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SUMMARY

Road network screening for potentially high incidiecations is the first step in a road
safety improvement program. During the screenimg@ss, road network crash data are
required for the identification of high crash Idoas, a.k.a., black spots. In situations
where historical crash data are limited or not labde, surrogate safety measuresich

as traffic and roadway characteristics are oftersiwiered. A surrogate safety measure is
an indirect measure of safety, which attempts sessthe safety of a road facility
through means other than crash data. Among sgegdateristics measuremesfzeed
variationis often used as a surrogate measure of safétgreTare a number of studies
that attempt to establish a relationship betweeedvariation and crash risk but the
existence form of such a relationship is still hatébated in the literature. The increasing
use of Global Positioning System (GPS) devices®dlecting traffic operations data,

such as vehicle speed and travel time, was legtéodst in using GPS data derived
measures as potential indices for roadway safetythA deployment of GPS-
instrumented vehicles becomes more prevalent, welbmable to use this new data
streams to better evaluate roadway safety. Ourthgse is that vehicle speed
characteristics may be used to reveal roadwayssaifitty issues such as poorly-designed

road geometries, limited sight distance, and hfiflcct movements from/to side streets.

The primary objective of this research is to explttre use of speed variation over a
roadway segment as an indirect means to estimasé érequency of the facility. This
estimated crash frequency can be used as a ststiten historical crash data are

unavailable or a proactive means to identify dites need further engineering studies.
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To accomplish this objective, sample operating d@el incident data were collected for
corridors in the Metro Atlanta area. To measureragng speeds, second-by-second
speed data were obtained from more than 460 GPipgflivehicles participating in the
Commute Atlanta Study over the 2004 calendar yearident data was provided by the
Georgia Department of Transportation Office of Ticabafety and Design. Based on the
speed and incident data, several definitions oédpariation are considered as potential
surrogate safety measures. The quantified reksttips between surrogate measures and
crash frequency are developed using Binary RecaiBartitioning methods and a

Generalized Linear Modeling (GLM) approach.

This research effort is expected to result in ssvayntributions. First, this study will
develop a methodology to determine speed profileumarious conditions using vehicle
activity data. Second, a speed variation definitoitable for GPS data that can be used
as a surrogate safety measure will be recommendstly, the process will provide
safety prediction models for identifying high crdshations in the network screening

process for urban streets.
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Chapter 1. INTRODUCTION

1.1 BACKGROUND

Despite the gradual reduction in fatality and igjtates over the past several years, more
than 43,000 people were killed and 2.7 million wiejared on the highways in 200%)(
With these high numbers of fatalities and injurtbgre is an urgent need for the public
agencies to more effectively allocate their limitediget for safety improvement
projects. This need was highlighted when the “Saéeountable, Flexible, Efficient
Transportation Equity Act: A Legacy for Users (SAFEA-LU)” legislation passed in
2005 and $5.1 billion in funding was allocatedte Highway Safety Improvement
Program (HSIP) to achieve significant reductionfatalities and serious injuries due to
motor vehicle crasheg), As part of this program, each state is requicesubmit State
Strategic Highway Safety Plans (SHSP) to identifhtvay safety problems, develop an
evaluation process to assess safety improvemeardsjse these criteria to prioritize

safety improvement projects.

For any road safety improvement program, the poassally involves three steps:
screening the road network for high crash locatiecnaducting detailed engineering
studies, and prioritizing/implementing safety impgement projects3). The first step,
road network screening, requires historical craath.dHowever, the data are often
limited or not available or engineers are requiedvaluate safety on a particular

corridor in a short timeframe.



