 \\ (0.041) \\ \end{array}$	0.423 0.018 (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038) -0.0084** (0.035) -0.003 (0.010)
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change Commercialization Change Labor cost Growth Fixed Assets Growth	(0.598) -0.006 (0.029) 0.260*** (0.090)	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \hline \\ 0.054^* \\ (0.028) \\ \end{array}$	(0.599) -0.011 (0.029) 0.254^{***} (0.090) 0.020 (0.028) -0.016 (0.041) 0.061^{**} (0.030)	(0.600) -0.004 (0.029) 0.259*** (0.090) 0.025 (0.028) -0.047 (0.043) -0.005 (0.031) 0.075** (0.038) -0.084** (0.035) -0.004 (0.010)	(0.423) 0.018 (0.029) 0.262*** (0.090) 0.136****	(0.423) 0.020 (0.029) 0.259*** (0.090) 0.021 (0.028) -0.016 (0.041) 0.137***	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.007\\ (0.032)\\ 0.079^*\\ (0.041)\\ \end{array}$	(0.599) 0.012 (0.029) 0.253*** (0.089) 0.021 (0.028) -0.016 (0.041) 0.050* (0.028) 0.133**	0.599) 0.013 (0.029) 0.255*** (0.090) 0.020 (0.028) -0.018 (0.041) 0.056* (0.030) 0.132**	0.423) 0.018 (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038) -0.003 (0.010) 0.130**
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Dig size Organizational change Commercialization Change Labor cost Growth Fixed Assets Growth Process and Product In-	(0.598) -0.006 (0.029) 0.260*** (0.090)	(0.600) -0.005 (0.029) 0.257*** (0.090) 0.021 (0.028) -0.014 (0.041)	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \\ \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \hline \\ 0.054^{*} \\ (0.028) \end{array}$	(0.599) -0.011 (0.029) 0.254*** (0.090) 0.020 (0.028) -0.016 (0.041) 0.061** (0.030)	(0.600) -0.004 (0.029) 0.259*** (0.090) 0.025 (0.028) -0.047 (0.043) -0.005 (0.031) 0.075** (0.038) -0.084** (0.035) -0.004 (0.010)	(0.423) 0.018 (0.029) 0.262*** (0.090) 0.136***	(0.423) 0.020 (0.029) 0.259*** (0.090) 0.021 (0.028) -0.016 (0.041) 0.137***	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.0079^*\\ (0.041)\\ \end{array}$	(0.599) 0.012 (0.029) 0.253*** (0.089) 0.021 (0.028) -0.016 (0.041) 0.050* (0.028) 0.133**	0.599) 0.013 (0.029) 0.255*** (0.090) 0.020 (0.028) -0.018 (0.041) 0.056* (0.030) 0.132**	(0.423) (0.423) (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038) -0.003 (0.035) -0.003 (0.010) 0.130**
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change Commercialization Change Labor cost Growth Fixed Assets Growth	(0.598) -0.006 (0.029) 0.260*** (0.090)	(0.600) -0.005 (0.029) 0.257*** (0.090) 0.021 (0.028) -0.014 (0.041)	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \end{array}$	(0.424) -0.012 (0.029) 0.251^{***} (0.090) 0.021 (0.028) -0.014 (0.041) 0.054^{*} (0.028)	(0.599) -0.011 (0.029) 0.254*** (0.090) 0.020 (0.028) -0.016 (0.041) 0.061** (0.030)	(0.600) -0.004 (0.029) 0.259^{***} (0.090) 0.025 (0.028) -0.047 (0.043) -0.005 (0.031) 0.075^{**} (0.038) -0.0084 ^{***} (0.035) -0.004 (0.010)	(0.423) 0.018 (0.029) 0.262*** (0.090) 0.136*** (0.053)	(0.423) 0.020 (0.029) 0.259*** (0.090) 0.021 (0.028) -0.016 (0.041) 0.137*** (0.053)	(0.423) 0.017 (0.029) 0.256*** (0.090) 0.020 (0.028) -0.034 (0.044) -0.030 (0.032) 0.079* (0.041) 0.132** (0.053)	(0.599) 0.012 (0.029) 0.253*** (0.089) 0.021 (0.028) -0.016 (0.041) 0.050* (0.028) 0.133** (0.053)	0.599) 0.013 (0.029) 0.255*** (0.090) 0.020 (0.028) -0.018 (0.041) 0.056* (0.030) 0.132** (0.053)	0.423 0.018 (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038) -0.003 (0.010) 0.130** (0.053)
Process Innovation Only Sales growth dt new prod- located in the capital Foreign Owned Exports dummy Medium size Organizational change Organizational change Commercialization Change Labor cost Growth Fixed Assets Growth Process and Product In- novation	(0.598) -0.006 (0.029) 0.260*** (0.090)	(0.600) -0.005 (0.029) 0.257*** (0.090) 0.021 (0.028) -0.014 (0.041)	(0.600) -0.006 (0.029) 0.257*** (0.090) 0.020 (0.028) -0.036 (0.044) -0.025 (0.032) 0.003 (0.032) 0.087** (0.041)	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \end{array}$ $\begin{array}{c} (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \end{array}$ $\begin{array}{c} 0.054^{*} \\ (0.028) \end{array}$	(0.599) -0.011 (0.029) 0.254*** (0.090) 0.020 (0.028) -0.016 (0.041) 0.061** (0.030)	(0.600) -0.004 (0.029) 0.259*** (0.090) 0.025 (0.028) -0.047 (0.043) -0.005 (0.031) 0.075** (0.038) -0.084** (0.035) -0.004 (0.010) 2017	(0.423) 0.018 (0.029) 0.262*** (0.090) 0.136*** (0.053) 2023	(0.423) 0.020 (0.029) 0.259*** (0.090) 0.021 (0.028) -0.016 (0.041) 0.137*** (0.053) 2023	(0.423) 0.017 (0.029) 0.256*** (0.090) 0.020 (0.028) -0.034 (0.044) -0.030 (0.032) 0.079* (0.041) 0.041)	(0.539) 0.012 (0.029) 0.253*** (0.089) 0.021 (0.028) -0.016 (0.041) 0.050* (0.028) 0.133** (0.053) 2023	0.599) 0.013 (0.029) 0.255*** (0.090) 0.020 (0.028) -0.018 (0.041) 0.056* (0.030) 0.132** (0.053) 2023	(0.423) (0.423) (0.029) (0.029) (0.029) (0.025) (0.028) (-0.046) (0.043) (-0.009) (0.031) (0.066* (0.038) (-0.0084*** (0.035) (-0.003) (0.010) (0.130***
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change commercialization Change Labor cost Growth Fixed Assets Growth Process and Product In- novation	(0.598) -0.006 (0.029) 0.260*** (0.090) 2023 1.855	(0.600) -0.005 (0.029) 0.257*** (0.090) 0.021 (0.028) -0.014 (0.041) 2023 1.314	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \\ \hline \\ \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \hline \\ 0.054^* \\ (0.028) \\ \hline \\ 0.054^* \\ (0.028) \\ \hline \end{array}$	(0.599) -0.011 (0.029) 0.254^{***} (0.090) 0.020 (0.028) -0.016 (0.041) 0.061^{**} (0.030) 2023 1.211 0.772	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.025 \\ (0.025) \\ (0.025) \\ (0.025) \\ -0.047 \\ (0.043) \\ \hline \\ -0.005 \\ (0.031) \\ 0.075^{**} \\ (0.038) \\ \hline \\ -0.084^{**} \\ (0.035) \\ -0.004 \\ (0.010) \\ \hline \\ 2017 \\ 1.644 \\ 0.642 \\ \hline \\ 0.642 \\ \hline \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090) 0.136*** (0.053) 2023 1.785 0.136 ***	(0.423) 0.020 (0.029) 0.259*** (0.090) 0.021 (0.028) -0.016 (0.041) 0.137*** (0.053) 2023 1.222 0.259	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ \hline \\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.001\\ (0.032)\\ 0.079^*\\ (0.041)\\ \hline \\ \end{array}$	(0.599) 0.012 (0.029) 0.253*** (0.089) 0.021 (0.028) -0.016 (0.041) 0.050* (0.028) 0.133** (0.053) 2023 1.250	0.599) 0.013 (0.029) 0.255*** (0.090) 0.020 (0.028) -0.018 (0.041) 0.056* (0.030) 0.132** (0.053) 2023 1.229 1.229 0.25	0.423 0.018 (0.029) 0.260*** (0.090) 0.025 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038) -0.003 0.010) 0.130** (0.053) 2017 1.585 0.025
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Big size Organizational change Commercialization Change Labor cost Growth Fixed Assets Growth Fixed Assets Growth Process and Product In- novation	(0.598) -0.006 (0.029) 0.260*** (0.090) 2023 1.855 0.603 1.855	(0.600) -0.005 (0.029) 0.257*** (0.090) 0.021 (0.028) -0.014 (0.041) 2023 1.314 0.726 1.447	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.003 \\ (0.041) \\ \hline \\ \end{array}$	(0.424) -0.012 (0.029) 0.251*** (0.090) 0.021 (0.028) -0.014 (0.041) 0.054* (0.028) -0.014 (0.041)	(0.599) -0.011 (0.029) 0.254^{***} (0.090) 0.020 (0.028) -0.016 (0.041) 0.061^{**} (0.030) 2023 1.211 0.750 1.231	$\begin{array}{c} (0.600) \\ -0.004 \\ (0.029) \\ 0.259^{***} \\ \hline \\ (0.090) \\ 0.025 \\ (0.028) \\ -0.047 \\ (0.043) \\ \hline \\ -0.005 \\ (0.031) \\ 0.075^{**} \\ (0.038) \\ \hline \\ -0.084^{**} \\ (0.035) \\ -0.004 \\ (0.010) \\ \hline \\ 2017 \\ 1.644 \\ 0.649 \\ 1.461 \\ \hline \end{array}$	(0.423) 0.018 (0.029) 0.262*** (0.090) 0.136*** (0.053) 2023 1.785 0.618 1.500	(0.423) 0.020 (0.029) 0.259^{***} (0.090) 0.021 (0.028) -0.016 (0.041) 0.041) 0.137^{***} (0.053) 2023 1.222 0.748 1.742	$\begin{array}{c} (0.423)\\ 0.017\\ (0.029)\\ 0.256^{***}\\ \hline \\ (0.090)\\ 0.020\\ (0.028)\\ -0.034\\ (0.044)\\ -0.030\\ (0.032)\\ 0.0079^*\\ (0.041)\\ \hline \\ 0.032\\ 0.079^*\\ (0.041)\\ \hline \\ 0.032\\ 0.079^*\\ (0.053)\\ 2023\\ 1.472\\ 0.689\\ 1.624\\ \hline \end{array}$	(0.599) 0.012 (0.029) 0.253*** (0.089) 0.021 (0.028) -0.016 (0.041) 0.050* (0.028) 0.133** (0.053) 2023 1.250 0.741 1.554	$\begin{array}{c} (0.599) \\ (0.599) \\ 0.013 \\ (0.029) \\ 0.255^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.018 \\ (0.041) \\ \hline \\ 0.041) \\ \hline \\ 0.056^{*} \\ (0.030) \\ \hline \\ 0.132^{**} \\ (0.053) \\ 2023 \\ 1.229 \\ 0.746 \\ 1.622 \\ \hline \end{array}$	(0.423) (0.423) (0.029) (0.260*** (0.090) (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038) -0.003 (0.010) (0.130** (0.053) 2017 1.585 0.663 1.742
Process Innovation Only Sales growth dt new prod- ucts Located in the capital Foreign Owned Exports dummy Medium size Dig size Organizational change Change Labor cost Growth Fixed Assets Growth Fixed Assets Growth Process and Product In- novation	(0.598) -0.006 (0.029) 0.260*** (0.090) 2023 1.855 0.603 1.505 0.220	$\begin{array}{c} (0.600) \\ -0.005 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \hline \\ 0.041) \\ \end{array}$	$\begin{array}{c} (0.600) \\ -0.006 \\ (0.029) \\ 0.257^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.036 \\ (0.044) \\ -0.025 \\ (0.032) \\ 0.003 \\ (0.032) \\ 0.087^{**} \\ (0.041) \\ \hline \\ \end{array}$	$\begin{array}{c} (0.424) \\ -0.012 \\ (0.029) \\ 0.251^{***} \\ \hline \\ (0.090) \\ 0.021 \\ (0.028) \\ -0.014 \\ (0.041) \\ \hline \\ 0.054^* \\ (0.028) \\ \hline \\ 0.054^* \\ (0.028) \\ \hline \\ 2023 \\ 1.283 \\ 0.733 \\ 1.270 \\ 0.260 \\ \hline \end{array}$	$\begin{array}{c} (0.599) \\ -0.011 \\ (0.029) \\ 0.254^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.016 \\ (0.041) \\ \hline \\ 0.061^{**} \\ (0.030) \\ \hline \\ 2023 \\ 1.211 \\ 0.750 \\ 1.331 \\ 0.240 \\ \hline \end{array}$	(0.600) -0.004 (0.029) 0.259*** (0.090) 0.025 (0.028) -0.047 (0.043) -0.005 (0.031) 0.075** (0.038) -0.004 (0.035) -0.004 (0.010) 2017 1.644 0.649 1.461 0.227	(0.423) 0.018 (0.029) 0.262*** (0.090) 0.136*** (0.053) 2023 1.785 0.618 1.809 0.170	(0.423) (0.029) (0.029) (0.259^{***}) (0.090) (0.028) -0.016 (0.041) (0.041) (0.053) 2023 1.222 0.748 1.746 0.196	(0.423) 0.017 (0.029) 0.256*** (0.090) 0.020 (0.028) -0.034 (0.044) -0.030 (0.032) 0.079* (0.041) 0.132** (0.053) 2023 1.472 0.689 1.634 0.241	$\begin{array}{c} (0.599)\\ 0.012\\ (0.029)\\ 0.253^{***}\\ \hline \\ (0.089)\\ 0.021\\ (0.028)\\ -0.016\\ (0.028)\\ \hline \\ 0.001\\ 0.001\\ \hline \\ (0.041)\\ \hline \\ 0.050^{*}\\ (0.028)\\ \hline \\ 0.133^{**}\\ \hline \\ (0.053)\\ 2023\\ 1.250\\ 0.741\\ 1.564\\ 0.211\\ \hline \end{array}$	$\begin{array}{c} (0.599) \\ (0.029) \\ 0.013 \\ (0.029) \\ 0.255^{***} \\ \hline \\ (0.090) \\ 0.020 \\ (0.028) \\ -0.018 \\ (0.041) \\ \hline \\ 0.041) \\ \hline \\ 0.056^{*} \\ (0.030) \\ \hline \\ 0.132^{**} \\ (0.053) \\ 2023 \\ 1.229 \\ 0.746 \\ 1.632 \\ 0.201 \\ \hline \end{array}$	-0.084** (0.023) 0.260*** (0.090) 0.260*** (0.028) -0.046 (0.028) -0.046 (0.043) -0.009 (0.031) 0.066* (0.038) -0.003 (0.010) 0.130** (0.053) 2017 1.585 0.663 1.743 0.197

