ANÁLISIS Y COMPARACIÓN ENTRE EL PROCESO DE CENTRIFUGADO E INYECCIÓN PARA LA FABRICACIÓN DE PIEZAS EN ZAMAC

ANDRÉS FELIPE GALLEGO ALZATE

UNIVERSIDAD EAFIT ESCUELA DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA MEDELLÍN 2008

ANÁLISIS Y COMPARACIÓN ENTRE EL PROCESO DE CENTRIFUGADO E INYECCIÓN PARA LA FABRICACIÓN DE PIEZAS EN ZAMAC

ANDRÉS FELIPE GALLEGO ALZATE

Proyecto de grado para optar por el título de Ingeniero Mecánico

Asesor MARCO AURELIO PANIAGÜA Ingeniero metalúrgico.

UNIVERSIDAD EAFIT ESCUELA DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA MEDELLÍN 2008

TABLA DE CONTENIDO

INTRODUCCIÓN	10
JUSTIFICACIÓN	12
OBJETIVOS	13
OBJETIVO GENERAL	13
OBJETIVOS ESPECÍFICOS	13
1. MARCO TEÓRICO	14
1.1 ZAMAC	14
1.2 PROCESOS DE FABRICACIÓN	17
1.2.1 Fundición centrífuga	17
1.2.2 Proceso de inyección	21
2. MATERIALES Y MÉTODOS	24
2.1 TIPO DE ALEACIÓN	24
2.2 PROCESOS DE FABRICACIÓN	25
2.2.1 Fundición centrifuga	25
2.2.2 Inyección	28
2.3 PRUEBAS REALIZADAS	29
2.3.1 Ensayos mecánicos	29
2.3.2 Ensayos de dureza	34
2.3.3 Ensayo metalográfico.	36
2.3.4 Evaluación del recubrimiento	40
3. RESULTADOS Y ANÁLISIS	41
3.1 ENSAYOS MECÁNICOS	41

3.2	ENSAYO DE DUREZA	44
3.3	ENSAYOS METALOGRÁFICOS	51
3.4	RECUBRIMIENTO.	56
3.5	ANÁLISIS EN ELEMENTOS FINITOS	61
4.	CONCLUSIONES Y RECOMENDACIONES	70
BIB	LIOGRAFÍA	73

INDICE DE TABLAS

Tabla 1. Ventajas y desventajas del proceso de fundición centrífuga	20
Tabla 2. Ventajas y desventajas del proceso de fundición por inyección	23
Tabla 3. Medidas de las probetas en el proceso centrifugado	31
Tabla 4. Medidas de las probetas en el proceso por inyección	32
Tabla 5. Valores del ensayo de flexión en las probetas	41
Tabla 6. Esfuerzo de flexión de las probetas	44
Tabla 7. Medidas de las diagonales en el proceso de fundición por centrifugado	47
Tabla 8. Medidas de las diagonales en el proceso de fundición por inyección	50
Tabla 9. Dureza en Vickers de los procesos en las piezas analizadas	50
Tabla 10. Valores de tamaños de grano en las piezas por centrifugado	54
Tabla 11. Valores de tamaños de grano en las piezas por inyección	55
Tabla 12. Valores de las capas obtenidas para la pieza de inyección	59
Tabla 13. Valores de las capas obtenidas para la pieza de centrifugado	60
Tabla 14. Promedio de la capa obtenida en los diferentes procesos	60
Tabla 15. Ventajas y desventajas al agregar más recubrimiento en las piezas.	61

ÍNDICE DE FIGURAS

Figura 1. Propiedades mecánicas típicas de algunas aleaciones de zinc	15
Figura 2. Máquina fundición centrífuga real	18
Figura 3. Máquina de fundición semicentrífuga	19
Figura 4. Máquina de fundición por centrifugado	19
Figura 5. Fundición con cámara caliente	22
Figura 6. Fundición con cámara fría	22
Figura 7. Molde en silicona con algunas salidas del aire	26
Figura 8. Estableciendo los parámetros en una máquina centrifuga.	27
Figura 9. Piezas completas en el molde	27
Figura 10. Pieza sobre los apoyos en la máquina Instron	31
Figura 11. Flexión simple	33
Figura 12. Penetrador para determinar la dureza en vickers.	35
Figura 13. Diagrama de fase Al-zinc	37
Figura 14. Piezas con cortes transversales	38
Figura 15. Probetas con el recubrimiento de resina	39
Figura 16. Proceso de pulido con una referencia de lija.	39
Figura 17. Diagrama Carga vs. Desplazamiento por fundición centrífuga	42
Figura 18. Diagrama Carga vs. Desplazamiento por fundición por inyección	42
Figura 19.Comparación entre fundición por inyección y centrífuga.	43
Figura 20 a), b) y c).Huellas generadas por el penetrador en centrifigado	45
Figura 21. a), b) y c). Diagonales en piezas elaboradas por centrifugado	46
Figura 22 a), b) y c). Huellas generadas por el penetrador en inyección	48

Figura 23. a), b) y c). Diagonales en piezas elaboradas por inyección	49
Figura 24. Micrografías de las piezas por centrifugado a) 500X y b) 1000X	51
Figura 25. Micrografías de las piezas por inyección a) 1000X y b) 500X	52
Figura 26. Área de Fractura de una pieza por centrifugado. 2X	53
Figura 27. Área de Fractura de una pieza por inyección. 3X	53
Figura 28. Tamaño de grano en las piezas obtenidas por un proceso centrífugo.	54
Figura 29. Tamaño de grano en las piezas obtenidas de inyección	55
Figura 30. Primera medición del grosor de la capa obtenida	56
Figura 31.Segunda medición del grosor de la capa obtenida	57
Figura 32. Tercera medición del grosor de la capa obtenida	57
Figura 33. Primera medición del grosor de la capa obtenida	58
Figura 34. Segunda medición del grosor de la capa obtenida	58
Figura 35.Tercera medición del grosor de la capa obtenida	59
Figura 36. Planos generales de la pieza a realizar	63
Figura 37. Nombre de la pieza con extensión IGES	63
Figura 38. Nombre de la pieza para convertír la parte por solido	64
Figura 39. Mallado completo de la pieza	64
Figura 40. Definición de los elementos del modelo	65
Figura 41. Restricciones en todas las direcciones de los nodos laterales	66
Figura 42. Condiciones de carga.	67
Figura 43. Resultados de esfuerzos en la pieza analizada, superior	68
Figura 44. Resultados de esfuerzos en la pieza analizada, Inferior.	69

INTRODUCCIÓN

Uno de los principales objetivos en el mundo de la industria, sino el más importante, es encontrar un punto óptimo entre la calidad y los precios, es por ello que siempre se han buscado alternativas para poder obtener piezas de buena calidad y al menor costo posible. En el área industrial, más específicamente en la ornamental o de bisutería, en los herrajes se busca encontrar y probar diversos materiales que cumplan con los requerimientos y especificaciones que el cliente desea y así, posiblemente tener una buena calidad a un costo menor.

En la actualidad existe un material que está cumpliendo con estos requerimientos en cuanto a calidad y precio, el Zamac; éste metal a base de Cinc, gracias a sus propiedades proporciona en acabados y diseños infinidad de formas y texturas que lo hacen muy atractivo en el área de la bisutería.

Existen diversas formas de producción de piezas, tales como: gravedad, por coquilla, por inyección en frio y en caliente, por el proceso de fundición en centrífuga, entre otros; los dos más utilizados en la ciudad de Medellín para las aleaciones a base de Cinc (Zamac) por su facilidad de producción, y bajo costo en cuanto a infraestructura y materiales de producción, son el de inyección y el proceso por centrífuga y sus principales diferencias radican en los materiales y procedimientos que se usan en cada una de las mismas.

Las piezas en Zamac son obtenidas en varias empresas que ven en sus propiedades mecánicas y bajos costos una forma atractiva de producción de piezas. Por lo general, cuando se utilizan este material en los procesos de centrifugado e inyección, con parámetros específicos, lo que se obtiene es una pieza que mediante procesos de pulido y galvanoplastia cumple con los requerimientos que el cliente desea, pero ignorando cuál de estos procesos

10

genera un mejor resultado en cuanto a resistencia mecánica, porosidad o dureza. El objetivo de este trabajo es realizar una comparación de estas piezas analizando su microestructura y sus propiedades mecánicas.

Al realizar una comparación entre las piezas fabricadas mediante estos procesos (centrifugado e inyección), se determinarán las diferencias en cuanto a porosidad y microestructura, para determinar como éstas pueden afectar la resistencia mecánica de las mismas.