When sufficient crash data are not readily avadahother approach to identifying
safety problems is to use indirect safety measueesa surrogate safety measures. A
surrogate safety measure is an indirect measuwsafefy, which attempts to assess the
safety of a facility through means other than crdata 4). Road accidents are influenced
by many factors such as excessive speed, road geoaesign, traffic volume, weather,
reasons for travelling, driver’s physical and méntanditions, and safety campaigis. (
Speed characteristics are influenced by three ncaymponents, i.e., drivers/vehicles,
roadway, and roadside environmeit Figure 1 summarizes the relationship between
speed characteristics, safety, and the main inflalfiactors. Since the driver, roadway,
and vehicle components influence both speed clarsiits and road safety, there might
be a possibility of using some speed charactesistieasures as a surrogate safety
measures. A number of studigsi6) suggest that there is a relationship betweendspee

characteristics and road safety.

Most of the previous studies in the literature dismmclusions based on speed data
collected at one or a few spots along the studbeddors. Even though speed data along
a corridor may provide a better understanding sfgiespeed vs. operating speed
consistency, few of these studi@3 (19 investigated the relationship between speed
characteristics along a corridor and road safegytddimitations in their data collection

methods.
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Figure 1: Relationships among speed characteristicsoad safety, and influential factors

With the emergence of the Vehicle Infrastructurednation (VII) initiative €9, 20,
significant amounts of traffic data, such as velaicapeed, travel time, and other data,
will likely be widely available in the future. Thigs led to interest in using several
measures derived from such extensive traffic dagaoctential roadway safety indices.
The hypothesis is that speed characteristics difroen one-dimension speed data
would reveal roadways with design issues such apsturves, limited sight distance,

mountainous terrain, driveway deficiencies, etwaf tould result in higher crash risks.

1.2 PROBLEM DEFINITION

When the historical crash data are not availahkegixpected crash frequency may

potentially be estimated using surrogate measwssdoon road geometries and speed



characteristics. For the road network screeninggae, collecting road geometric and

roadside environmental information of all the re@gments is often not feasible.

Most of the previous studies that measure speeel &ianployed automated traffic
counters or laser/radar speed measurements atispeants along the roadway,
assuming that the monitored spot speeds or speéiteprcollected along a tangent or a
horizontal curve are representative of the speétsecentire corridor. However, this
assumption may not hold when the road has geoneéients such as horizontal or
vertical curves, limited sight distance, high dvixag density as these factors affect

vehicle speedd).

This research uses GPS-equipped vehicle data taityudne relationship between
observed roadway speed characteristics, as reveglde: instrumented vehicle data, and
observed crash frequency on these roadways, asleeMvi@ the regional crash database.
With the use of GPS technology, vehicles are trd@tesecond-by-second resolution
over an entire trip, any time of the day, under @aegther condition. Therefore, this
study does not need to assume that a vehicle speaslured at one location is a

representative of speeds over the entire roadosecti

The hypothesis of this research is that the spagdnce can be used as a surrogate
measure of safety to evaluate urban streets. €s&arch aims to provide a simple
screening tool to assist transportation safetyreegs and practitioners in identifying

roadway segments with safety issues during theuatiah process of safety



improvement programs. The developed model wouldiregnly the speed profile data

to identify potential corridors with a crash risgraficantly above expectation.

1.3 RESEARCH OBJECTIVES

The objectives of this research effort are as vadlo

* To determine the speed profile, including operatavgrage, and various

percentiles, of a roadway using GPS-instrumentédtcieedata.

* To developorofile-basedraffic attributes using the instrumented vehicle

data for potential use as surrogate safety measures

* To investigate the relationships of road safetthtoproposed surrogate

safety measures.

1.4 RESEARCH CONTRIBUTIONS

This research effort is expected to provide thetahg contributions:

» Demonstrate methodology to determine free-flow dpaeerage speed,

and speed percentiles using vehicle activity data.

* Review speed variation definitions found in therliiture and propose new

measures that can be used as surrogate safetynemasu

» Develop a safety prediction model that requirey epked profile data for
identifying potential high crash locations in thetwork screening process

for urban streets.



1.5 DISSERTATION OUTLINE

This study proposes to use several traffic attabuterived from instrumented vehicles to
predict the crash frequency of the urban stre€tsapter 2 discusses the previous studies
that relate speed characteristics to road safetyt ldf the previous research efforts were
seen to measure the variation of speed at a spémtation. However, these point-

specific measures do not always show a strongaoakdtip with road safety.