Table 6: Manufacturing firms. IV estimations by Type of sector (low-Tech and High-Tech). Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

instruments used are client, innovation intensity interacted with increased market share, increased range and obstacles to innovation Source: Authors' estimations.

As far as the service industry is concerned, when the theoretical model is estimated through OLS, g_2 has a positive and significant impact, and is larger than in the case of manufacturing firms. Labor cost growth and fixed assets growth were not available in the data provided for the services estimations. For that reason are not included as control variables. Table 8 shows instrumental variables estimations where the effect of g_2 is slightly larger, and instruments used are increased range, increased market share and patent. Table 9 and 10 compare the effects between skilled and unskilled workers, where instrumental variables estimations do not show a big difference. Additionally, in all the service industry estimations, process innovation only has a negative but not significant impact and organizational changes, have an impact on unskilled employment growth. Another outcome to highlight is that organizational changes have more impact on service firms, and commercialization changes affect more frequently industry firms.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Constant	0.250***	0.251***	0.227***	0.213***	0.250***	0.190***	0.190***	0.191***	0.176***	0.178***	0.180***	0.150**
	(0.023)	(0.023)	(0.037)	(0.032)	(0.024)	(0.048)	(0.043)	(0.043)	(0.051)	(0.045)	(0.049)	(0.061)
Process Innovation Only	-0.035	-0.032	-0.034	-0.041	-0.032	-0.041	-0.029	-0.027	-0.028	-0.033	-0.023	-0.031
	(0.040)	(0.040)	(0.039)	(0.039)	(0.040)	(0.039)	(0.040)	(0.040)	(0.040)	(0.039)	(0.041)	(0.040)
Sales growth dt new	0.993^{***}	0.990^{***}	0.985^{***}	0.970^{***}	0.991^{***}	0.971^{***}	0.958^{***}	0.956^{***}	0.954^{***}	0.949***	0.961^{***}	0.952^{***}
products												
	(0.084)	(0.085)	(0.085)	(0.088)	(0.089)	(0.089)	(0.082)	(0.083)	(0.083)	(0.085)	(0.085)	(0.086)
Located in the capi-		-0.020	-0.021	-0.019	-0.020	-0.020		-0.019	-0.020	-0.019	-0.018	-0.019
tal												
		(0.020)	(0.020)	(0.020)	(0.020)	(0.020)		(0.020)	(0.020)	(0.020)	(0.020)	(0.020)
Medium size			0.001			-0.002			-0.002			-0.003
			(0.024)			(0.025)			(0.025)			(0.025)
Big size			0.025			0.020			0.018			0.015
			(0.028)			(0.028)			(0.028)			(0.028)
Organizational				0.043		0.046				0.026		0.032
change												
				(0.027)		(0.030)				(0.029)		(0.030)
commercialization					-0.003	-0.019					-0.028	-0.034
Change												
					(0.032)	(0.035)					(0.036)	(0.037)
Process and Product							0.069^{*}	0.069^{*}	0.066^{*}	0.058	0.078^{*}	0.065
Innovation												
							(0.037)	(0.037)	(0.037)	(0.039)	(0.042)	(0.042)
Number of firms	1371	1371	1371	1371	1371	1371	1371	1371	1371	1371	1371	1371
Robust standard errors ar	e reported	in brackets.	All regress	ions include	e service ind	lustry dumr	nies.					
Significance at the *** 1%	%, **5% and	l * 10% leve	el.									