JUSTIFICACIÓN

Este estudio se justifica por el hecho de abordar en el conocimiento de la estructura y propiedades obtenidas en las piezas procesadas para lograr la mejora en los procesos productivos, tendiendo a reducir costos y mejorar la calidad del producto final.

Además de obtener piezas con excelentes acabados superficiales, se debe conocer y garantizar que cumplan requisitos como resistencia mecánica, dureza y microestructura, que se deben tener en cuenta a la hora de determinar el mejor proceso y los errores en los mismos.

Las aleaciones a base de Cinc (Zamac), aunque son muy utilizados en la industria no son muy conocidas por personas que no están en continuo contacto con materiales, es por ello que también se busca dar algunas nociones sobre este material, usos y aplicaciones en los procesos de inyección y centrifugado.

Al estar las piezas sometidas a fuerzas de flexión, estas podrían sufrir una ruptura, es por ello que se debe conocer como es el comportamiento de la pieza, al estar expuesta a esta carga.

OBJETIVOS

OBJETIVO GENERAL

Comparar piezas de bisutería fabricadas en Zamac bajo procesos de centrifugado e inyección, en cuanto a microestructura y propiedades mecánicas.

OBJETIVOS ESPECÍFICOS

- Investigar sobre el Zamac, usos, aplicaciones.
- Investigar cómo se deben procesar piezas de Zamac en inyección y centrifugado y encontrar sus diferencias.
- Realizar pruebas de resistencia mecánica a la flexión, en piezas fabricadas por los procesos de centrifugado y de inyección.
- Realizar análisis metálograficos para observar la microestructura de diferentes aleaciones de Zamac y diferentes procesos de manufactura.
- Evaluar el efecto de los procesos de galvanizado en piezas que han tenido un recubrimiento, evaluando parámetros como grosor de la capa obtenida.
- Evaluar la dureza de las piezas a analizar.
- Realizar un análisis en elementos finitos de una de las piezas y observar como es su comportamiento al estar sometido a esfuerzos de flexión

1. MARCO TEÓRICO

1.1 ZAMAC

El Zamac ó Zamak en ingles, son las aleaciones más conocidas para la fundición a presión, éstas fueron introducidas a la industria al final de 1920. El Zamac como aleación a base de cinc, posee características diferentes en cuanto a resistencia mecánica y dureza. En la actualidad se conocen infinidad de aleaciones a base de zinc que según su composición le proporciona su uso, las piezas de Zamac son utilizadas muy comúnmente desde perillas para puertas, hasta partes de automóviles.

El Zamac es una aleación de cinc con aluminio, magnesio y cobre. En su forma más pura, el cinc se encuentra disponible como lingotes y en polvo. Cuando se excede los límites de impurezas, éstas proporcionan mala resistencia mecánica y bajas propiedades a la corrosión. Las piezas también podrían ser utilizadas con adiciones de recubrimientos electro galvánico que ayudan a la resistencia a la corrosión. Las piezas hechas en Zamac podrían llegar a ser de menor costo que otras aleaciones y con mejores resistencias mecánicas y colabilidad. En la Figura 1 se observan las composiciones químicas y propiedades de las aleaciones de Zamac.

Figura 1. Propiedades mecánicas típicas de algunas aleaciones de zinc

COMPOSICIONES DEL MATERIAL, PORCENTAJE APROXIMADO	TRATAMIENTO	RESIS- TENCIA TENSIL, LB/PULG ²	ELONGA- CIÓN, PORCEN- TAJE EN 2 PULG	BHN, BOLA DE 10 MM
A catio printine s	ALEACIONES F	ORJADAS	Applies Base	NOCE BORROOM
Zinc comercial laminado (estirado profundo), 0.08 máx. Pb, bal, Zn	Laminado en caliente Laminado en caliente Laminado en frio Laminado en frio	19 500 23 000 21 000 27 000	65 50 40	38 38 138 100 100 100 100 100 100 100 100 100 10
Zinc comercial laminado, 0.05-0.10 Pb, 0.05-0.08 Cd, bal. Zn	Laminado en caliente Laminado en caliente Laminado en frío Laminado en frío	21 000 25 000 22 000 29 000	52 30 40 30	43 43
Zinc comercial laminado, 0.25-0.50 Pb, 0.25-0.45 Cd, bal, Zn	Laminado en caliente Laminado en caliente Laminado en fríot Laminado en fríot	23 000 29 000 25 000 31 000	50 32 45 28	47 (47) (19)
Aleación de zinc al cobre laminada y endurecida, 0.85-1.25 Cu, bal. Zn	Laminado en caliente; Laminado en caliente; Laminado en frío; Laminado en frío;	24 000 32 000 32 000 40 000	20 15 5 3	52
Aleación al zinc laminada, 0.85-1.25 Cu 0.006-0.016 Mg, bal. Zn	Laminado en caliente Laminado en caliente Laminado en frío Laminado en frío	28 000 36 000 37 000 48 000	20 10 20 20	61 (1997) (1997) 80 (1997) (19977) (19977) (1997) (1997) (1997) (1997) (1997) (
F. an internation	ALEACIONES	FUNDIBLES	Contraction Contraction	e concerned of
Zamak-3, SAE 903, ASTM AG40A (XX111), 3.5-4.3 Al, 0.03-0.08 Mg, 0-0.15 máx Cu, bal. Zn (99.99%)	Fundido en troquel	41 000	10	82
Zamak-5, SAE 925, ASTM AC41A (XXV), 3.5-4.3 AI, 0.03-0.08 Mg, 0.75-1.25 Cu, bal. Zn (99.99%)	Fundido en troquel	47 600	7	91
Zamak-2, SAE 921, ASTM (XX1), 3.5-4.5 Al, 0.02-0.10 Mg, 2.5-3.5 Cu, bal Zn (99 99%)	Fundido en molde de arena	20 000- 30 000		70-100
Zamak-5 (igual que la anterior)	Fundido en molde de arena	20 000- 30 000	the ingente	70-100

American Zinc Institute, Nucva York.
† Dirección longitudinal.
‡ Dirección transversal.

TOPERSTANT AS A BURGLOCARES OF STATE STATE TO STATE AT THE STATE AND LODGE

(AVNER, 1981. Pag. 531)

Las aleaciones de mayor importancia en la industria son Zamac 3 y Zamac 5, que corresponden a las aleaciones normalizadas SAE 903 y SAE 925 respectivamente (ver figura 1).

Los usos principales del Zamac están orientados a la fabricación de piezas automotrices, enseres para electrodomésticos y a la fabricación de herrajes diversos como: hebillas para cinturones, herrajes para zapatos, etc.

Otras aplicaciones generales son: maquinarias y herramientas en general, plomería, aparatos de calefacción, equipo de oficina, productos ópticos, artículos deportivos, juguetes y muchos otros.

Los metales aleantes sobre las aleaciones de cinc, proporcionan en su mayoría su uso, a continuación se enuncian las aplicaciones según el porcentaje de aleación:

Zamac 2.- Se utiliza en la fabricación de moldes, tales como moldes para zapatos y defensas de automóvil.

Zamac 3.- Es la aleación más estable debido a que prácticamente no contiene Cobre, es la recomendada para elaborar piezas con alto grado de dificultad, detalles complicados y contornos agudos (piezas de geometría complicada).

Zamac 5.- Contiene alrededor del 1% de Cobre mejorando con esto sus propiedades de resistencia, dureza y resistencia a la corrosión. Es la aleación más utilizada por su estabilidad dimensional y facilidad de inyectar, aplicable a carburadores, bombas de agua y gasolina.

(@FAEZA, 2008)

En el anexo 1 se puede observar la influencia que tienen los elementos aleantes sobre las aleaciones de cinc.

Existen otros tipos de aleaciones que aunque no son llamadas Zamac, pueden confundirse debido a tener una aleación cinc-aluminio. A esta familia de aleaciones se le conoce como ZA 8, ZA 12 y ZA 27; sus dígitos indican el contenido de aluminio que podría estar entre 8% y 27%. (IZAGUIRRE ARELLANO)

1.2 PROCESOS DE FABRICACIÓN

Existen diferentes procesos para la producción de piezas de metales, polímeros, cerámicos y aleaciones que según su método o procedimiento posee ventajas y desventajas en relación de los mismos. Los métodos más utilizados en la reproducción de piezas en Zamac son el proceso de inyección y de fundición por centrifugado, en el presente capitulo se mostrara la diferencia de estos procesos, en cuanto a descripción del proceso, tipos de maquinas, ventajas y desventajas.

1.2.1 Fundición centrífuga

La fundición centrífuga es un método en el que se aprovecha la fuerza centrífuga que se puede generar al hacer girar el metal en torno de un eje. En éste se deposita una capa líquida en un molde que se encuentra girando a grandes velocidades, mientras el metal se solidifica dentro del mismo. Este método es uno de los más utilizados en los procesos de fundición debido a sus amplias aplicaciones.

