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Abstract

Genomic analyses have the potential to provide insight to metabolic pathways and 

biomolecules that are important in cellular processes. This study used a recently 

developed tool (GenMAPP v2.1, www.genmapp.org adapted for the human sphingolipid 

biosynthesis pathway, www.sphingomap.org) to compare published gene expression data 

for HL60 cells, a human promyelocytic leukemia cell line, treated with retinoic acid to 

induce granulocytic differentiation. Based on the location and magnitude of changes in 

expression of genes for enzymes of sphingolipid metabolism in the context of this 

pathway model, granulocytic differentiation would be predicted to elevate de novo

sphingolipid biosynthesis due to higher expression of serine palmitoyltransferase, with 

some interesting shifts in the way that the sphingoid base (sphinganine) is subsequently

metabolized—such as that some may be incorporated into downstream metabolites such 

as ganglioside GD3. These predictions were tested and confirmed using thin layer

chromatography.  It is hoped this approach will help translate changes in gene expression 

for this pathway into a sphingolipidomic profile for the cells, and perhaps uncover 

interesting changes that can explain the behavior of these cells and possible therapeutic 

targets or biomarkers.
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APL; Acute Myeloid Leukemia

ATRA; All-trans-Retinoic Acid

NSE; Non-specific esterase
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EP; ethanolamine phosphate

Sa1P; sphinganine 1-phosphate

S1P; sphingosine 1-phosphate 

Cer; ceramide

DHCer; dihydroceramide

SM; sphingomyelin

GalCer; galactosylceramide 

GluCer; glucosylceramide 

LacCer; lactosylceramide
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Introduction

Sphingolipids are a complex and highly diverse family of phospho- and glycolipids 

present in all eukaryotic cells.  Research in recent decades has broadened the

conventional functionality of these biomolecules as structural components of the plasma 

membrane to recognize them as mediators of signaling pathways responsible for cell 

growth and death [1-3].  Interest has also been directed toward the potential of 

sphingolipids to modulate the differentiation process of HL60 cells [1]. 

The human promyelocytic (HL60) cell line serves as a convenient model for studying 

cellular differentiation as many agents are known to modulate the ultimate cellular 

lineage of these cells.  All-trans-retinoic acid (ATRA) and dimethylsulfoxide (DMSO)

are known inducers of granulocytic differentiation of HL60 cells and have been shown to 

invoke changes in sphingolipid and glycosphingolipids (GSL) content during this process 

[4,5]. In HL60 cells, irregular metabolism of sphingolipids and GSLs inhibits the 

multipotent nature of these cells [6,7].  Multiple studies have shown accumulation of 

ceramide, a bioactive intermediate of the sphingolipid metabolism, to induce growth 

inhibition and prevents normal maturation [8-10].  Other ceramide derivatives, including 

sphingosine [11], sphingosine-1-phosphate [11], and glycosphingolipids especially the 

ganglioside GM3 [12], [2,13,14] have also been shown to modulate proliferation of HL60 

cells. Prominently, the shedding of GM3 from myeloblasts membrane into the plasma 

upon ATRA-treatment is thought to initiate pathways responsible for continued 

proliferation and differentiation [15]. Bioactive sphingolipids and GSLs act to regulate an 

assortment of signaling pathways during stress stimuli from agents such as ATRA or 

DMSO [16,17].  Reference [18] reviews ceramide second messenger effects of protein 
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kinase C (PKC) family, c-jun N-terminal kinase (JNK), and protein phosphatase 1 (PP1)

signaling pathways during differentiation. The structural complexity of sphingolipid 

species allow for the functional diversity of sphingolipids.

The combinatorial nature of the sphingolipid components, as shown in Fig. 1, is the 

source of the structural complexity found in these bioactive second messengers [19].  The 

multiple structural variants found within the 1) fatty acids of the ceramide backbone; acyl 

chains ranging in length from 14-32 carbon atoms, 2) sphingoid base backbone; fully 

saturated as in sphinganine and unsaturated as seen in sphingosine, and 3) polar head 

group; hydrogen atom (ceramide), phosphate (ceramide-1-phosphate), and carbohydrate 

groups (simple sugars as found in glucosylceramide and galactosylceramide or complex 

sugars formed during ganglioside biosynthesis) provide immense challenges when 

attempting to distinguish among similar components during sphingolipid analysis. Mass 

spectrometry (MS) has been the traditional method for analyzing cellular sphingolipid 

content in past decades [20] as it provides the necessary specificity to distinguish acyl 

chain lengths of sphingoid base backbones and fatty acids by mass determination.  In 

addition, the high sensitivity of MS analysis permits detection at physiological levels 