Table 7: Service firms. OLS estimations. Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Constant	0.230	0.231	0.212	0.214	0.225	0.187	0.192	0.193	0.179	0.184	0.178	0.153
	(0.374)	(0.374)	(0.375)	(0.374)	(0.375)	(0.375)	(0.374)	(0.374)	(0.375)	(0.374)	(0.374)	(0.375)
Process Innovation Only	-0.030	-0.028	-0.030	-0.041	-0.026	-0.040	-0.030	-0.028	-0.030	-0.037	-0.022	-0.033
	(0.044)	(0.044)	(0.044)	(0.045)	(0.045)	(0.046)	(0.044)	(0.044)	(0.044)	(0.045)	(0.045)	(0.046)
Sales growth dt new products	1.065^{***}	1.064^{***}	1.050^{***}	0.968^{***}	1.086^{***}	0.989^{***}	0.936^{***}	0.937^{***}	0.930***	0.881***	0.980***	0.918^{***}
	(0.138)	(0.138)	(0.140)	(0.157)	(0.152)	(0.167)	(0.167)	(0.167)	(0.169)	(0.177)	(0.174)	(0.182)
Located in the capital		-0.018	-0.020	-0.019	-0.018	-0.020		-0.019	-0.020	-0.020	-0.018	-0.019
		(0.021)	(0.021)	(0.021)	(0.021)	(0.021)		(0.021)	(0.021)	(0.021)	(0.021)	(0.021)
Medium size			0.000			-0.002			-0.001			-0.003
			(0.024)			(0.024)			(0.024)			(0.024)
Big size			0.022			0.019			0.018			0.016
			(0.029)			(0.029)			(0.029)			(0.029)
Organizational change				0.043		0.044				0.030		0.033
				(0.032)		(0.032)				(0.032)		(0.032)
commercialization Change					-0.013	-0.020					-0.029	-0.033
					(0.036)	(0.037)					(0.036)	(0.037)
Process and Product Innovation							0.073^{*}	0.071^{*}	0.069^{*}	0.066	0.076*	0.068
							(0.041)	(0.041)	(0.041)	(0.042)	(0.042)	(0.042)
Number of firms	1371	1371	1371	1371	1371	1371	1371	1371	1371	1371	1371	1371
Sargan test	1.521	1.552	1.775	1.315	1.622	1.585	1.307	1.342	1.560	1.220	1.416	1.474
P-value	0.468	0.460	0.412	0.518	0.445	0.453	0.520	0.511	0.458	0.543	0.493	0.478
Durbin-Wu-Hausman test	0.342	0.362	0.271	0.000	0.476	0.013	0.020	0.014	0.023	0.172	0.015	0.040
P-value	0.342	0.547	0.602	0.991	0.490	0.909	0.886	0.905	0.880	0.679	0.903	0.841
Robust standard errors are reported	d in bracket	te All roor	ossions inc	udo sorvice	industry	dummies						

Table 8: Service firms. IV estimations. Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

Robust standard errors are reported in brackets. All regressions include service industry dummies.

Significance at the *** 1%, **5% and * 10% level.

increased range, increase market share and patent.

Source: Authors' estimations.

Table 9: Service firms. OLS estimations by Type of Labor (Skilled and Unskilled). Dependent
Variable: $\ell_i - (g_{1i} - \pi_i)$

		5	Skilled Er	nploymen	t			U	nskilled F	Employme	nt	
	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(2)	(3)	(4)	(5)	(6)
Constant	0.046***	0.073**	0.136**	0.255***	0.073**	0.302***	0.079***	0.124***	0.039	0.124***	0.124***	0.045
	(0.000)	(0.033)	(0.059)	(0.045)	(0.033)	(0.058)	(0.000)	(0.035)	(0.055)	(0.035)	(0.035)	(0.054)
Process Innovation Only	-0.039	-0.036	-0.035	-0.044	-0.034	-0.042	-0.049	-0.043	-0.047	-0.060	-0.041	-0.060
	(0.058)	(0.058)	(0.059)	(0.060)	(0.058)	(0.060)	(0.069)	(0.069)	(0.068)	(0.068)	(0.070)	(0.068)
Sales growth dt new products	0.855***	0.851***	0.862***	0.833***	0.856***	0.848***	1.073***	1.064***	1.043***	1.021***	1.069***	1.016***
	(0.061)	(0.062)	(0.062)	(0.065)	(0.063)	(0.065)	(0.144)	(0.145)	(0.143)	(0.155)	(0.149)	(0.154)
Located in the capi- tal		-0.027	-0.027	-0.027	-0.027	-0.026		-0.046	-0.052	-0.045	-0.045	-0.049
		(0.033)	(0.034)	(0.033)	(0.033)	(0.033)		(0.035)	(0.035)	(0.035)	(0.035)	(0.035)
Medium size		. ,	-0.054	· /	` '	-0.057		. ,	0.002	. ,	. ,	-0.003
			(0.042)			(0.044)			(0.034)			(0.035)
Big size			-0.062			-0.068			0.091**			0.083**
			(0.040)			(0.042)			(0.040)			(0.039)
Organizational change			. ,	0.038		0.055			. ,	0.086		0.093
÷				(0.047)		(0.054)				(0.060)		(0.065)
commercialization				. /	-0.015	-0.032				. /	-0.015	-0.049
Change												
					(0.039)	(0.046)					(0.043)	(0.050)
Number of firms	1355	1355	1355	1355	1355	1355	1216	1216	1216	1216	1216	1216

Robust standard errors are reported in brackets. All regressions include service industry dummies.

Significance at the *** 1%, $^{**}5\%$ and * 10% level.

Table 10: Service firms. IV estimations by Type of Labor (Skilled and Unskilled). Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

			Skilled Er	nploymen	ıt			Uı	iskilled E	mployme	nt	
	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(2)	(3)	(4)	(5)	(6)
Constant	0.275	0.276	0.329	0.259	0.265	0.295	0.166	0.165	0.085	0.125	0.161	0.033
	(0.604)	(0.604)	(0.605)	(0.604)	(0.605)	(0.606)	(0.567)	(0.567)	(0.567)	(0.568)	(0.567)	(0.569)
Process Innovation Only	-0.036	-0.033	-0.030	-0.045	-0.029	-0.038	-0.055	-0.047	-0.054	-0.083	-0.045	-0.084
	(0.072)	(0.072)	(0.072)	(0.073)	(0.072)	(0.074)	(0.070)	(0.070)	(0.071)	(0.072)	(0.071)	(0.073)
Sales growth dt new	0.901***	0.899***	0.943^{***}	0.809***	0.939^{***}	0.891***	0.984***	0.987***	0.925^{***}	0.712***	1.005***	0.706**
products												
	(0.222)	(0.223)	(0.226)	(0.253)	(0.246)	(0.270)	(0.235)	(0.235)	(0.241)	(0.269)	(0.257)	(0.286)
Located in the capi-	. ,	-0.026	-0.026	-0.027	-0.025	-0.025		-0.047	-0.054	-0.051	-0.047	-0.056*
tal												
		(0.034)	(0.034)	(0.034)	(0.034)	(0.035)		(0.034)	(0.034)	(0.034)	(0.034)	(0.034)
Medium size					. ,						. ,	. ,
			-0.055			-0.058			0.005			0.001
Big size			(0.039)			(0.039)			(0.039)			(0.039)
0			· /			. ,			· /			· /
Organizational			-0.065			-0.069			0.097^{**}			0.094^{**}
change												
0			(0.047)			(0.047)			(0.047)			(0.048)
commercialization			· /			()			· /			· /
Change												
-				0.040		0.052				0.115^{**}		0.115^{**}
Number of firms				(0.051)		(0.052)				(0.052)		(0.052)
												. ,
comersializationchange					-0.023	-0.035					-0.009	-0.030
					(0.058)	(0.059)					(0.058)	(0.059)
Number of firms	1355	1355	1355	1355	1355	1355	1216	1216	1216	1216	1216	1216
Sargan test	1.434	1.471	1.229	1.379	1.489	1.124	3.208	3.234	4.666	2.750	3.264	4.126
P-value	0.488	0.479	0.541	0.502	0.475	0.570	0.201	0.199	0.097	0.253	0.196	0.127
Durbin-Wu-	0.053	0.059	0.160	0.011	0.141	0.030	0.180	0.133	0.301	1.596	0.077	1.397
Hausman test												
P-value	0.820	0.807	0.689	0.918	0.707	0.863	0.671	0.715	0.583	0.207	0.782	0.237
Robust standard errors a	re reported	in bracket	s. All regr	essions incl	lude service	industry o	lummies.					
Significance at the *** 10	%, **5% ar	id * 10% le	vel.			2						
increased range increase	market she	are and nat	ent									