(@APRENDIZAJE, 2008)

Existen tres tipos de fundición centrífuga.

• Fundición centrífuga real

Es el procedimiento utilizado para la fabricación de tubos sin costura, camisas y objetos simétricos. Los moldes se llenan del material fundido de manera uniforme y se hace girar al molde sobre su eje de rotación. En la figura 2 se muestra la máquina utilizada para este proceso.

Figura 2. Máquina fundición centrífuga real

(@APRENDIZAJE, 2008)

• Fundición semicentrífuga

Es un método en el que el material fundido se hace llegar a los extremos de los moldes por la fuerza centrífuga que se genera al hacer girar los moldes, los extremos se llenan del material fundido, con buena densidad y uniformidad. El centro tiene poco material o de poca densidad. Por lo regular el centro en este tipo de sistemas de fundición es maquinado posteriormente. En la figura 3 se muestra la máquina utilizada para este proceso.

Figura 3. Máquina de fundición semicentrífuga

motor radial.

(@APRENDIZAJE, 2008)

• Centrifugado

Es un sistema donde por medio de un ramal o tallo, se hace llegar metal fundido a racimos de piezas colocadas simétricamente en la periferia. Al poner a girar el sistema se genera fuerza centrífuga, la que es utilizada para aumentar la uniformidad del metal que llena las cavidades de los moldes. En la figura 4 se muestra la máquina utilizada para este proceso.

Figura 4. Máquina de fundición por centrifugado

de ruedas de ferrocarril.

(@APRENDIZAJE, 2008)

El proceso de fundición por centrifugado es el que mejor se ajusta a los requerimientos en las piezas de Zamac, gracias a que éste por sus buenas características de colabilidad y alto punto de fusión, se transporta a través de las arañas o ramales con el fin de solidificar la pieza, desde el centro hacia las partes perimetrales de la pieza. Este proceso utiliza moldes en silicona, que permiten elaborar piezas de geometría tanto simple como compleja

• Ventajas y desventajas del proceso

En la tabla 1 se muestran las principales ventajas y desventajas que presenta el proceso de fundición centrífuga.

VENTAJAS	DESVENTAJAS	
Este proceso logra una calidad de detalle alta, gracias a la impresión que permite los moldes de silicona, estas calidades de detalle son superiores a las obtenidas en inyección o extrusión.	Se necesitan de varios moldes para realizar una misma producción.	
Debido a que se utilizan moldes de silicona se logra hacer un ahorro en costos por procesos de maquinado de moldes y manufactura.	Es necesario de varios prototipos que por lo general son metálicos, para poder realizar el molde completo	
Tiene la facilidad de trabajar desde pequeños tirajes, hasta cantidades considerables de producción.		

Tabla 1. Ventajas y desventajas del proceso de fundición centrífuga

1.2.2 Proceso de inyección

La fundición en moldes permanentes hechos de metal es utilizada para la producción masiva de piezas de pequeño o regular tamaño, de alta calidad y con metales de baja temperatura de fusión. Existen varios tipos de moldes metálicos utilizados para la fabricación de piezas, por lo regular de metales no ferrosos. El proceso que comúnmente se utiliza para producción de piezas es la fundición por matrices, el cual ayudado por uno o varios pistones empuja el material al molde.

En este proceso el metal líquido se inyecta a presión dentro de un molde metálico (matriz), la inyección se hace a una presión entre 10 y 14 MPa. Las piezas logradas con este procedimiento son de gran calidad en lo que se refiere a su acabado y a sus dimensiones. Este procedimiento es uno de los más utilizados para la producción de grandes cantidades de piezas fundidas. Se pueden utilizar dos tipos de sistema de inyección en la fundición en matrices.

• Cámara caliente

El procedimiento de fusión en cámara caliente se realiza cuando un cilindro es sumergido en el metal fundido y con un pistón se empuja el metal hacia una salida, la que descarga a la matriz. En la figura 5 se muestra la máquina con la cual se realiza este proceso.

• Cámara fría

En el proceso con cámara fría se lleva metal fundido por medio de un cucharón hasta un cilindro por el cual corre un pistón que empuja al metal a la matriz de fundición, las piezas obtenidas son de unos cuantos gramos a 10 kg y sólo es recomendable en trabajos de poca producción. En la figura 6 se muestra la máquina con la cual se realiza este proceso.

Figura 5. Fundición con cámara caliente

Máquina de cámara caliente para fundición en matriz actuada mediante un émbolo.

(@APRENDIZAJE, 2008)

Figura 6. Fundición con cámara fría

(@APRENDIZAJE, 2008)

• Ventajas y desventajas del proceso

La fabricación de piezas de fundición por inyección en Zamac presenta una serie de ventajas, éstas se traducen sobre todo en ahorro de tiempo, costos y mejores acabados de las piezas. En la tabla 2 se muestran las principales ventajas y desventajas que presenta el proceso de fundición centrífuga.

Tabla 2. Ventajas y desventajas del proceso de fundición por inyección

VENTAJAS	DESVENTAJAS	
Permite fabricar piezas en grandes volúmenes con una alta precisión.	Para producciones pequeñas No es aconsejable debido a sus altos costos de manufactura.	
Ciclos de inyección más cortos.	Los moldes metálicos son más cotosos que los moldes en otros procesos.	
Reproduce fácilmente todos los detalles de las piezas, prescindiendo del proceso de maquinado y reduciendo costos.		

2. MATERIALES Y MÉTODOS

Después de tener claro el fundamento teórico que se indicó en el capitulo anterior, se procede a implementar el método que se utilizó en la caracterización y ensaye de las piezas de Zamac fabricadas mediante los procesos de centrifugado e inyección, esto con el fin de analizar todas las características tanto físicas como mecánicas que se tuvieron en cuenta al realizar los análisis.

2.1 TIPO DE ALEACIÓN

Es de vital importancia conocer la composición exacta que poseen las piezas con las cuales se trabajó, es por ello que se realizó un análisis químico para determinar la composición química de las piezas de Zamac, tanto en el proceso de centrifugado como en el de inyección.

Los análisis fueron realizados por una empresa del sector en la ciudad de Medellín y los resultados arrojados se muestran en los anexos 2 y 3.

Se clasificó el tipo de aleación según la composición obtenida. En la figura 1 se observa que el material empleado tanto para inyección como para centrifugado es el Zamac 2 o SAE 921; ambos poseen cobre, aluminio y magnesio en cantidades diferentes, incluyendo cada uno de estos elementos aleantes en sus propiedades según el mayor o menor porcentaje utilizado, según el anexo 1.

2.2 PROCESOS DE FABRICACIÓN

Los procesos desarrollados para el análisis de piezas en la aleación de zinc son los de fundición por inyección y fundición centrífuga.

2.2.1 Fundición centrifuga

Se debe generar el modelo principal (realizar la simulación de la pieza), luego crear los modelos que conformarán el molde principal. Estos modelos deben tener bien definidos los detalles, con el fin de que su impresión sea la más exacta posible.

La preparación del molde (silicona para aleaciones de cinc) es muy importante porque en él se imprimen los modelos que se van a reproducir. Después de haber preparado el molde, se procede a colocarlo dentro de un marco porta-molde para ponerlo a vulcanizar1 bajo calor y presión, logrando con ambos que el compuesto de silicona copie perfectamente todos los detalles de los modelos dentro del molde.

Después de terminado el periodo de vulcanización se procede a abrir el molde para retirar los modelos y seguir con el siguiente paso. En este momento el molde se encuentra todavía caliente y es muy flexible. Como siguiente paso se procede a cortar con bisturí y empezar a realizar los bebederos, correderos de coladas, líneas de escapes de aire, vertederos, compuertas y ventilas para evitar que queden gases atrapados en las cavidades.

¹ Vulcanizar: proceso mediante el cual se forman enlaces cruzados en el caucho crudo en presencia de azufre, con el fin de volverlo más duro y resistente al frio.

En la figura 7 se muestra un molde de silicona con las cavidades y salidas de aire. El proceso de fabricación de un molde puede durar entre 3 y 9 días dependiendo de la complejidad del molde y del diseño de la pieza. (@SENA, 2008)

Figura 7. Molde en silicona con algunas salidas del aire

Después de tener el molde completamente listo se procede colocarlo dentro de la centrífuga y al cerrar la puerta el molde será centrado y presionado automáticamente, de esta forma se iniciará el tiempo se centrifugado.

Los parámetros como: El tiempo de ciclo, velocidad de giro, presión se ajustan según el diseño de la pieza lo exija. (Ver figura 8).