[21].  Reference [22] and [23] review the ionization methods of electrospray (ESI) and 

MALDI that allow MS to be analyte specific as well as the different ion analyzers 

currently used for sphingolipid and glycosphingolipids analysis. While mass 

spectrometry is consistently developing in the ways existing and novel sphingolipids are 

identified and measured, a large fraction of the sphingolipidome remains to be analyzed 

in a quantitative and structurally specific manner.  
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Figure 1 - General Structure of Sphingolipid Metabolites: Possible combinations of 

variations in 1) head groups 2) carbon atom lengths of ceramide subspecies and 3) 

saturation and carbon atom lengths of sphingoid base backbone contribute to the vast size 

of the sphingolipidome.

The study of sphingolipids and their related biological function is in the initial phase of 

shifting toward the field of systems biology as ‘omic’ studies become necessary as novel 

sphingolipids are determined bioactive and further expand the already immense 

sphingolipid profile to be examined. Such studies examine all molecular species of a 

given family; for sphingolipids, a true sphingolipidomic analysis would quantitatively 

examine all headgroups, structural variants, and combinations thereof in the metabolic 

pathway [24].  The quantitative abilities of MS are currently limited to a small fraction of 

the sphingolipidome (localized to de novo sphingolipids and upstream simple 

glycosphingolipids) due to the lack of internal standards for each analyte of sphingolipid 

biosynthesis; such standards control differences in conditions during ionization and 

sample preparation [22].  An alternative strategy when building a sphingolipidomic 

profile might exist in the genomic analysis of the genes responsible for catalyzing 

sphingolipid-associated reactions.  Gene expression data may provide useful insight that 

relating activity levels of sphingolipid enzymes to metabolite production within the cell.  
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Comprehensive databases that store publicly available genomic studies, the Gene 

Expression Omnibus Database (GEO Database) of the NCBI for example, permit access 

to such gene expression data sets for analysis.  On a small scale, RT-qPCR demonstrated 

a strong correlation of mRNA expression of CerS2 and production of C20-26-ceramides 

by LC ESI-MS/MS in Human embryonic kidney cells (Hek293) [25] suggesting gene 

activity can predict metabolite production.  However, before confidently utilizing gene 

expression data to predict sphingolipid content on a larger scale, further confirmation by 

MS and other quantitative techniques are necessary.

Genomic analyses quickly become overwhelming as large data sets are left to be 

interpreted. Visualization tools permit the illustration of gene expression data in the 

context of pathway models and biological pathways facilitating data interpretation. 

KEGG pathways are commonly associated, however open source software GenMAPP 

v2.1 [26] and Pathvisio [27] are now available for pathway building and data 

visualization. Fig. 2 represents the de novo sphingolipid metabolism (based on the KEGG 

representation) created within GenMAPP.  Recently, reference [28] reviewed the vast 

potential of these ‘omic’ tools and applicability when conducting sphingolipidomic 

analyses. 
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Figure 2 - GenMAPP v2.1 representation of backbone sphingolipid biosynthesis: 

Members of this family of compounds are structurally related through a shared sphingoid 

base backbone (i.e. sphinganine; d18:0, sphingosine; d18:1, and others) predominantly 

found in mammals as 18 carbons in chain length; other structural variants and sphingoid 

backbones found in other organisms were recently reviewed.  Subsequent de novo 

biosynthesis incorporates sphingoid bases into more complex sphingolipids.  Sphinganine 

and sphingosine can be phosphorylated to form sphinganine 1-phosphate (Sa1P) and 

sphingosine 1-phosphate (So1P), respectively, or N-acylated by a family of ceramide 

synthases (CerS or Lass) 1-6 to synthesize (dihydro) ceramide a highly bioactive 

intermediate of the sphingolipid metabolism.  Ceramide serves as a key precursor to 

additional steps of the sphingolipid biosynthesis as it is further metabolized to 

sphingomyelins (SM), ceramide 1-phosphate, or glycosphingolipids.  Pathways 

illustrating further glycosphingolipid metabolism (ganglio-, globo, isoglobo-, lacto- and 

neolactoseries) can be found at www.sphingomap.com. 
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We have taken a systems approach when analyzing the changes in sphingolipid content 

during the granulocytic differentiation of HL60 cells. Genomic data was viewed in the 

context of the sphingolipid pathways and metabolomic predictions were made based on 

sphingolipid enzyme activity. Interest changes were observed, possibly explaining the 

regularory mechanism of sphingolipids.  This technique permits the management of large 

data sets and ultimately allows for the prediction of changes in sphingolipid metabolites 

involved in granulocytic differentiation of HL60 cells.  Such insight into the role of 

sphingolipid metabolites during this process permits subsequent investigation of these 

molecules as potential biomarkers and therapeutic agents used in acute myeloid leukemia

(AML).  