Source: Authors' estimations.

5 Robustness Checks

Tables 11 and 12 present additional instrumental variable estimations using other instruments different to those mentioned before. In table 11, estimations are conducted using only *innovation intensity* as an instrument. In table 12, three instruments are shown, namely *client*, *increased market share interacted with innovation intensity*, and *increased range*. In both cases, results showed to be robust when using different instruments. In all cases, g_2 is always positive and statiscally significant. The only difference is that in table 16 -where *innovation intensity* is the instrumentthe effect of g_2 is a bit larger: it goes up to 0.34, while in the other cases it is of 0.30.

Additional estimations are carried out dividing the different samples according to the firm size. These results might be seen in the tables 13, 14 and 15 where g_2 has the higher impact in large-sized firms, and a lower impact in medium-sized firms. *Process innovation only* is negative in medium and large firms but is not significant. Besides that, commercialization changes have a positive result on employment growth in small firms. Small and large firms are affected by *fixed assets growth* in a negative way, and medium firms are affected by *labor costs growth which have a negative and significant effect*.

(1) (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)Constant 0.398 0.397 0.398 0.398 0.402 0.395 0.404 0.401 0.396 0.389 0.388 0.388 0.390 0.396 0.387 0.395 0.392 0.388 (0.522)(0.522)(0.521)(0.522)(0.522)(0.522)(0.522)(0.522)(0.522)(0.521)(0.522)(0.522)(0.522)(0.522)(0.522)(0.522)(0.522)(0.521)Process Innovation Only -0.050** -0.049* -0.049** -0.050** -0.048* -0.050** -0.048* -0.048* -0.049* -0.041* -0.040-0.039-0.042* -0.037-0.040 -0.040 -0.040 -0.039 (0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)(0.025)0.343*** 0.342*** 0.339^{***} 0.344*** 0.342*** 0.341*** 0.344*** 0.344*** 0.341*** 0.338*** 0.337*** 0.333*** 0.339*** 0.338^{***} 0.336*** 0.340*** 0.340*** 0.337*** Sales growth dt new products (0.121)(0.121)(0.121)(0.121)(0.122)(0.122)(0.122)(0.122)(0.122)(0.122)(0.122)(0.121)(0.121)(0.121)(0.121)(0.121)(0.122)(0.122)0.013 0.016 0.014 0.014 0.019 0.015 0.015 0.021 Located in the capital 0.014 0.019 0.0170.0150.017 0.0150.020 0.019 (0.024)(0.024)(0.024)(0.024)(0.024)(0.024)(0.024)(0.024)(0.024)(0.024)(0.024)(0.024)(0.024)(0.024)(0.024)(0.024)Foreign Owned 0.002 0.008 -0.0280.003 0.002 -0.030-0.030 0.009 -0.0270.002 -0.029-0.029 0.000 0.001 0.002 0.002 (0.036)(0.038)(0.038)(0.036)(0.036)(0.038)(0.038)(0.036)(0.036)(0.038)(0.038)(0.036)(0.036)(0.038)(0.038)(0.036)Exports dummy -0.013-0.017 (0.025)(0.025)Medium size 0.004 0.000 0.001 0.002 -0.001 -0.000 (0.026)(0.026)(0.026)(0.026)(0.026)(0.026)0.082** Big size 0.080** 0.081** 0.078** 0.076** 0.077** (0.032)(0.032)(0.032)(0.032)(0.032)(0.032)Organizational change -0.006 -0.010 (0.024)(0.025)Commercialization Change 0.007 0.010 0.004 0.006 (0.027)(0.027)(0.027)(0.027)-0.142*** -0.143*** -0.144*** -0.143*** -0.142*** -0.144*** Labor cost Growth (0.036)(0.036)(0.036)(0.036)(0.036)(0.036)Fixed Assets Growth 0.006 0.006 0.006 0.007(0.007)(0.007)(0.007)(0.007)Process and Product Inno-0.076 0.080 0.0650.0780.076 0.0650.067 0.077 0.075vation (0.051)(0.051)(0.051)(0.051)(0.051)(0.051)(0.051)(0.051)(0.051)Number of firms 425642564256 4256 42564256 4254 4242 4242 4256 4256 4256 4256425642564254 4242 4242 Sargan test 1.1091.083 1.0371.100 1.0991.069 1.104 1.1321.0961.1571.1291.0661.1361.1591.1241.140 1.1671.157P-value 0.2920.298 0.308 0.294 0.2940.301 0.294 0.288 0.2950.2820.288 0.3020.287 0.2820.2890.286 0.280 0.282Durbin-Wu-Hausman test 1.115 1.090 1.044 1.107 1.106 1.076 1.111 1.140 1.104 1.164 1.1361.073 1.144 1.1661.131 1.148 1.175 1.165P-value 0.291 0.296 0.307 0.293 0.292 0.285 0.293 0.300 0.286 0.293 0.2810.287 0.300 0.2800.288 0.284 0.2780.280

Table 11: Manufacturing firms. IV estimations with other instruments. Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

Robust standard errors are reported in brackets. All regressions include industry dummies

Significance at the *** 1%, **5% and * 10% level.

instrument used is innovation intensity

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Process Innovation Only -0.041* -0.039* -0.039* -0.040* -0.041* -0.037 -0.038* -0.041* -0.023	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Sales growth dt new prod- 0.297^{***} 0.296^{***} 0.295^{***} 0.294^{***} <td>)</td>)
ucts (0.101)	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Located in the capital 0.021 0.023 0.021 0.021 0.021 0.025 0.025 0.022 0.023 0.024 0.020 0.020 0.022 <t< td=""><td>1</td></t<>	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	١
Foreign Owned 0.006 0.003 -0.017 0.005 -0.005 -0.018 0.004 0.005 0.005 -0.015 0.005 -0.005 -0.017 -0.016 0.004	
2000 011.0- 110.0- 000.0 000.0 01.0- 000.0 000.0 000.0 100.0 100.0 000	•
(0.033) (0.033	
Exports duminy 0.005 0.001	
(0.025) (0.025) (0.025)	
Medium size 0.002 0.002 0.003 -0.000 -0.000 (0.021) (0.021) (0.021) (0.021) (0.021) (0.021)	
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024)	
Big size 0.061^{+5} 0.060^{+5} 0.055^{+} 0.04^{+} 0.053^{+}	
(0.029) (0.029) (0.029) (0.029) (0.030) (0.029) (0.030)	
Organizational change 0.004 0.001	
(0.022) (0.022)	
Commercialization Change 0.017 0.019 0.014 0.016	
(0.024) (0.024) (0.024) (0.024))
Labor cost Growth -0.120*** -0.122**** -0.122**** -0.122**** -0.122****	*
(0.032) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032))
Fixed Assets Growth 0.009 0.010 0.010 0.010	
(0.007) (0.007) (0.007) (0.007))
Process and Product Inno- 0.103** 0.105** 0.105** 0.105** 0.105** 0.105** 0.097** 0.097** 0.099** 0.105*	k
vation	
(0.044) (0.044) (0.045) (0.045) (0.045) (0.045) (0.045) (0.045) (0.045) (0.045))
Number of firms 3812 3812 3812 3812 3812 3812 3812 3812	
Sargan test 0.448 0.370 0.346 0.159 0.355 0.225 0.160 0.162 0.210 0.305 0.246 0.245 0.110 0.244 0.164 0.115 0.113 0.157	
P.value 0.700 0.831 0.841 0.023 0.837 0.804 0.023 0.002 0.010 0.850 0.884 0.885 0.047 0.885 0.021 0.044 0.045 0.024	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table 12: Manufacturing firms. IV estimations with other instruments. Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