Chapter 3 describes the data used in this studycohridor selection methodology is

also included in this chapter.

In practice, the operating speed is measured dtimdree-flow condition. However,
there is no direct information from the vehicleiaty data to determine whether a trip
was made under free-flow conditions. Thereforea di¢tering processes were developed
in Chapter 4 to detect trips that are not likelypgounder free-flow condition. Also
included this chapter is the crash data procedsiogtain crash data in the scope of

interest.

Chapter 5 proposes several new traffic attribussstl on speed profile data obtained
from the previous chapter. The proposed attributelsde speed-related and stop-related
measures. Most of these measures quantify variafispeed along the corridor, rather

than variation of speed at one point.

Since multiple filters were used to obtain liketgd-flow speed data, it is vital to
understand the effect of each filter on the prodageeed measures. Chapter 6 provides

sensitivity analyses of data filters to the speedsare.



Chapter 7 presents the development of crash predictodels for different facility
classes. The summary of findings, research corioibs, and future recommended work

is described in Chapter 8.

The remainder of this dissertation includes Apperdi- the summary of data processing
results in Chapter 4 and Appendix B — the sengjtimnalysis results of spacing distance

in Chapter 5.



Chapter 2. LITERATURE REVIEW

The objective of this research is to develop crasglliction models based on speed
characteristics. Since this study utilizes GPS sédny-second speed data along
corridors, several speed characteristics can beatebased on this one-dimensional
speed data. The first step in the realization isf dbjective is to assess previous studies

that used speed characteristics to quantify rosedysa

2.1 CHAPTER ORGANIZATION

This chapter begins with an overview of previousesrch regarding the speed-safety
relationship in Section 2.2. This is followed incBen 2.3 by speed variation definitions
from previous research efforts. The chapter coredwaiith a presentation of statistical
models that were used in the past to predict apashrrences on roadways with the use

of speed characteristics as the predictor variab8ection 2.4.

2.2 RELATIONSHIP BETWEEN SPEED CHARACTERISTICS AND SAFETY
Previous research regarding the relationship betwpeed characteristics and crashes
can be divided into three primary groups accordintipe experimental designs:
comparison of pre-crash speed and prevailing spmedparison of crash-involved
driver’'s speed and prevailing speed; and lastlypgarison of aggregated speeds among

different roadways1(1).



2.2.1 Pre-crash Speed vs. Prevailing Speed

The first type of research design involves meagupire-crash and prevailing speeds and
relating the difference between these speeds &bysdthis type of research takes an
event-baseadpproach, i.e., comparing the speed from a crashtevith the prevailing
facility speed during non-crash periddl). Pre-crash speed is usually obtained from

multiple sources such as police reports and crashktrauction techniques.

One of the first attempts to examine the relatignbletween vehicle speeds and crash
risk was undertaken by Solomdlb|. Solomon estimated pre-crash traveling speeds on
selected rural highway segments, including 35 sitdd States. The author compared
pre-crash traveling speeds with speed measurerdentsy normal conditions, and found
that many vehicles involved in rural highway crastere traveling well above or well
below the average speed under normal conditions.vEmiation is characterized by the
U-shape form in Figure 2. Even though this earbeegch demonstrated a promising
opportunity for using speed variation as a surregafety measure, its methodology,
namely, pre-speed measurement presents sever@ngesd. The pre-crash speed data
were collected from police reports or estimateanfi similar event, both sources with
potential accuracy issues. The author did not des¢row he estimated pre-crash speeds
when they were not available from the previous sesirThe methodology also assumes

a uniform speed throughout the segment length,ii@esipanges in terrain and geometry.
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Figure 2: Crash involvement rate by variation fromthe average speed on study section, day and
night (15), Reproduced by 21)