Methods

Pathway Modeling and Microarray Analysis

Sphingolipid pathway model as illustrated in Fig. 1 was built using open source software 

GenMAPP v2.1 [26] and was constructed based on the KEGG representation of the 

sphingolipid pathway (www.genome.ad.jp/dbget-bin/show_pathway?mmu00600).  

Modifications were made to include only those genes found within the mammalian 

genome; existing pathway included genes found within plants and yeast not relevant to 

this study.  In addition, new isoforms of existing genes were added as well as updating 

preexisting gene nomenclature (i.e. LASS1-6 → CerS1-6 [29]).  Pathway files for de 

novo, ganglio-, globo-, isoglobo-, lacto-, and neolactoseries can be downloaded at 

www.sphingomap.com. 
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Microarray analysis was also conducted using GenMAPP v2.1.  Gene expression data 

was obtained from a publicly available myeloid differentiation study [30] deposited in 

Gene Expression Omnibus (GEO) datasets, ID: GSE995.  Expression data was mined for 

sphingolipid-related enzymes and imported into the pathways using enzyme Affymetrix 

identification numbers.  Gene expression data was illustrated based on the heat scale, as 

shown in Fig. 3a, and was determined significant when activity was elevated >1.5 Fold or 

suppressed <0.67 Fold relative to the control.  Instruction tutorial for pathway 

construction and data application is available at www.sphingomap.com. 

Cell Culture

Promyeloid leukemic (HL60) cells were grown in RPMI-1640 medium (Sigma, St. Louis, 

MO, USA) supplemented with 10% (v/v) fetal calf serum (Invitrogen Life Technologies, 

Mulgrave, Victoria, Australia) and incubated at 37 °C, with 5% CO2. HL60 cells were 

cultured in T75 flasks and diluted to the beginning of log phase (2–3 × 105 cells/mL) after 

reaching 1 x 106 cells/ml. Granulocytic differentiation was induced with ATRA (1 μM) 

(Sigma, St. Louis, MO, USA) dissolved in 95% ethanol for a 5 day time period. Trypan 

blue exclusion determined cell viability and was maintained at > 95%.

Confirmation of Granulocytic Differentiation

To assess morphological changes induced during granulocytic differentiation with ATRA 

treatment, non-specific esterase (NSE) [31] and myeloperoxidase (MPO) [32] staining 

were preformed according to manufacture (Sigma) protocol; 2 x 106 cells were fixed to 

slides for observation. 
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Degree of differentiation was monitored by CD11b antigen expression [33].  After ATRA 

time course, 1 x 106 cells were harvested for analysis.  Cells were washed twice in PBS 

and incubated at 4 °C in the dark for 30 minutes with mouse anti-human CD11b antibody 

conjugated with FITC (Sigma, St. Louis, MO, USA), 5μL/1 x 106 cells [34].  Cells were 

further washed after incubation and suspended in 1 mL RPMI media mixture for analysis.  

FACS analysis was conducted using BD LSR Flow Cytometer (San Jose, California, 

USA).

Thin Layer Chromatography 

GSL isolation was performed by Thin Layer Chromatography (TLC) as described by van 

Echten-Deckert, 2000 [35].  7 x 107 cells were harvested for extraction.  Method was 

supplemented with additional washing steps to remove polar contaminants:

8 mL chloroform/methanol (1:1,v/v), 8 mL chloroform/methanol (2:1,v/v), and 8 mL 

chloroform. Following purification and separation, acidic and neutral GSL extracts were 

dissolved in chloroform/methanol (2:1, v/v) and applied to silica-glass backed plates 

(Merck, Darmstadt, Germany).  A solvent system of chloroform/methanol/0.22% CaCl2

(65:35:8, v/v/v) was used when running acidic GSLs to increase separation of 

gangliosides.  GSL extracts were detected with pyrimuline reagent and captured with 

MultImage Light Cabinet imager (Alpha Innotech Corporation, San Leandro, California).



12

Results

Microarray Analysis Illustrates Changes in Gene Expression of Sphingolipid-associated 
Enzymes during Granulocytic Differentiation.

Gene expression data derived from a published ATRA-treated HL60 microarray study 

was used to abstract sphingolipid-related genes [29].  GenMAPP v2.1 was used to import 

the data retrieved into the context of the sphingolipid pathways for visualization.