Robust standard errors are reported in brackets. All regressions include industry dummies. Significance at the *** 1%, **5% and * 10% level.

instruments used are client, increase market share interacted with innovation intensity and increased range

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Constant	0.263	0.273	0.239	0.235	0.760^{*}	0.257	0.267	0.245	0.234	0.757^{*}
	(0.586)	(0.583)	(0.590)	(0.540)	(0.440)	(0.586)	(0.584)	(0.589)	(0.545)	(0.440)
Process Innovation	0.086	0.076	0.060	0.046	0.023	0.091	0.081	0.070	0.054	0.026
Only										
	(0.122)	(0.109)	(0.096)	(0.098)	(0.075)	(0.124)	(0.110)	(0.099)	(0.100)	(0.075)
Sales growth dt new products	0.374***	0.377***	0.377***	0.377***	0.331***	0.358***	0.361***	0.361***	0.362***	0.323***
	(0.138)	(0.140)	(0.140)	(0.140)	(0.108)	(0.131)	(0.134)	(0.134)	(0.134)	(0.107)
Located in the capital		-0.109	-0.109	-0.113	0.021		-0.108	-0.108	-0.112	0.021
-		(0.160)	(0.160)	(0.161)	(0.061)		(0.160)	(0.160)	(0.161)	(0.061)
Foreign Owned		0.074	0.072	0.070	0.078		0.072	0.072	0.069	0.078
-		(0.139)	(0.138)	(0.138)	(0.167)		(0.139)	(0.138)	(0.138)	(0.167)
organizationalchange		· /	0.049	· /	· · · ·		· /	0.033	(/	· · · ·
0 0			(0.058)					(0.055)		
commercialization			· /	0.133^{**}				· /	0.121*	
Change										
0				(0.067)					(0.064)	
Labor cost Growth				. ,	0.082				· /	0.080
					(0.185)					(0.186)
Fixed Assets Growth					-0.799***					-0.799***
					(0.106)					(0.106)
Process and Product					()	0.254^{**}	0.250^{**}	0.240^{***}	0.227^{**}	0.120
Innovation										
						(0.105)	(0.100)	(0.093)	(0.093)	(0.074)
Number of firms	4202	4202	4202	4202	4183	4202	4202	4202	4202	4183

Table 13: Small-sized Manufacturing firms. OLS estimations. Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

Significance at the *** 1%, **5% and * 10% level.

Source: Authors' estimations.

Table 14: Medium-sized manufacturing firms. OLS estimations. Dependent Variable: $\ell_i - (\mathbf{g}_{1i} - \pi_i)$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Constant	-0.453	-0.438	-0.441	-0.421	-0.474	-0.455	-0.440	-0.440	-0.420	-0.476
	(0.575)	(0.580)	(0.581)	(0.585)	(0.578)	(0.575)	(0.580)	(0.582)	(0.586)	(0.578)
Process Innovation	-0.043	-0.046	-0.048	-0.034	-0.042	-0.036	-0.039	-0.038	-0.024	-0.035
Only										
	(0.034)	(0.035)	(0.031)	(0.031)	(0.035)	(0.033)	(0.035)	(0.031)	(0.031)	(0.035)
Sales growth dt new	0.235**	0.235**	0.235**	0.236**	0.238**	0.228**	0.227**	0.227**	0.227**	0.231**
products										
•	(0.115)	(0.115)	(0.115)	(0.116)	(0.116)	(0.111)	(0.111)	(0.111)	(0.111)	(0.111)
Located in the capital	· /	-0.013	-0.012	-0.013	-0.005	()	-0.011	-0.011	-0.011	-0.004
1		(0.029)	(0.030)	(0.029)	(0.029)		(0.029)	(0.030)	(0.029)	(0.029)
Foreign Owned		-0.031	-0.030	-0.032	-0.023		-0.031	-0.031	-0.032	-0.023
5		(0.032)	(0.032)	(0.032)	(0.033)		(0.032)	(0.032)	(0.032)	(0.033)
organizationalchange		()	0.009	()	()		()	-0.001	()	()
0			(0.037)					(0.037)		
commercialization			(/	-0.051				(/	-0.063	
Change										
				(0.047)					(0.048)	
Labor cost Growth				· · /	-0.493***				(/	-0.493***
					(0.151)					(0.150)
Fixed Assets Growth					0.026					0.026
					(0.031)					(0.031)
Process and Product					()	0.128^{**}	0.127^{**}	0.128^{**}	0.142**	0.125**
Innovation										
						(0.059)	(0.059)	(0.061)	(0.061)	(0.060)
Number of firms	2818	2818	2818	2818	2816	2818	2818	2818	2818	2816

Robust standard errors are reported in brackets. All regressions include industry dummies. Significance at the *** 1%, **5% and * 10% level.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Constant	-0.170^{***}	-0.170^{***}	-0.164^{***}	-0.170^{***}	-0.159^{***}	-0.170^{***}	-0.170^{***}	-0.167^{***}	-0.170^{***}	-0.159^{***}
	(0.004)	(0.004)	(0.015)	(0.004)	(0.017)	(0.004)	(0.004)	(0.014)	(0.004)	(0.017)
Process Innovation	-0.037	-0.040	-0.036	-0.042	-0.037	-0.041	-0.044	-0.042	-0.048	-0.041
Only										
	(0.033)	(0.034)	(0.031)	(0.031)	(0.033)	(0.035)	(0.037)	(0.034)	(0.034)	(0.036)
Sales growth dt new products	0.499***	0.496***	0.498***	0.495***	0.489***	0.512***	0.512***	0.512***	0.511***	0.504***
	(0.143)	(0.142)	(0.141)	(0.141)	(0.144)	(0.142)	(0.141)	(0.141)	(0.140)	(0.142)
Located in the capital		-0.038	-0.038	-0.037	-0.033		-0.039	-0.039	-0.039	-0.035
		(0.033)	(0.033)	(0.033)	(0.032)		(0.034)	(0.034)	(0.034)	(0.033)
Foreign Owned		-0.022	-0.022	-0.022	-0.026		-0.023	-0.023	-0.023	-0.027
		(0.023)	(0.023)	(0.023)	(0.024)		(0.023)	(0.023)	(0.024)	(0.024)
organizationalchange			-0.010					-0.005		
			(0.025)					(0.024)		
commercialization				0.008					0.013	
Change										
				(0.027)					(0.026)	
Labor cost Growth					-0.064					-0.063
					(0.063)					(0.063)
Fixed Assets Growth					-0.013**					-0.014**
					(0.006)					(0.006)
Process and Product						-0.036	-0.043	-0.042	-0.047	-0.042
Innovation										
						(0.037)	(0.040)	(0.038)	(0.039)	(0.041)
Number of firms	1246	1246	1246	1246	1241	1246	1246	1246	1246	1241

Table 15: Large-sized manufacturing firms. OLS estimations. Depent Variable: $\ell_i - (g_{1i} - \pi_i)$

Significance at the *** 1%, **5% ar Source: Authors' estimations.

6 Concluding Remarks

Mainstream economic theories consider innovation as a fundamental cause of economic growth. In the same line of argumentation, several studies shed light on the relationship between GDP growth and investment in R & D, suggesting a positive and significant impact on the former. Most innovations are undertaken by firms in developed countries. Firms undertake innovations looking for profits: they create new products and gain a larger market share. Different empirical studies have tried to identify the impact and the effects of innovation on employment. The direction and magnitude of these effects are related to the type of innovations and the way they are measured.

Colombian firms are still in high proportion non-innovators. Even firms that have innovated have decreased, when the two waves of the innovation surveys are compared. This could be explained by the fact that the Colombian economy lacks of significant sophisticated sectors, high value-added activities and firms performing in these areas. Companies need to invest a larger amount in Science & Technology activities, and those who are investing should not just increase the share, but also use these resources in a more efficient manner, revaluate and change processes, introduce more commercialization and undertake organizational changes. The proportion of new innovations destined to international markets is extremely low in Colombia. In this setting, firms who export not necessarily generate more jobs through the effects of innovation, and this may perpetuate the export structure of Colombia based on primary activities and low value-added products.