Después de haber iniciado el centrifugado, el metal líquido es vaciado en la centrífuga. La presión ejercida por la fuerza centrífuga logra que fluya el metal dentro del molde, para así llenar todas las cavidades al igual que el sistema de colada, reproduciendo hasta el más mínimo detalle dentro de las cavidades. Ver figura 9. Después de solidificar el metal, las piezas se remueven del molde para lograr su enfriamiento, y el último paso es desprender las piezas del molde.

Figura 8. Estableciendo los parámetros en una máquina centrifuga.

Figura 9. Piezas completas en el molde

2.2.2 Inyección

El procedimiento es muy similar al de centrifugado explicado anteriormente, solo se debe tener en cuenta que los moldes son metálicos y no de silicona y que el Zamac inyectado posee otras características que el de centrifugado.

Se realiza un croquis del molde basándose en el tamaño y cavidades de las piezas, con la ayuda de un programa de CAI se dibujan las distintas partes que conforman el molde, y una vez efectuado todo el diseño del molde se mecanizan las placas hasta obtener la figura de la pieza de Zamac a fabricar. El proceso de preparación del molde es, dependiendo de su complejidad, de 6 a 14 semanas.

Una vez preparado el molde se procede a efectuar la fundición e inyección del Zamac para fabricar una primera pieza a modo de prueba para poder homologarla. Si el funcionamiento del molde es correcto, se procede a la fabricación de las piezas de Zamac en serie, de acuerdo con los parámetros que la pieza lo requiera.

(@INDUSTRIAS ARIZAGA, 2008)

• Procesos complementarios

Después de tener la producción es muy común que tanto las piezas de inyección como de centrifugado tengan un proceso de corte o pulido, estos procesos se realizan generalmente con piedras cerámicas que ayudan a la eliminación de poros y limpiar la superficie de impurezas y suciedades.

Este proceso se debe hacer siempre que se van a realizar recubrimientos sobre las piezas, ya que garantiza una mejor adherencia de la capa de recubrimiento sobre la pieza.

2.3 PRUEBAS REALIZADAS

Todos los ensayos fueron realizados en el laboratorio de materiales de la Universidad EAFIT, bajo la supervisión del asesor.

Luego de realizar las piezas y tenerlas clasificadas para los ensayos, se debe tener en cuenta que lo que se busca es comparar piezas de Zamac fabricadas con los procesos de inyección y de centrifugado. Estos análisis se harán comparando el esfuerzo de flexión, la dureza y la micro-estructura.

2.3.1 Ensayos mecánicos

Concepto teórico

El esfuerzo de flexión puro o simple se obtiene cuando se aplican sobre un cuerpo pares de fuerza perpendiculares a su eje longitudinal, de modo que provoquen el giro de las secciones transversales con respecto a las inmediatas.

Sin embargo y por comodidad para realizar el ensayo de los distintos materiales bajo la acción de este esfuerzo, se emplean las piezas comportándose como vigas simplemente apoyadas, con la carga concentrada en un punto medio (flexión practica u ordinaria). (Ver figura 11).

En estas condiciones además de producirse el momento de flexión requerido, se superpone un esfuerzo cortante, cuya influencia en el cálculo de la resistencia del material varia con la distancia entre apoyos, debido a que mientras los momentos flectores aumentan o disminuyen con ésta, los esfuerzos cortantes se mantienen constantes, por lo que será tanto menor su influencia cuanto mayor sea la luz entre apoyos. El esfuerzo esta dado por la Ecuación 1, que se describe a continuación. (@ONI, 2008)

$$\sigma_f = \left(\frac{3*F*L_c}{2*b*E^2}\right)$$

(1) Esfuerzos por carga de flexión.

Donde;

F = Carga máxima en (kN)

Lc = Longitud del claro o distancia entre apoyos en (mm)

b = Ancho en (mm)

E = Espesor en (mm)

(YAKOVLEV, ANATOLI y PISARENKO)

• Procedimiento

Los ensayos se realizaron en la máquina Instron 3366². Se seleccionaron 3 piezas obtenidas por fundición centrifuga y 2 piezas obtenidas por fundición por inyección.

Se cargaron en el programa de la máquina las especificaciones de cada pieza a analizar, dichas especificaciones se muestran en la tabla 3 y 4.

Al entrar los datos al programa, se procedió a posicionar cada una de las piezas sobre los apoyos como aparece en la figura 10, y se sometieron a flexión.

² La máquina Instron 3366 se encuentra disponible en el Laboratorio de Materiales de la Universidad Eafit. @INSTRON

Se tomaron los datos de tiempo de falla y carga máxima de cada una de los ensayos realizados, para luego analizar los resultados.

Proceso	Fundición centrifuga	
	Ancho de la probeta	22.11 mm
Probeta	profundidad (espesor)	2.22 mm
	Separación de los rodillos	20 mm
	Velocidad	1 mm/minuto
Nota: Las 3 probetas tenían las mismas dimensiones		

Tabla 3. Medidas de las probetas en el proceso centrifugado

Figura 10. Pieza sobre los apoyos en la máquina Instron

Proceso	Fundición por Inyección	
	Ancho de la probeta	23.94 mm
Probeta 1	profundidad (espesor)	2,26 mm
	Separación de los rodillos	20 mm
	Velocidad	1 mm/minuto
	Ancho de la probeta	28 mm
Probeta 2	profundidad (espesor)	2.17 mm
	Separación de los rodillos	20 mm
	Velocidad	1 mm/minuto

Tabla 4. Medidas de las probetas en el proceso por inyección

El comportamiento que tiene la pieza al ser sometido a la carga de flexión (figura 10), se puede comparar con el de una viga cargada como se muestra en la figura 11.

Figura 11. Flexión simple

(@ASEFA, 2008)

En la figura 11, se observa como en una viga apoyada sobre 2 puntos, al ser sometida a flexión, el posible punto de ruptura que este podría presentar, este mismo modelo se observa en la figura 10, debido a que la máquina genera una fuerza perpendicular y esta se encuentra apoyada sobre 2 pines de la pieza.

Bajo esta suposición la máquina Instron ejecuta un programa que simula el comportamiento de la pieza al aplicarle una carga de flexión simple.

Para realizar la calibración o los ensayos de las piezas, es necesario definir una geometría (por defecto la máquina Instron solo admite geometrías entre un cilindro y un rectángulo), es por ello que se asume que es de geometría rectangular y esto se debe tener en cuenta al momento de calcular el área y el esfuerzo.

2.3.2 Ensayos de dureza

Concepto teórico

En ingeniería, la dureza a la penetración se define como la resistencia a la penetración a un material determinado. Se han desarrollado diversas pruebas de dureza, tales como Vickers, Rockwell C, Brinell, etc. En este caso se realizará la prueba Vickers.

En la prueba de dureza de Vickers se utiliza como penetrador un diamante tallado en forma de pirámide de base cuadrada invertida (ver figura 12). Se aplican cargas ligeras por medio de un sistema de pesas y palancas. La impresión de la prueba de Vickers se mide utilizando un microscopio y es tan pequeña que se la puede considerar como una medición semi-microscópica de dureza.

La dureza Vickers se mide bajo la ecuación 2, la cual se describe a continuación.

$$HV = \frac{1.854 * P}{d^2}$$

(2). Índice de dureza Vickers

Donde,

P= Carga de la penetración en (Kgf).

d=longitud de la diagonal promedio en (mm)

(SMITH WILLIAM)

La superficie de las muestras debe estar debidamente preparada. Es preferible que las muestras sean pulidas y atacadas químicamente. El ataque químico elimina las capas superficiales que sufrieron endurecimiento de trabajo durante el labrado a máquina, el esmerilado y el pulido. Debido a estas capas superficiales se obtienen índices de dureza erróneamente elevados, en las impresiones de tamaño microscópico. (UCN, 2008)

Figura 12. Penetrador para determinar la dureza en vickers.

(UCN, 2008)

• Procedimiento

Este procedimiento se estipula en la norma DIN 501050.³

El método utilizado es el Vickers, por lo cual se utiliza un penetrador piramidal

Se posicionó una pieza por inyección y posteriormente una por centrifugado sobre el penetrador lo más recto posible con el fin de tomar datos precisos sobre la superficie. Posteriormente se pulieron las piezas, pero no fueron atacadas químicamente.

³ Se encuentra disponible en el Lab. De materiales de EAFIT

Se aplicaron cargas de 20kg y 15kg para centrifuga e inyección respectivamente, con un tiempo de aplicación de 10 a 15 segundos.

Se realizaron tres penetraciones por cada proceso para determinar las huellas Se hizo uso del programa Motic Imágenes Plus 2.0 ML⁴ para medir las diagonales de las impresiones obtenidas.