As shown in Fig. 3, sphingolipid metabolism was found to shift to GSL production as the 

activity of lactosyltranfersase (B4GalT6) was found to increase 5-Fold relative to the 

control; lactosyltranfersase catalyzes the production of lactosylceramide (LacCer), the 

precursor to subsequent GSL pathways. During initial ganglioside biosynthesis, GM3 is 

supposedly rapidly metabolized to gangliosides with multiple sialyl groups as GM3 

synthase was found suppressed 0.67-fold as well as other enzymes responsible sialyl 

group addition are shown elevated, Fig. 3.
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Figure 3: Depiction of changes in the expression of genes associated with ganglio-series 

sphingolipid metabolism when HL60 cells are induced to differentiate into granulocytes 

by retinoic acid.  The gene expression data are from reference [29] and have been 

imported into the pathway tool and shown as the fold change in retinoic acid treated cells 
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versus the control.  The fold change is shown by the heat scale; therefore, increases are 

darker red, decreases are green and gray reflects no change. Those enzymes for which 

data is absent are white.

Other interesting changes in expression were found during granulocytic differentiation 

within the globo-, isoglobo-, lacto-, and neolactoseries during further glycosphingolipid 

metabolism (Supplemental 1-4).  

ATRA Induces Granulocytic Differentiation of HL60 cells

HL60 cells differentiate to neutrophil-like cells upon exposure of ATRA [4]. MPO and 

NSE stains were used to show characteristics of differentiated and undifferentiated HL60 

cells respectively. Esterase activity was observed in the NSE stain of untreated HL60 

control cells.  Similary, myeloperoxidase activity was noted in MPO stain of ATRA 

treated HL60 cells at both 2 and 5 day time points, while absent in undifferentiated cells, 

Fig. a, within Panel 1.

CD11b was used as a differentiation marker when further confirming ATRA treatment. 

HL60-treated cells were examined at 5 days corresponding to the treatment duration of 

the microarray study used in the pathway analysis [30].  Cells were also analyzed at 2 

days after an independent time course study revealed 48 hr treatment to yield the highest 

percentage of differentiated cells, data not shown.  FACS analysis reported 51% of cells 

to express the CD11b antigen after 2 Day ATRA (1 μM) treatment and 60 % following 5 

day ATRA treatment, Fig 4b. Both 2 and 5 day treatments were used for subsequent 

assays.
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Panel 1 – Confirmation of ATRA-induced differentiation of HL60 cells: NSE (non-

specific esterase) stain shows undifferentiated HL60 cells as black deposits are observed 

during esterase activity (Fig. a,b,c); reaction strongly occurs in monocytes, while less 

intense in neutrophils [31].  Cells MPO (myeloperoxidase) positive for granulocytes stain 

brown at sites of myeloperoxidase activity (Fig. d & e); reaction is found to only take 

place in granulocytes and neutrophils [32]. FACS analysis, Figure f, further confirmed 

ATRA-induced differentiation by CD11b expression. Percentages were derived from 

gating the control population and subsequently measuring against the FITC tagged 

antibody. Results of FACS analysis are shown as one of 3 independent treatments which 

demonstrated similar results (2 day: 44 – 51% expression and 5 day: 52 – 60 % 

expression).

Relationship between Sphingolipid Gene Expression and Metabolite Amounts

Microarray analysis revealed the highest gene activity within ganglioside metabolism

(Fig 3) for enzymes catalyzing the addition of sialyl groups. Therefore, we examined the 

monosialylated (GM1, GM2, and GM3) and disialylated (GD1, GD2, and GD3) 

gangliosides to assess the relationship between the changes in mRNA expression and 

metabolite production during granulocytic differentiation.  We used TLC to (semi)-

quantitatively measure the changes in GSL content.

ATRA treatment induced changes in HL60 glycosphingolipid content when analyzed by 

TLC (Fig. 4).  While ganglioside GM3 amounts were found constant in comparison to the 

control after 2 days of treatment, the amounts appear to diminish by day 5. This finding 

was consistent with the decreased activity of GM3 synthase observed in the microarray 
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analysis shown in Figure 3. Similarly, a gradual increase in production of GD3 and GD1b 

were observed by day 5, therefore these differences in metabolite amounts are consistent 

with predicted gene activity levels of ST3Gal2 and B3GalT4, respectively.  While GM2 

production was predicted to remain constant after ATRA treatment from B4GalNT 

expression levels, it was found to diminish by day 5.