Our empirical analysis shows that *sales growth due to new products* affects positively employment growth, and the effects remain regardless of the firm size, the type of labor, the innovation intensity, and the economic sector. However, the magnitude of the effect is different according to the features of employees and firms. This means that the results are robust to different specifications and the inclusion of different control variables. On the other hand, in most of the cases the effect of process innovation is negative, but the displacement effect is not significant. This might vary depending on features associated to the firms e.g., innovation intensity, firm size, industry or service sector– and type of employment under analysis.

References

- Aboal, D., Garda, P., Lanzilotta, B., and Perera, M. (2011). Innovation, firm size, technology intensity, and employment generation in uruguay: The microeconometric evidence. *Inter-American Development Bank*.
- Aghion, P. and Howitt, P. (1992). A model of growth through creative destruction. *Econometrica*, 60(2):323–351.
- Alvarez, R., Benavente, J., Campusano, R., and Cuevas, C. (2011). Employment generation, firm size, and innovation in chile. *Inter-American Development Bank*.
- Antonucci, T. and Pianta, M. (2002). Employment effects of product and process innovation in europe. International Review of Applied Economics, 16(3):295–307.
- Benavente, J. and Lauterbach, R. (2008). Technological innovation and employment: Complements or substitutes? The European Journal of Development Research, 20(2):318–329.
- Caroli, E. and Reenen, J. V. (2001). Skill-biased organizational change? evidence from a panel of british and french establishments. *Quarterly journal of economics*, 116(4):1449–1492.

- Castillo, V., Maffioli, A., Rojo, S., and Stucchi, R. (2011). Employment generation, firm size, and innovation in argentina. *Inter-American Development Bank*.
- Coe, D. and Helpman, E. (1995). International r and d spillovers. *European Economic Review*, 39(5):859–887.
- Crespi, G. and Tacsir, E. (2012). Effects of innovation on employment in latin america. *Inter-*American Development Bank.
- Crespi, G. and Zuniga, P. (2012). Innovation and productivity: evidence from six latin american countries. *World Development*, 40(2):273–290.
- Dachs, B. and Peters, B. (2014). Innovation, employment growth, and foreign ownership of firms: A european perspective. *Research Policy*, 43(1):214–232.
- DANE (2014). Colombian great integrated household survey.
- Evangelista, R. and Savona, M. (2003). Innovation, employment and skills in services. firm and sectoral evidence. *Structural Change and Economic Dynamics*, 14(4):449–474.
- Fagerberg, J. (2006). Innovation, a guide to the literature. In Fagerberg, J., Mowery, D., and Nelson, R., editors, *The Oxford Handbook of Innovation*. Oxford University Press, Oxford.
- Greenan, N. and Guellec, D. (2000). Technological innovation and employment reallocation. *Labour*, 14(4):547–590.
- Griliches, Z. (1979). Issues in assessing the contribution of research and development to productivity growth. *Bell Journal of Economics*, 10:92–116.
- Hall, B., Lotti, F., and Mairesse, J. (2008). Employment, innovation, and productivity: evidence from italian microdata. *dustrial and Corporate Change*, 17(4):813–839.
- Harrison, R., Jaumandreu, J., Mairesse, J., and Peters, B. (2014). Does innovation stimulate employment? a firm-level analysis using comparable micro-data from four european countries. *International Journal of Industrial Organization*, 35:29 – 43.
- Jaumandreu, J. (2003). Does innovation spur employment? a firm-level analysis using spanish cis data. Universidad Carlos III de Madrid., 17(4):813–839.

- Keller, W. (1998). Are international r and d spillovers trade-related?: Analyzing spillovers among randomly matched trade partners. *European Economic Review*, 42(8):1469–1481.
- Lachenmaier, S. and Rottmann, H. (2011). Effects of innovation on employment: A dynamic panel analysis. International Journal of Industrial Organization, 29(2):210–220.
- OCYT (2014). Colombian indicators of science and technology 2013.
- OECD (2013). Oecd reviews of innovation policy colombia: Overall assessment and recommendations.
- Peters, B. (2005). Employment effects of different innovation activities: Microeconometric evidence. ZEW Discussion Papers.
- Pianta, M. (2006). Innovation and employment. In Fagerberg, J., Mowery, D., and Nelson, R., editors, *The Oxford Handbook of Innovation*. Oxford University Press, Oxford.
- Piva, M. and Vivarelli, M. (2005). Innovation and employment: evidence from italian microdata. Journal of Economics, 86(1):65–83.
- Romer, P. (1990). Endogenous technological change. Journal of political Economy, pages S71–S102.
- Smolny, W. (1998). Innovations, prices and employment: A theoretical model and an empirical application for west german manufacturing firms. The Journal of Industrial Economics, 46(3):359–381.
- Tancioni, M. and Simonetti, R. (2002). A macroeconometric model for the analysis of the impact of technological change and trade on employment. *Journal of Interdisciplinary Economics*, 13:185– 221.
- van Pottelsberghe, B. and Lichtenberg, F. (2001). Does foreign direct investment transfer technology across borders? The Review of Economics and Statistics, MIT Press, 83(3):490–497.
- van Reenen, J. (1997). Employment and technological innovation: Evidence from manufacturing firms. *Journal of Labor Economics*, 15(2):255–284.
- Verspagen, B. (2006). Innovation and employment. In Fagerberg, J., Mowery, D., and Nelson, R., editors, *The Oxford Handbook of Innovation*. Oxford University Press, Oxford.

Vivarelli, M. (2011). Employment and skills in advanced and developing countries: A survey of the literature. *Inter-American Development Bank*.

Annex

Variable	Definition
Employment Growth	Annual growth rate of the firms number of employees
Sales Growth	Annual growth rate of the firms sales
Sales Growth dt new products	Ratio of total new sales to past sales old
Sales Growth dt old products	Ratio of current sales old minus past sales old to past sales old
Price Growth	Annual price Growth, is available for each firm.
Labour Cost Growth	Annual growth rate of the firms labour costs (measured as total remuneration plus social benefits and fiscal
	contributions per employee)
Non-innovator	Dummy which takes the value of 1 if the firm did not introduce any process or product innovation during
	the period
Process Innovation	Dummy which takes the value of 1 if the firm Introduced new or significantly improved methods of service
	delivery, production, distribution, or logistics.
Product Innovation	Dummy which takes the value of 1 if the firm Introduced at least one new product.
Process Innovation Only	Dummy which takes the value of 1 if Product innovation=0 and Process innovation=1
Process and Product Innovation	Dummy which takes the value of 1 if Product innovation=1 and Process innovation=1
Organizational Change	Dummy which takes the value of 1 if the firm Introduced new organizational methods
commercialization Change	Dummy which takes the value of 1 if the firm Introduced new marketing techniques
Client	Dummy which takes the value of 1 if Clients ha been a source of innovation
increase market share	Dummy which takes the value of 1 if innovation has allowed to mantain or increase market share
increased range	Dummy which takes the value of 1 if innovation has allowed increasing quality or range of goods and
	services
obstacles to innovate	3 different type of obstacles to innovation averaged across firms located in the same metropolitan area
R&D intensity	Ratio of total R&D expenditure to sales
Innovation intensity	Ratio of total innovation expenditure to sales
Patent	Dummy which takes the value of 1 if the firm applied for a patent during the years of analysis
Located in the Capital	Dummy which takes the value of 1 if the firm is located in Bogot, the capital of Colombia
Foreign Owned	Dummy which takes the value of 1 if the firm has 10% or more foreign capital participation
Fixed Assets Growth	Annual growth rate of the firms fixed assets
Source: All the information	n was provided by National Statistics Department of Colombia DANE

 Table 16:
 Variable Definitions and Sources

	Manufac	cturing Firms 2007-2010	Servi	ce Firms 2010-2011		
Small		50.8%		35.3%		
Medium		34.1%	36.7%			
large		15.1%		28.0%		
Non-innovators		65.5%		65.6%		
Process only		23.2%		5.7%		
Product innovators		11.3%		28.7%		
Process and Product Innovators		3.7%		10.7%		
Located in the Capital		42.5%		51.35%		
Foreign Owned		9.3%		-		
	Mean	Standard Deviation	Mean	Standard Deviation		
Employment Growth	3.0%	0.3751	6.0%	0.258		
Sales Growth	14.0%	3.8723	8.6%	0.363		
Sales Growth dt new products	4.3%	0.3103	5.9%	0.170		
Sales Growth dt old products	9.6%	3.8670	2.7%	0.383		
Unskilled Labor Growth	3.8%	0.5117	2.3%	0.505		
Skilled Labor Growth	11.7%	1.1219	14.3%	0.530		
Full-employment Growth	12.2%	1.8710	-	-		
Part-time employment Growth	46.7%	5.9708	-	-		
Female employment Growth	9.6%	0.7500	-	-		
Male employment Growth	5.6%	0.5324	-	-		
Total Labor Cost Growth	8.1%	0.2783				
R&D intensity	0.3%	0.0219	8.5%	1.117		
Innovation intensity	6.2%	0.1717	15.5%	1.369		
Prices Growth	2.0%	0.4319	3.5%	0.026		
Source: Authors' estimations.						