Se aplicaron las fórmulas de dureza y se realizaron los respectivos análisis.

2.3.3 Ensayo metalográfico.

Concepto teórico

La metalurgia física es la ciencia que se ocupa de las características físicas y mecánicas de los metales y las aleaciones. Esta rama estudia las propiedades de los materiales y de las aleaciones de acuerdo a las variables como la composición química, el tratamiento mecánico y el tratamiento térmico.

La figura 13 muestra el diagrama de fase Al-Zn⁵. Un eutéctico-laminar se forma a 720°F (385,2°C) y 5% de aluminio, con soluciones solidas $\dot{\alpha}$ y β . El constituyente $\dot{\alpha}$ del eutéctico se estable solo a temperaturas superiores a 527°F (275°C). A esa temperatura, se transforma mediante una reacción eutectoide⁶, en las fases α y β .

(AVNER, SYDNEY H)

⁴ Permite realizar mediciones sobre imágenes capturadas. Se encuentra disponible en el laboratorio de materiales de la universidad Eafit

⁵ Muestra las fases y sus composiciones con respecto a la aleación y la temperatura y composición de la aleación.(ciencia e ingeniería de los materiales pag 249)

⁶ Eutectoide: Reacción de tres fases. en la cual una fase sólida se transforma en dos fases sólidas distintas. (ASKELAND, 1998. Pag. 279))

Figura 13. Diagrama de fase Al-Cinc

(DEPTS.WASHINGTON.EDU, 2008)

• Procedimiento.

Se seleccionó una pieza por cada proceso y se realizó un corte de material para obtener probetas metalográficas. Se realizaron dos cortes para realizar observaciones, uno en la dirección transversal y otro en la dirección longitudinal de las mismas. Ver figura 14. Se aplico un esmerilado para retirar el exceso de material producido por el corte. Después de tener lista las piezas cortadas se prosiguió a realizar un montaje de cada pieza cortada. Esta se realizó con resina de poliéster Cristalan 809 (100gr) y 1.5% de catalizador (Meck.Peróxido), para luego tener las piezas montadas como se muestra en la figura 15.

Realizado el montaje del material cortado en la resina, se realiza el proceso de esmerilado, el cual consiste en pasar la probeta metalográfica sobre una serie de lijas de diferente grado (240, 320, 400, 600), de mayor a menor textura hasta alcanzar una uniformidad en la superficie, esto con el fin de obtener un solo plano y eliminar gradualmente la deformación creada en cada paso. Ver figura 16

Realizado lo anterior, se pulió la probeta sobre un paño y utilizando alumina fina $(3m\mu)$, como abrasivo. Una vez que se logró el acabado de espejo, se atacaron químicamente las piezas y se analizó la microestructura en el Microscopio Metallux 2⁷, en varias condiciones ópticas a 1000X y 500X

Figura 14. Piezas con cortes transversales

⁷ Microscopio metalográfico. Marca Leitz . Amplificación máxima: 1.000 x y 500x.
Figura 15. Probetas con el recubrimiento de resina

Figura 16. Proceso de pulido con una referencia de lija.

2.3.4 Evaluación del recubrimiento

• Concepto teórico.

Los procesos de recubrimientos electrolíticos o químicos consisten en depositar por vía electroquímica, finas capas de metal sobre la superficie de una pieza sumergida en una solución de iones metálicos o electrolito. En este proceso se usan productos químicos relativamente puros, sales y metales, de forma que durante la operación se depositan completamente los metales empleados sobre las piezas. Se realizan recubrimientos con diferentes finalidades que se detallan en el anexo 4.

• Procedimiento.

Después de tener las piezas pulidas y atacadas químicamente, se procedió a medir la capa de recubrimiento de cada probeta. Se observaron las piezas en el microscopio Metalux II, y se obtuvieron imágenes en las cuales se podían ver las capas del recubrimiento.

Cada imagen se llevó al programa Motic. Imágenes plus 2.0 ML⁴ y se midió en Micras la capa de recubrimiento de cada pieza.

Se obtuvieron 3 medidas de capa de recubrimiento en diferentes regiones de las piezas con el fin de sacar un promedio de la capa obtenida tanto en el proceso de centrifuga como en el de inyección.

Ambas piezas al ser elaboradas, se sometieron a las mismas condiciones en los baños galvánicos, densidad de corriente y temperatura, con el fin de poder comparar el grosor de la capa en ambos procedimientos y se comparaba con el acabado final.

3. RESULTADOS Y ANÁLISIS

3.1 ENSAYOS MECÁNICOS

Los resultados obtenidos en los ensayos mecánicos fueron los siguientes:

En la tabla 5 se observan los valores de tiempo de falla, carga máxima de las probetas analizadas

Tabla 5. Valores del ensayo de flexión en las probetas

Proceso	No. Probeta	Carga máxima (kN)	Tiempo falla(segundos)
	1	1,092814	121,7
Centrifuga	2	1,195827	120,5
	3	1,358071	99,75
Inyección	1	3,29989	398,9
	2	4,26695	261,4

Con los datos obtenidos en el programa se realizó el diagrama Carga vs. Desplazamiento, con el fin de determinar los esfuerzos en las piezas obtenidas con los 2 procesos. Ver Figura 17 y 18.

Figura 17. Diagrama Carga vs. Desplazamiento por fundición centrífuga

Figura 18. Diagrama Carga vs. Desplazamiento por fundición por inyección

Al ver la Figura 19 se observa que las piezas elaboradas en fundición por inyección, soportan más carga que las piezas elaboradas por fundición centrífuga. Para verificar esto se calculan los esfuerzos de acuerdo a la ecuación 1 y los resultados se muestran en la tabla 6. Las mayores cargas, generan mayores esfuerzos.

Figura 19. Comparación entre fundición por inyección y centrífuga.

Tabla 6. Esfuerzo de flexión de las probetas

Muestra	Carga	Esfuerzo
Inyección 1	2.9989 KN	825.6 N/mm^2
Inyección 2	4.2669 KN	1174.7N/mm^2
Centrifuga 1	1.0928 KN	300.8N/mm^2
Centrifuga 2	1.1958KN	329.2N/mm^2
Centrifuga 3	1.35807KN	373.8N/mm^2

3.2 ENSAYO DE DUREZA

Los resultados de dureza para las piezas obtenidas por fundición centrifuga se pueden observar en las figura 20 donde se ilustran las huellas generadas por el penetrador piramidal.

Las huellas que se observan en la figura 20 se trasladan al programa Motic Imágenes Plus 2.0 ML ⁴ con el fin de obtener medidas de las diagonales de las huellas y poder determinar la dureza de las piezas en el proceso. Ver figura 21

Figura 20 a), b) y c). Huellas generadas por el penetrador en centrifigado

c)

Figura 21. a), b) y c). Diagonales en piezas elaboradas por centrifugado

C)

En la tabla 7 se muestran los resultados de las diagonales y el promedio de las dos diagonales en cada una de las muestras; con este promedio se encuentra un valor de diagonal total en el proceso de fundición por centrifugado.

Muestra	Diagonal 1 (mm)	Diagonal 2 (mm)	Promedio	Total
1	0.681	0.676	0.678	
2	0.688	0 723	0 755	0 6003
<u> </u>	0.000	0.720	0.100	0.0000
3	0.711	0.717	0.714	

Tabla 7. Medidas de las diagonales en el proceso de fundición por centrifugado

Los resultados de dureza para las piezas obtenidas por proceso de inyección se pueden observar en la figura 22, donde se ilustran las huellas generadas por el penetrador piramidal.

Las huellas que se observan en la figura 22 se trasladan al programa Motic Imágenes Plus 2.0 ML ⁴ con el fin de obtener medidas de las diagonales de las huellas y poder así, determinar la dureza de las piezas en el proceso. Ver figura 23.

Figura 22 a), b) y c). Huellas generadas por el penetrador en inyección

c)

Figura 23. a), b) y c). Diagonales en piezas elaboradas por inyección

c)

En la tabla 8 se muestran los resultados de las diagonales y el promedio de las dos diagonales en cada una de las muestras; con este promedio se encuentra un valor de diagonal total en el proceso de inyección

Tabla 8. Medidas de las diagonales en el proceso de fundición por inyección

Muestra	Diagonal 1	Diagonal 2	Promedio	Total
1	0,548 mm	0,538 mm	0,543 mm	
2	0,557 mm	0,56 mm	0,558 mm	0.5756 mm
3	0,61 mm	0,641 mm	0,625 mm	

Con los datos obtenidos en las tablas 7 y 8 (carga aplicada y promedio total), se procedió a calcular la dureza de las piezas de acuerdo a la ecuación 2, los resultados se muestran en la tabla 9

Tabla 9. Dureza en Vickers de los procesos en las piezas analizadas

Proceso	Dureza en Vickers
Fundición por centrifuga	75,688
Fundición por inyección	83,920

Al comparar las durezas obtenidas en la tabla 9 se observa que la pieza más blanda es la del proceso por centrifugado, mientas que la pieza realizada mediante el proceso de inyección es más resistente a la penetración, ofreciendo una mejor resistencia al desgaste y a la abrasión.