             

Figure 4 – ATRA regulation of ganglioside production:  HL60 cells were treated with 

ATRA (1 μM) and GSLs were collected at 2 and 5 day time periods. TLC isolated 

individual gangliosides using chloroform/methanol/0.22% CaCl2 (65:35:8, v/v/v) and 

showed relative abundance during granulocytic differentiation. Lane 1 and 2 show mono-

and diasialylic acid standards; from top to bottom, GM3, GM2, GM1 and GD3, GD1a, 

GD1b, respectively.  An equal percentage (5%) of acidic GSL extract was loaded into 

lane 3 (undifferentiated HL60 control), lane 4 (2 day ATRA-treatment) and lane 5 (5 day 

54321
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GM2
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ATRA-treatment). Results shown are based on singlet analysis from 3 independent 

experiments.

Discussion

The complex network of regulatory pathways found during granulocytic differentiation in 

combination with a continuously expanding profile of potential bioactive (glyco) 

sphingolipids requires a systems level approach when examining changes in sphingolipid 

content during the maturation process of HL60 cells. A systems effort when studying 

sphingolipids would not only examine all components of the sphinglipidome, but also 

determine all interactions and relationships between sphingolipid species during HL60 

differentiation [36].  Sphingolipidomic tools are now necessary when comprehensively

examining the sphingolipidome [24].  In the present study, we used genomic data in the 

context of sphingolipid and GSL biosynthetic pathways to 1) quantitatively measure a 

larger fraction of the sphingolipidome than traditional MS methods and 2) organize 

resulting data for analysis.  TLC analysis, Fig. 4, confirmed genomic data predictions, 

Fig. 2, suggesting a correlation between mRNA expression and metabolite production 

within HL60 cells; summary of gene expression and metabolite production correlation 

discovered is shown in Table 1.  Confirmation allows further predictions within the 

sphingolipidome until metabolite data is available. 
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    Ganglioside                   Gene                                Predicted                        Observed
     Metabolite                 Activity                       Metabolite Level             Metabolite Level
         GM3        Decreased GM3 Synthase                Decrease                         Decrease
         GM2           No Change B4GalNT                  No Change                       Decrease
         GM1               Increase B3GalT4                      Increase                         No Change
         GD1a          No Change ST3Gal2                   No Change                        Increase
         GD1b              Increase B3GalT4                      Increase                          Increase
         GD3                Increase ST8Sia1                       Increase                          Increase
Table 1 – Relationship between mRNA expression and metabolite production within 
HL60 cells.

Based on the location and magnitude of changes in expression of genes for enzymes of 

sphingolipid metabolism in the context of this pathway model (Supplemental 1), 

granulocytic differentiation would be predicted to elevate de novo sphingolipid 

biosynthesis due to higher expression of serine palmitoyltransferase (SPTLC), but 

possibly with shunting of more of the intermediate sphinganine (Sa) to degradation 

products (hexadecanal, C16:0-al, and ethanolamine phosphate, EP) via sphinganine 1-

phosphate (Sa1P).  N-acylation of Sa to dihydroceramide (DHCer) is not predicted to 

change, except perhaps by a decrease in the proportion of subspecies with C24:0 and 

C24:1 fatty acids (due to lower CerS2), and more rapid conversion of DHCer to Cer by 

DHCer desaturase (DES1).  Furthermore, DHCer and Cer are predicted to be more 

rapidly metabolized to sphingomyelins (SM), galactosylceramide (GalCer) and 

glucosylceramide (GluCer) (and downstream metabolites such as lactosylceramide,

LacCer, and more complex neutral and sialyl-glycosphingolipids, Fig. 3, such as 

ganglioside GD3) due to elevations in the respective genes (e.g., SM synthase, SMS2, 

GalCer synthase, etc.), but possibly also turned over to Sa and sphingosine (So), 

sphingosine 1-phosphate (S1P), etc. due to elevated acid ceramidase (ASAH1).  These 

backbone sphingolipid predictions will be tested in the future using tandem mass 
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spectrometry with selection of the mode of ionization (e.g., electrospray versus MALDI) 

and ion analyzer (e.g., quadrupole, ion trap, or time-of-flight) based on the category of 

analyte being examined.  

It is hoped this approach will help translate changes in gene expression for this pathway 

into a structurally specific and quantitative sphingolipidomic profile for the cells, and 

perhaps uncover interesting changes further explaining the behavior of these cells and 

discovery of possible therapeutic targets or biomarkers used in acute myeloid leukemia 

(AML).
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Supplemental Figure 1: Backbone Sphingolipid Biosynthesis
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Supplemental Figure 2: Globoseries Biosynthesis
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Supplemental Figure 3: Isogloboseries Biosynthesis
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Supplemental Figure 4: Lactoseries Biosynthesis
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Supplemental Figure 5: Neolactoseries Biosynthesis