 Table 17: Descriptive Statistics

Table 18: Innovation by Industr	у
---------------------------------	---

	Тс	otal	Non-Ir	novator	Proce	ss Only	Produ	ct Only	Process	and Product
Manufacturing Firms	Freq	%	Freq	%	Freq	%	Freq	%	Freq	%
Food products and beverages	1565	18.93	1007	12.18	428	5.18	78	0.94	52	0.63
tobacco products	4	0.05	-	-	3	0.04	0	0	0	0
textiles	371	4.49	263	3.18	82	0.99	20	0.24	6	0.07
wearing apparel	711	8.6	486	5.88	111	1.34	88	1.06	26	0.31
Tanning and dressing of leather	325	3.93	250	3.02	53	0.64	19	0.23	3	0.04
Wood and of products of wood and cork	160	1.94	112	1.35	26	0.31	16	0.19	6	0.07
Paper and paper products	215	2.6	111	1.34	73	0.88	23	0.28	8	0.1
Printing and reproduction of recorded media	531	6.42	328	3.97	101	1.22	66	0.8	36	0.44
Coke, refined petroleum products and nuclear	35	0.42	24	0.29	8	0.1	-	-	-	-
fuel										
Chemicals and chemical products	787	9.52	495	5.99	221	2.67	43	0.52	28	0.34
Rubber and plastics products	760	9.19	493	5.96	177	2.14	58	0.7	32	0.39
Other non-metallic mineral products	444	5.37	293	3.54	105	1.27	28	0.34	18	0.22
Basic metals	175	2.12	104	1.26	42	0.51	19	0.23	10	0.12
fabricated metal products	571	6.91	391	4.73	123	1.49	39	0.47	18	0.22
Machinery and equipment n.e.c.	532	6.44	352	4.26	113	1.37	49	0.59	18	0.22
Office, accounting and computing machinery	-	-	0	0	-	-	0	0	0	0
Electrical machinery and apparatus n.e.c.	199	2.41	122	1.48	63	0.76	7	0.08	7	0.08
Communication equipment and apparatus	22	0.27	15	0.18	5	0.06	-	-	0	0
Medical, precision and optical instruments	64	0.77	47	0.57	9	0.11	6	0.07	-	-
Motor vehicles, trailers and semi-trailers	215	2.6	143	1.73	49	0.59	16	0.19	7	0.08
Other transport equipment	46	0.56	32	0.39	8	0.1	-	-	4	0.05
Furniture; manufacturing n.e.c.	532	6.44	345	4.17	117	1.42	48	0.58	22	0.27
A dash represents reserved information.										
Source: Authors' estimations.										

		F	ull-time	Employme	ent			Pa	art-time	Employr	nent	
	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(2)	(3)	(4)	(5)	(6)
Constant	-0.225	-0.217	-0.192	0.044	0.144	0.136	0.420	0.428	0.484	0.495	-0.071	0.315
	(0.588)	(0.588)	(0.587)	(0.218)	(0.233)	(0.231)	(0.603)	(0.605)	(0.608)	(0.610)	(0.353)	(0.224)
Process Innovation Only	0.057	0.049	0.023	0.020	0.030	0.037	0.079	0.070	0.014	0.004	0.001	0.019
	(0.072)	(0.065)	(0.059)	(0.056)	(0.056)	(0.053)	(0.151)	(0.158)	(0.168)	(0.175)	(0.176)	(0.140)
Sales growth dt new products	0.323***	0.324***	0.323***	0.331***	0.326***	0.325***	0.259*	0.255	0.253*	0.239	0.238	0.237
	(0.067)	(0.067)	(0.066)	(0.070)	(0.065)	(0.065)	(0.155)	(0.155)	(0.151)	(0.154)	(0.154)	(0.152)
Located in the capi- tal		-0.076	-0.071	-0.091	-0.003	-0.007		-0.118	-0.128	-0.103	-0.103	-0.099
		(0.100)	(0.097)	(0.099)	(0.050)	(0.050)		(0.123)	(0.124)	(0.128)	(0.128)	(0.128)
Foreign Owned		0.019	-0.052	-0.046	-0.165**	-0.118**		-0.163*	-0.212	-0.363**	-0.368**	-0.233*
0		(0.059)	(0.063)	(0.059)	(0.074)	(0.051)		(0.089)	(0.131)	(0.183)	(0.185)	(0.093)
Exports dummy		()	-0.003	()	()	()		()	-0.423*	()	()	()
Madium aina			(0.081)	0.116	0.022				(0.232)	0.150	0.155	
Medium size			(0.084)	(0.006)	-0.022				(0.196)	(0.105)	(0.103)	
Pig size			0.108*	(0.090)	(0.040)				(0.120) 0.717	0.105)	(0.104)	
Dig size			(0.136)	(0.223)	(0.133)				(0.495)	(0.444)	(0.440)	
Commercialization			(0.114)	(0.130)	(0.131)	0.020			(0.495)	(0.409)	(0.410)	0.130
Change						(0.055)						(0.200)
Labor cost Growth				-0.317***	-0.110	-0.109				0.001	0.001	0.001
0000 01010H				(0.094)	(0.193)	(0.192)				(0.001)	(0.001)	(0.001)
Fixed Assets Growth				(0.001)	-0.769***	-0.769***				(0.001)	-0.020	-0.021
					(0.125)	(0.125)					(0.016)	(0.015)
Number of firms	7800	7800	7800	7469	7454	7454	6549	6549	6549	6254	6237	6237
Robust standard error	s are repo	orted in bra	ackets. All	regressions	include inc	lustry dum	mies.					

Table 19: Manufacturing firms. OLS estimations by Type of Labor (Full-time and Part-time).Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

Table 20: Manufacturing firms. IV estimations by Type of Labor (Full-time and Part-time).Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

			Evil tim	o Employ					Dont time	Employm	ant	
	(1)	(0)	Full-tim	e Employi	ment	(0)	(1)	(0)	Part-time	Employn	ient	(0)
0 1 1	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(2)	(3)	(4)	(5)	(6)
Constant	-0.168	-0.174	-0.171	0.109	0.074	0.327	0.366	0.216	0.206	-0.075	-0.073	-0.302
	(0.948)	(0.948)	(0.948)	(0.558)	(0.559)	(0.354)	(2.840)	(2.866)	(2.869)	(2.857)	(2.861)	(2.345)
Process Innovation	-0.001	0.006	0.003	0.001	-0.000	0.003	0.132	0.283	0.293	0.570	0.570	0.560
Only												
	(0.049)	(0.049)	(0.049)	(0.041)	(0.041)	(0.041)	(0.447)	(0.480)	(0.476)	(0.487)	(0.486)	(0.494)
Sales growth dt new	0.227	0.265	0.254	0.292^{*}	0.291^{*}	0.293^{*}	0.039	1.696	1.918	3.951	3.957	3.944
products												
	(0.211)	(0.210)	(0.210)	(0.173)	(0.173)	(0.173)	(4.753)	(5.100)	(5.052)	(5.071)	(5.057)	(5.155)
Located in the capi-		0.058	0.057	0.067^{*}	0.065^{*}	0.065^{*}		0.063	0.071	0.087	0.088	0.078
tal												
		(0.047)	(0.047)	(0.039)	(0.039)	(0.039)		(0.162)	(0.161)	(0.164)	(0.164)	(0.165)
Foreign Owned		-0.015	-0.005	-0.023	-0.020	-0.007		-0.189	-0.121	-0.158	-0.159	-0.094
		(0.070)	(0.075)	(0.061)	(0.061)	(0.058)		(0.224)	(0.233)	(0.227)	(0.228)	(0.227)
Exports dummy			-0.084						-0.464***			
- ·			(0.052)						(0.167)			
Medium size			0.024	-0.008	-0.009				0.334*	0.265	0.265	
			(0.053)	(0.043)	(0.043)				(0.180)	(0.183)	(0.184)	
Big size			0.069	0.033	0.031				0.417*	0.270	0.272	
			(0.067)	(0.052)	(0.052)				(0.217)	(0.203)	(0.203)	
Commercialization			(0.001)	(0.00-)	(0.00=)	-0.034			(0.221)	(01200)	(01200)	0.136
Change						0.001						01100
Change						(0.042)						(0.160)
Labor cost Growth				-0.217***	-0.226***	-0.227***				0 744***	0 744***	0 740***
Labor cost Growth				(0.033)	(0.034)	(0.034)				(0.037)	(0.037)	(0.037)
Fixed Assets Crowth				(0.000)	0.023*	0.023*				(0.001)	-0.004	-0.003
Fixed Assets Glowin					(0.023)	(0.023)					(0.061)	-0.003
Number of firms	9649	9649	9649	2520	2521	2521	2200	2200	2200	2176	2171	2171
Number of firms	3043 4 667	0 5040	0.260	1 496	1 5 4 7	1 4 4 9	3299	0299 9 415	3299	2 054	2 005	01/1 0.005
Sargan test	4.007	9.000	9.209	1.460	1.047	1.440	2.009	0.410	0.144	5.054	2.905	0.000
P-value	0.198	0.023	0.026	0.686	0.672	0.694	0.558	0.332	0.370	0.383	0.407	0.343
Durbin-Wu-	0.087	0.011	0.028	0.001	0.000	0.001	0.299	0.388	0.398	0.398	0.374	0.314
Hausman test		0.010	0.000	0.001							0 5 44	
P-value	0.768	0.916	0.866	0.981	0.987	0.970	0.585	0.533	0.528	0.528	0.541	0.575
Robust standard error	s are rep	orted in l	orackets.	All regressi	ons include	industry du	immies.					