3.3 ENSAYOS METALOGRÁFICOS

Los resultados obtenidos en el microscopio metalúrgico (Metallux 2), fueron los siguientes.

En las figuras 24 a) y b), se observa la microestructura de las piezas centrifugadas. Esta estructura consta de granos verdosos de β primaria (solución rica en cinc), rodeada por una mezcla oscura eutectoide (α y β), en algunos puntos de la microestructura se alcanza a observar algunos puntos negros, éstos son poros que se pudieron haber presentado en el proceso de fabricación.

Figura 24. Micrografías de las piezas por centrifugado a) 500X y b) 1000X

En las figuras 25 a) y b). se observa la microestructura de las piezas en el proceso de inyección. Esta estructura consta de granos verdosos o cafés claros de β primaria (solución rica en cinc), rodeada por una mezcla oscura eutéctica (α y β), en algunos puntos de la microestructura se alcanza a observar algunos puntos negros, estos son poros que se pudieron haber presentado en el proceso de fabricación.

Figura 25. Micrografías de las piezas por inyección a) 1000X y b) 500X

a)

b)

Como se pudo observar las dos piezas elaboradas mediantes estos procesos tienen una microestructura similar, una eutectoide con granos de β , además de poros en ambas microestructuras, estos ayudan a disminuir las propiedades mecánicas de las piezas.

Un factor que debe conocerse y evaluar en la microestructura de la pieza es su tamaño de grano, ya que en las figuras 25 a) y b) en el proceso de inyección se observa mayor cantidad de granos y estos más finos y agrupados que los obtenidos en las figuras 24 a) y b), en el proceso de centrifugado; es por ello que se procede a determinar el tamaño de grano de las muestras elaboradas mediante estos procesos y establecer cómo influyen en la resistencia mecánicas de las piezas. Para poder establecer el tamaño de grano se utilizaron las piezas (en ambos procesos) que habían sufrido cargas de flexión y se determino el tamaño de grano en la zona fractura, por medio de un Esteroscopio⁸ (Ver figura 26 y 27)

⁸ Esteroscopio: permite tomar imágenes de piezas que han sido fracturadas. Este dispositivo se encuentra disponible en el Laboratorio de Materiales de la Universidad Eafit.

Figura 26. Área de Fractura de una pieza por centrifugado. 2X

Figura 27. Área de Fractura de una pieza por inyección. 3X

Se determinó el tamaño de grano midiendo algunos de ellos con la ayuda del programa Motic imágenes plus 2.0 ML, los resultados se muestra en la figura 28 y 29 y en las tablas 10 y 11

Figura 28. Tamaño de grano en las piezas obtenidas por un proceso centrífugo.

Tabla 10. Valores de tamaños de grano en las piezas por centrifugado

Medidas	Tamaño de grano
L1	0.081mm
L2	0.088 mm
L3	0.089 mm

Figura 29. Tamaño de grano en las piezas obtenidas de inyección

Tabla 11. Valores de tamaños de grano en las piezas por inyección

Medidas	Tamaño de grano
L2	0.060mm
L3	0.048 mm
L4	0.067 mm
L5	0.043 mm

Los resultados que se observan en las tablas 10 y 11 muestran que el tamaño de grano en el proceso de fundición por inyección es menor que el tamaño de los granos en el proceso de centrifugado, es decir los granos finos (Ver Figura 27) del

proceso de inyección le atribuye mayores características de dureza y resistencia del material, mientras que el grano grueso (Ver Figura 25) posee menos juntas de grano que disminuyen su resistencia.

3.4 RECUBRIMIENTO.

En las figuras 30, 31 y 32 se observa tanto la capa de recubrimiento, como el valor de la misma en las piezas realizadas mediante el proceso de inyección. Se tomaron diferentes medidas a lo ancho de la probeta con el fin de tener un promedio del grosor de la capa obtenida. Los recubrimientos a los que fueron expuestas las piezas son cobre (primera capa), níquel (capa intermedia) y por ultimo plata (capa exterior).

Figura 30. Primera medición del grosor de la capa obtenida

Figura 31.Segunda medición del grosor de la capa obtenida

Figura 32. Tercera medición del grosor de la capa obtenida

En las figuras 33, 34 y 35 se observa las capas de cobre, níquel y plata y los valores en micras de la capa obtenida

Figura 33. Primera medición del grosor de la capa obtenida

Figura 34. Segunda medición del grosor de la capa obtenida

Figura 35. Tercera medición del grosor de la capa obtenida

En las tablas 12 y 13 se muestran los valores de las capas obtenidas en las piezas realizadas tanto en el proceso de inyección, como el de centrifugado.

Tabla 12. Valores de las capas obtenidas para la pieza de inyección

		Espesor capa	Espesor Capa de	Espesor capa de
		de cobre(µm)	níquel (µm)	plata (µm)
PIEZA DE	Medida 1	12,6µm	3,9	2,9
INYECCIÓN				
	Medida 2	11,4	2,3	3,6
	Medida 3	11,7	1,9	2,6

		Espesor capa	Espesor Capa de	Espesor capa de
		de cobre (µm)	níquel (µm)	plata (µm)
PIEZA DE	Medida 1	11,2	33,8	6,2
CENTRIFUGA				
	Medida 2	7	27	5
	Medida 3	12,4	36,6	5,5

Tabla 13. Valores de las capas obtenidas para la pieza de centrifugado

Con los datos de las tablas 12 y 13 se obtiene el valor promedio de las capas de cobre, níquel y plata, Ver tabla 14

Tabla 14. Promedio de la capa obtenida en los diferentes procesos

	Capa de cobre (µm)	Capa de níquel (µm)	Capa de plata (µm)
Inyección	11,90	2,70	3,03
Centrifuga	10,20	32,47	5,57

El espesor de la capa obtenida depende del tiempo y de la densidad de la corriente eléctrica aplicada en las piezas. Con los resultados de la tabla 14 se puede concluir que todas las capas cumplen con los requerimientos mínimos de los recubrimientos, en los cuales especifican que los recubrimientos deben estar entre (2.5 y 5) μ m, (Ver ANEXO 5). Cantidades mayores de micras en las capas de recubrimientos .puede generar ventajas y desventajas como se muestra en la tabla 15.

	Ventajas	Desventajas
Recubrimiento de cobre	Los tiempos de inmersión en los otros	Altamente contaminante para el baño aumentando
	recubrimientos son menores	rutinas de mantenimiento
	Las piezas quedan con	Aumentar los costos de
Recubrimiento de níquel	acabado más brillantes	las piezas
		Aumenta los costos de la
Recubrimiento de plata	Acabados decorativos	pieza y esta tendrá un peso superior al especificado

Tabla 15. Ventajas y desventajas al agregar más recubrimiento en las piezas.

3.5 ANÁLISIS EN ELEMENTOS FINITOS

Como este tipo de herrajes están sometidos a fuerzas que actúan sobre éste, se debe conocer como es el comportamiento que sufre la pieza al estar sometida a cargas de flexión. Este tipo de piezas, están sometidas en su común uso, a cargas de flexión por una máquina machueladora, la cual aplica sobre estas una carga máxima aproximada de 1200N

• Procedimiento

La pieza se modelado en PRO/E versión 2008 ⁹, con las especificaciones de la pieza requerida, ver figura 36; luego se guarda la geometría con extensión IGES¹⁰ y seleccionar solido¹¹ en la misma aplicación. (Ver figuras 37 y 38)

Se seleccionó ANSYS 2008¹² como programa de simulación para realizar el análisis en elementos finitos. Dentro del programa se busca el archivo IGES, guardado previamente y se carga a esté. En primera estancia se carga el tipo de elemento y se seleccionó SOLID 187¹³.

Se definió la malla, bajo la siguiente secuencia AUTO MESH-MESCHING-MESH TOOL-MESCH, VOLUMENES, (Ver Figura 39)

Al definir la malla se procedió a definir las propiedades del material¹⁴. Las propiedades de los materiales necesaria para el análisis son el módulo de elasticidad EX, y del coeficiente de Poisson NUXY, (Ver figura 40).