Significance at the *** 1%, **5% and * 10% level.

Source: Authors' estimations.

instruments used are client, innovation effort interacted with increased market share, increased range and obstacles to innovation

 Table 21: Manufacturing firms. OLS estimations by Type of Labor (Female and Male).
 Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

			Female E	mploymeı	nt				Male En	nploymen	t	
	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(2)	(3)	(4)	(5)	(6)
Constant	0.805	0.815	0.839	-0.005	1.381	1.494	0.028	0.055	-0.063	-0.065	1.326	1.413
	(0.940)	(0.940)	(0.939)	(0.189)	(0.982)	(0.989)	(0.103)	(0.112)	(0.128)	(0.118)	(0.941)	(0.947)
Process Innovation	0.026	0.017	-0.007	-0.004	-0.001	-0.018	0.043	0.034	0.011	0.014	0.016	0.009
Only												
	(0.062)	(0.054)	(0.043)	(0.044)	(0.044)	(0.042)	(0.061)	(0.052)	(0.041)	(0.042)	(0.040)	(0.039)
Sales growth dt new	0.296^{***}	0.297^{***}	0.295^{***}	0.295^{***}	0.285^{***}	0.283^{***}	0.309***	0.309^{***}	0.308^{***}	0.307^{***}	0.295^{***}	0.294^{***}
products												
	(0.096)	(0.096)	(0.096)	(0.096)	(0.091)	(0.090)	(0.093)	(0.093)	(0.093)	(0.092)	(0.087)	(0.087)
Located in the capi-		-0.087	-0.083	-0.081	-0.002	-0.004		-0.080	-0.076	-0.074	0.006	0.004
tal												
		(0.089)	(0.087)	(0.088)	(0.041)	(0.040)		(0.088)	(0.086)	(0.087)	(0.038)	(0.038)
Foreign Owned		0.034	-0.038	-0.031	-0.154^{**}	-0.119**		0.040	-0.025	-0.019	-0.141^{***}	-0.111^{**}
		(0.055)	(0.035)	(0.040)	(0.060)	(0.052)		(0.051)	(0.026)	(0.031)	(0.054)	(0.047)
Exports dummy			0.022						0.018			
			(0.065)						(0.062)			
Medium size			0.099	0.102	-0.021				0.118^{*}	0.119	-0.001	
			(0.073)	(0.083)	(0.036)				(0.071)	(0.082)	(0.034)	
Big size			0.167^{***}	0.176^{**}	0.116^{*}				0.149^{***}	0.155^{**}	0.096	
			(0.064)	(0.077)	(0.069)				(0.051)	(0.070)	(0.060)	
Commercialization						0.107^{**}						0.063
Change												
						(0.050)						(0.043)
Labor cost Growth				-0.154^{*}	-0.012	-0.015				-0.175^{**}	-0.033	-0.035
				(0.081)	(0.095)	(0.096)				(0.075)	(0.089)	(0.089)
Fixed Assets Growth					-0.766***	-0.766***					-0.768^{***}	-0.768^{***}
					(0.127)	(0.127)					(0.125)	(0.125)
Number of firms	8201	8201	8201	8199	8175	8175	8245	8245	8245	8243	8219	8219
Robust standard error	s are repor	rted in bra	ckets. All r	egressions i	nclude indu	stry dumm	ies.					

Significance at the *** 1%, **5% and * 10% level.

Source: Authors' estimations.

Table 22: Manufacturing firms. IV estimations by Type of Labor (Female and Male).Dependent Variable: $\ell_i - (g_{1i} - \pi_i)$

			Female	Employm	ent				Male I	Employme	nt	
	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(2)	(3)	(4)	(5)	(6)
Constant	0.873	0.871	0.871	0.876	0.857	0.836	0.286	0.287	0.287	0.290	0.289	0.288
	(0.605)	(0.605)	(0.605)	(0.604)	(0.604)	(0.604)	(0.556)	(0.556)	(0.556)	(0.556)	(0.556)	(0.556)
Process Innovation	-0.041	-0.040	-0.039	-0.037	-0.039	-0.045	-0.035	-0.036	-0.036	-0.034	-0.035	-0.035
Only												
	(0.030)	(0.030)	(0.030)	(0.030)	(0.030)	(0.031)	(0.028)	(0.028)	(0.028)	(0.028)	(0.028)	(0.028)
Sales growth dt new	0.265**	0.275**	0.277**	0.277**	0.274^{**}	0.267^{**}	0.313**	0.314**	0.310**	0.315^{**}	0.314^{**}	0.314**
products												
	(0.130)	(0.130)	(0.130)	(0.130)	(0.130)	(0.129)	(0.123)	(0.123)	(0.123)	(0.123)	(0.123)	(0.123)
Located in the capi-		0.015	0.015	0.017	0.016	0.015		-0.007	-0.008	-0.006	-0.006	-0.005
tal												
		(0.029)	(0.029)	(0.029)	(0.029)	(0.029)		(0.027)	(0.027)	(0.027)	(0.027)	(0.027)
Foreign Owned		-0.004	-0.021	-0.022	-0.016	-0.001		-0.010	-0.012	-0.021	-0.021	-0.012
ě		(0.044)	(0.047)	(0.046)	(0.046)	(0.044)		(0.041)	(0.043)	(0.043)	(0.043)	(0.041)
Exports dummy		. ,	0.004	. ,				. ,	-0.029	. ,		· /
			(0.032)						(0.030)			
Medium size			-0.029	-0.031	-0.030				-0.014	-0.023	-0.024	
			(0.033)	(0.032)	(0.032)				(0.030)	(0.029)	(0.029)	
Big size			0.035	0.036	0.035				0.033	0.019	0.018	
0			(0.042)	(0.039)	(0.039)				(0.039)	(0.036)	(0.036)	
Commercialization			()	()	()	0.056^{*}			()	()	()	0.002
Change												
						(0.031)						(0.029)
Labor cost Growth				-0.127***	-0.134***	-0.134***				-0.105***	-0.105***	-0.104***
				(0.043)	(0.043)	(0.043)				(0.039)	(0.039)	(0.039)
Fixed Assets Growth				(01010)	0.037***	0.037***				(0.000)	0.004	0.004
					(0.010)	(0.010)					(0.009)	(0.009)
Number of firms	3786	3786	3786	3784	3776	3776	3806	3806	3806	3804	3796	3796
R-sa	0.018	0.018	0.018	0.021	0.025	0.025	0.017	0.017	0.018	0.019	0.019	0.019
adi. R-so	0.012	0.011	0.011	0.013	0.017	0.018	0.011	0.011	0.011	0.012	0.012	0.012
Sargan test	2.069	3.415	3.144	3.054	2.905	3.335	0.592	0.536	0.556	0.438	0.469	0.521
P-value	0.558	0.332	0.370	0.383	0.407	0.343	0.898	0.911	0.907	0.932	0.926	0.914
Durbin-Wu-	0.299	0.388	0.398	0.398	0.374	0.314	0.861	0.875	0.801	0.881	0.877	0.884
Hausman test												
P-value	0.585	0.533	0.528	0.528	0.541	0.575	0.353	0.350	0.371	0.348	0.349	0.347
Bobust standard erro	rs are ren	orted in h	rackets A	ll regression	ns include i	dustry dur	nmies					

Significance at the 1%, **5% and * 10% level.

instruments used are client, innovation effort interacted with increased market share, increased range and obstacles to innovation Source: Authors' estimations.