Se definió parámetros de carga, se seleccionaron las restricciones (Ver Figura 41) y las condiciones de frontera, (Ver Figura 42), acorde al uso final de la pieza, la carga aplicada es de 1200 N, (Ver figura 42).

⁹ Pro/E es un software que permite modelar diferentes tipos de piezas ,se encuentra disponible en la universidad Eafit

¹⁰ IGES: Extensión que almacena el archivo como puntos

¹¹ SOLID:Define la pieza como una parte maciza

¹² Ansys: es un software que permite realizar análisis de elementos finitos; se encuentra disponible en la universidad Eafit

¹³ SOLID 187:permite realizar triángulos de simulación muy finos generando excelentes resultados

¹⁴ Disponible en: www.matweb.com

Se carga el programa y se obtienen los resultados. (Ver figuras 43 y 44)

Figura 36. Planos generales de la pieza a realizar

	PROVECTO DE GRADO		-	-	1		
FAFIT	CONCHO		-	_		-	
Cra 49 7 sur 50	PREZA	CONCH	0	neutodite toeuule	NORES	FERM	HD4
Tel: 261 95 00 Fax: 266 42 84	ALCREA S (C)	UNERCES	CARTA	Allocate A	POP I	A (
	ax: 266 42 84		PLANO 1	Lines and	and the second second	ing to per	

Figura 37. Nombre de la pieza con extensión IGES

Folder Tree	<u>ـ</u>
Model Name	CONCHO_SENCILLO.PRT
New Name	concho_sencillo
Туре	IGES (*.igs)
	OK Cancel

Figura 38. Nombre de la pieza para convertír la parte por solido

🗆 Export IGES 🛛 🔀
Export
Wireframe Edges
Surfaces
🗹 Solids
Shells
Datum Curves and Points
Facets
Customize Layers
Quilts ALL
Coordinate System
Default 🔽
OK Cancel Options

Figura 39. Mallado completo de la pieza

Figura 40. Definición de los elementos del modelo

Figura 41. Restricciones en todas las direcciones de los nodos laterales

Apply U,ROT on Nodes	
[D] Apply Displacements (U,ROT) on Nodes	
Lab2 DOFs to be constrained	All DOF UX UY UZ
Apply as	Constant value
If Constant value then:	
VALUE Displacement value	
OK Apply Cancel	Help

Figura 42. Condiciones de carga.

Apply F/M on Nodes	×
[F] Apply Force/Moment on Nodes	
Lab Direction of force/mom	FY 💌
Apply as	Constant value
If Constant value then:	
VALUE Force/moment value	0.404
OK Apply Cancel	Help
	-

Se debe tener en cuenta que los parámetros de módulo de elasticidad y módulo de poisson dependen del material y sabiendo que los 2 procesos se realizaron con Zamac 2, los resultados arrojados por el CAI de elementos finitos son iguales tanto en el proceso de inyección como de centrifugado, por esta razón solo se hizo la simulación de una solo pieza en el proceso. Las diferencias obtenidas en los ensayos anteriormente realizados, muestran que en composición las piezas son similares, la diferencias esta en aspectos micro-estructurales que un software (en este caso ANSYS), no es capaz de modelar.

Figura 43. Resultados de esfuerzos en la pieza analizada, superior

Figura 44. Resultados de esfuerzos en la pieza analizada, Inferior.

Como resultado del proceso de solución se obtienen los datos de esfuerzos a los cuales están sometidas la pieza a una carga vertical sobre sus pines. Los resultados obtenidos muestran que los valores máximo de esfuerzo están en 0.226 GPA (zona verde en las figuras 43 y 44) la pieza sufre una deformación normal por la carga, pero no tiene el riesgo de sufrir una ruptura debido a que el valor suministrado no supera el valor máximo de carga permitida, que se obtiene del diagrama carga-desplazamiento (Figura 19).

4. CONCLUSIONES Y RECOMENDACIONES

La dureza obtenida en los ensayos muestran que las piezas realizadas con el proceso de inyección, ofrecen mayor resistencia a la penetración que las realizadas por centrifuga, pero comparando estos resultados con la dureza en otros metales tales como el hierro, el latón y otras aleaciones, se determina que el Zamac 2 (composición obtenida en el análisis químico) es un material blando en relación a dichos metales.

El proceso de inyección es más utilizado cuando se necesitan producciones altas de determinadas piezas, mientras que el proceso de fundición por centrifugado es para pequeñas cantidades, es por esto que se debe determinar y realizar la valoración económica que resulte más rentable.

En los ensayos mecánicos se observó que las piezas realizadas mediante el proceso de centrifugado soportan menos cargas que las piezas realizadas en el proceso de fundición por inyección.

El tamaño de grano resulta ser una variable muy significativa a la hora de evaluar dos procesos que poseen similares características de microestructura, porque determina cual es la más resistente desde el punto de vista mecánico.

El análisis de elementos finitos muestra como es el comportamiento de la pieza al estar sometidos a esfuerzos de flexión, con una carga de 1200 N, se observó que la pieza posee esfuerzos relativamente bajos.

En el proceso de inyección, la solidificación del metal se presenta en toda la pieza de una manera continua, mientras que en el proceso de centrifugado la

70

solidificación se presenta primero en el núcleo y luego en las partes perimetrales lo cual puede generar la aparición de grietas, que a la postre generan un deficiente acabado superficial y disminución de la resistencia mecánica.

Se observó que las piezas bajo los procesos de fabricación de inyección y centrifugado poseen características de dureza, y resistencia mecánica diferentes.

La capa de recubrimiento en una pieza no es uniforme a lo largo de su volumen, debido a que esta depende de varios factores, tales como: ubicación de la pieza al ser sumergida, depende del tiempo y de la densidad de la corriente eléctrica.

El grosor de las capas obtenidas en el proceso de centrifugado es mayor que las de inyección, esto se debe a la aparición de grietas y malos acabados en el proceso de fabricación en el llenado del molde.

El grosor de la capa obtenida muestra como dependiendo de la microestructura que tenga la pieza, estas requieren más capa de recubrimiento para obtener una mejor acabado superficial en la pieza.

Las diferentes encontradas en las piezas fabricadas mediante los procesos de inyección y centrífuga, están dadas por la resistencia mecánica y su microestructura.

Las piezas elaboradoras mediante los procesos de fundición, están sometidas a cargas solo de flexión en sus pines, debido al proceso externo que se realiza en ellas; es por ello que solo es necesario conocer como es el comportamiento de estas piezas la estar sometidas a este tipo de cargas y no de torsión o cargas axiales.

En el diagrama de carga vs desplazamiento, al realizar la comparación entre los dos procesos se puede observar una mayor diferencia en cuanto a resistencia por

71

parte de las piezas elaboradas en inyección que las obtenidas por el proceso de centrifugado

El tipo de aleación en el cual se elaboraron las piezas para los ensayos fue Zamac 2, después de realizar un análisis químico de éstas.

Los resultados obtenidos en las pruebas de dureza nos muestran que son muy aproximados a los valores teóricos de las aleaciones que se expresan en la figura 1, es decir, el factor de error es por debajo de 1%, lo cual es muy confiable en las pruebas realizadas.

BIBLIOGRAFÍA

ASKELAND, DONALD R. CIENCIA E INGENIERIA DE LOS MATERIALES. 3 ed. MEXICO: INTERNATIONAL THOMSON EDITORES, 1998. 790p. ISBN 9687529369.

AVNER, SYDNEY H. INTRODUCCION A LA METALURGIA FISICA. MEXICO: MCGRAW-HILL, 1981. 695p. ISBN 9686046011.

IZAGUIRRE ARELLANO, JOSE LUIS. Construcción y pruebas de una máquina de fundición a presión de metales. Guayaquil, Ecuador, 1989, p. 180. Trabajo de grado (Ingeniero Mecánico). Escuela Superior Politécnica del Litoral. Facultad de Ingeniería Mecánica.

SMITH, WILLIAM F. FUNDAMENTOS DE LA CIENCIA E INGENIERIA DE MATERIALES. 3 ed. MADRID: MCGRAW-HILL, 1998. 715p. ISBN 8448114299.

YAKOVLEV, ANATOLI Y PISARENKO, G. S. MANUAL DE RESISTENCIA DE MATERIALES. MOSCU: MIR, 1979. 694p. 1v.

APRENDIZAJE@

Artículo relacionado a los procesos de fundición. [En línea] [Citado 30 de Agosto de 2008]. Disponible en:

<www.aprendizaje.com.mx/Curso/Proceso1/Temario1_V.html>

ASEFA@

Artículo relaciona a los daños a elementos estructurales por esfuerzo de flexión. [En línea] [Citado 6 de Septiembre de 2008]. Disponible en: www.asefa.es/index.php?option=com_content&task=view&id=98&Itemid=45

DEPTS.WASHINGTON.EDU, 2008@

Artículo relacionado las propiedades de la composición aluminio-zinc en el estado solido. [En línea] [Citado 6 de Septiembre de 2008]. Disponible en: <depts.washington.edu/mti/1999/labs/metals/al_zn_alloy.html>

FAEZA@

Artículo relacionado a la composición de diferentes aleaciones de Zinc. [En línea] [Citado 28 de Agosto de 2008]. Disponible en: <www.faeza.com.mx/productos/zamak.asp>

INDUSTRIAS ARIZAGA@

Artículo relacionado con el procedimiento de fundición por inyección. [En línea] [Citado 10 de Septiembre de 2008]. Disponible en: <www.inyeccionzamakarizaga.com/procesoinyeccion.htm>

INSTRON@

Texto relacionado con las normas que rigen la operación de la máquina. [En línea][Citado 5 de Septiembre de 2008]. Disponible en:<www.instron.com.es/wa/resourcecenter/glossaryterm.aspx?ID=72>
ONI@

Texto relacionado con los ensayos mecánicos. [En línea] [Citado 5 de Septiembre de 2008]. Disponible en: <www.oni.escuelas.edu.ar/olimpi2000/santa-fe-sur/ensayodemateriales/Ensayos/flexion.htm>

UCN@

Texto relacionado con pruebas de dureza en materiales. [En línea] [Citado 25 de Agosto de 2008]. Disponible en:

<www.ucn.cl/FacultadesInstitutos/laboratorio/durezam4.htm>

Anexo 1. INFLUENCIA DE LOS ELEMENTOS ALEANTES EN LAS PIEZAS DE ZAMAC.

COMPAÑIA NACIONAL DE SOLDADURAS NIT. 800.030.377.1 A. or Conalsol total La sol Conalsol total La sol Conalsol total Conalsol t

INFLUENCIA DE LOS ELEMENTOS ALEANTES

puros y cobre electrolítico.

ALUMINIO: Es el elemento agregado para mejorar las características mecánicas y de dureza al igual que su fluidez. Un exceso, por encima del 5%, vuelve la aleación quebradiza y disminuye su resiliencia. Con porcentajes inferiores a 2.5% la aleación pierde sus propiedades mecánicas y de fusionabilidad. En los procesos de inyección, una aleación sin aluminio atacará las partes de acero de la máquina o herramientas de inyección. Por tanto los ZAMAC mas utilizados tienen 3.5% y 4.5% de Alumínio.

COBRE : Este elemento mejora la resistencia a la tracción y a la corrosión al igual que la dureza, pero disminuye la estabilidad dimensional de la aleación ya que la deja sujeta a fenómenos de envejecimiento. Si el cobre no pasa de 0.4% no se observará influencia sobre la estabilidad dimensional. Sin embargo, para el ZAMAC 410 (utilizado en inyección) que posee nominalmente 1% de Cu, las variaciones dimensionales no son mayores, a menos que la pieza sea muy grande o se exijan tolerancias dimensionales estrechas.

Las variaciones dimensionales ocurren a las pocas semanas de ser fundida la aleación y para una gran rama de aplicaciones estas son despreciables.

MAGNESIO: A pesar del pequeño porcentaje en que es agregado (0.03% a 0.08%) este elemento le proporciona gran estabilidad a la aleación. Por ser el magnesio más electronegativo que el cinc, éste inhibe la corrosión intergranular a la cual son muy propensas estas aleaciones. Con menos de 0.04% subsiste el peligro de corrosión intergranular y con más de 0.08% disminuye la resistencia de manera notable y se presentará fragilidad en caliente.

Suministrado por CONALSON (Compañía Nacional de Soldadura))

Anexo 2. CERTIFICADO DE ANÁLISIS QUIMICO PARA PIEZA REALIZADA EN CENTRIFUGA.

CERTIFICADO DE ANALISIS QUIMICO

FECHA

septiembre de 2008

CLIENTE

MATERIAL

LOTE

CANTIDAD ENTREGADA (Kg)

ANDRES FELIPE GALLEGO A

ZAMAC 430

Zamac centrifugado

muestra

ZAMAC	COMPOSICION GARANTIZADA (porcentaje en peso)	COMPOSICION OBTENIDA PARA EL LOTE INDICADO		
Z-430	Al 3.5 - 4.3 Cu 2.7 - 3.3 Mg 0.03 - 0.06 Fe 0.1 Max. Zn Remanente	Al 4.0 Cu 3.0 Mg: 0.01 Fe: max 0.01 Zn remanente		

Ingeniero Hemel Arrubla López Aseguramiento de la Calidad

Anexo 3. CERTIFICADO DE ANÁLISIS QUIMICO PARA PIEZA REALIZADA EN INYECCIÓN

CERTIFICADO DE ANALISIS QUIMICO.

FECHA

septiembre 30 de 2008

ANDRES FELIPE GALLEGO A

CLIENTE

MATERIAL

CANTIDAD ENTREGADA

LOTE

muestra

ZAMAC 410

Zamac invección

COMPOSICION OBTENIDA COMPOSICION ZAMAC GARANTIZADA PARA EL LOTE INDICADO (porcentaje en peso) AI 3.7-4.1 4.1 AI Cu 0.5-1.0 2.4 ver nota Cu Mg 0.03-0.06 Z-410 0.01 Mg Fe 0.02 Máximo. 0.005 Fe Zn Remanente Zn remanente

Nota: valor obtenido por el recubrimiento (Cobrizazo)

Ingo. Hemel Arrubla López Aseguramiento de la Calidad

ANEXO 4. TIPOS DE RECUBRIMIENTO SEGÚN LA APLICACION

Campos de aplicación de los recubrimientos						
			Recubrimientos funcionales			
Tipos de		Protección				
recubrimientos	Decorativos	anticorrosiva	Antifricción	Electrotécnica	Soldadura	
Plomo					+	
Aleaciones de plomo-estaño		+	+	+	+	
Cromo	+	+	+			
Oro y aleaciones de oro	+	+		+	+	
Cobre	+			+	+	
Aleaciones de cobre	+				+	
Níquel (electrolítico)	+	+	+	+	+	
Níquel (químico)	+	+	+		+	
Plata	+			+	+	
Cinc		+				
Estaño		+		+	+	

Anexo 5	Características	del	recubrimiento	según	el tipo	de d	nalvanizado
	Caracteristicas	uu	i c cubrimento	Scyun	ci upu	J UC (Jaivanizauo

	Galvanizado por inmersión	Galvanizad o por proyección	Galvanizado electrolítico	Sherardiza ción	Recubrimie ntos con polvo de Zinc
Característi cas del recubrimien to	Formación de capa de aleación Fe- Zn recubriendo al cinc. El recubrimient o está unido al acero	Buen entrelazad o mecánico, tras un adecuado pretratamie nto de inyección de polvo	Buena, comparativam ente al resto de recubrimientos	Buena, la difusión del recubrimien to provee de unión metalúrgica	Buena, se puede mejorar mediante inyección de polvo previa
Continuida d y uniformidad	Buena. Posibles discontinuida des a simple vista. Exceso de cinc en puntos de drenaje de la pieza y esquinas	Depende de la aptitud del operador. Recubrimie nto poroso rápidament e relleno con productos de la corrosión de cinc	Uniforme, con limitaciones de acuerdo a la solubilidad del baño	Continua y muy uniforme, incluso en partes irregulares	Buena, algunos poros, recubiertos con productos de reacción

	Galvanizado por inmersión	Galvanizad o por proyección	Galvanizado electrolítico	Sherardizaci ón	Recubrimie ntos con polvo de Zinc
Espesor	50-125 μm para tubos 10-50 μm para láminas y filamentos 5-10 μm para piezas	Espesores variables entre 100- 150 µm. Puede Ilegar a superar los 500 µm	Variable entre 2,5 y 5 µm. Posibilidad de espesores superiores a costa de menor rentabilidad	Variable entre 15-30 µm	Superior a 40 µm
Conformabili dad y propiedades mecánicas	Recubrimien tos convenciona les aplicados a piezas, no conformable s. Capa de aleación resistente a la abrasión. Rigidez a la flexión.	Aplicado a piezas terminadas, no se requiere conformado . Admite soldadura, pero es preferible realizar previament e soldadura y llevar a cabo el tratamiento posteriorme nte	El acero galvanizado electrolíticam ente tiene excelente conformabili dad y puede ser soldado mediante soldadura por punto	Es aplicado a artículos terminados. No es necesaria la conformabili dad. Excelente resistencia a la abrasión	Resistencia a la abrasión mejor que la de las pintura convencion ales