Kockelman and MurraylQ) used a more aggregated approach to measuregsie-cr
speed. The authors collected speed data usinglietggtors installed on six Southern
California freeways. The traffic counter devicepded a data stream at a 30-second
aggregation level that includes average speedraffat tdensity. The authors investigated
744 crashes that occurred during a 1-month pemoithe study freeway segments and
compared their accompanied pre-crash speed varsatidh the speed variation during
normal conditions. The study concluded there igvidence that speed or speed variation
has a relationship with crash occurrence. Howedterauthors noted several data

limitations to their study. For instance, the brémes from the police reports were

10



rarely precise. In addition, speeds are based ioig 89-second aggregated data; thus,
speed variation had to be inferred from the vasratn average speeds over a series of

intervals and over a series of lanes.

Kloeden et al.X1) determined the relationship between free-flonesip@nd crash
involvement using a case study design, i.e., coim@dine speed of a vehicle involved in
a crash with speeds of other vehicles travellindgp@atsame time and location but not
involved in the crash. The methodology was gengsathilar to Solomon’s study except
that pre-crash speeds were determined using cormgidid crash reconstruction
techniques developed by the authors, rather thiatydmsed on police reports. The
authors concluded that crash-involved vehicles wereerally traveling faster than those
not involved in crashes. Contrary to Solomon’s ifmgd, the study showed that slow-

speed vehicles were not associated with high arakh

In summary, this type of research design can shewitst moment relationship between
speed difference and crash involvement. Thatasetmg speed of the crash-involved
vehicle was directly compared with the prevailipged of the facility. However, pre-
crash travelling speed in the police reports uguadls an estimate from the witnesses,
drivers, or policeX1), and therefore, as stated by Odl8)( reduced the soundness of
their findings and conclusions. Pre-crash speedatsanbe expensive to obtain with the

current technology available.
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2.2.2 Speed of Crash-Involved Drivers vs. Speed of Non-@sh-Involved Drivers

This type of study compares the speed charactayistidrivers with and without crash
involvement during the period of interest. This Egageh is considereddriver-based
approach to study the relationship between diffespred characteristics and crash
involvement L1). The hypothesis of this type of research is thsters with crash
involvement histories operate their vehicles ddfety from the drivers without crash
involvement history, e.g., individuals that driaster or accelerate/decelerate more
abruptly are more prone to accidents. This typeséarch is useful for classifying the

safety of drivers by their driving behaviors.

One of these driver-based studies was conductéaldgs et al. §). The authors
examined the relationship between driver attribates speed characteristics in Victoria,
Australia. As part of this study, the authors meadwehicle speeds on two urban
arterials and two rural undivided highways. Aftecarding their speeds, drivers were
stopped at the downstream location and were irdewd to determine if they were
involved in any accidents during the past five gesrd also other related details about
the incident(s). The study found that drivers veifteeds above the 8Bercentile had a
higher crash risk than any other drivers. They &sod that drivers with a measured

speed less than $ercentile were the least likely to be involvedhiorash.

West et al. 16) studied relationships between driving behaviord erash involvement
over a three year period. Forty-eight drivers wasieed to drive on a predefine route, a

mix between urban and motorway routes, and theortrépeir driving behaviors.
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Additionally, each driver was accompanied by areolsr to validate the reliability of

the driver’s self-report. The authors carried outwdtiple logistic regression analysis

with crash involvement as the dependent varialdleyTound that the observed speed on
motorway has a positive relationship with self-népd crash involvement. In other
words, drivers with high driving speeds were assted with at least one crash during the

past three years.

Jun @3) utilized GPS-measured activity data to compaeedifiving behavior of two
driver groups, those with and without crash-invalexperiences over a 14-month
period. The author found that driving behaviorshsas speeding pattern and hard
acceleration/deceleration activity are among thetrimoportant factors for determining

potential crash involvement rate of an individual.

In summary, driver-based study designs investitfaalifference between the driving
behaviors of drivers with and without past crasfoluement. One assumption of this
approach is that driving behaviors do not chantgr #ie drivers have accidents. In
reality, drivers might be more cautious with thaiiving after they experience accidents

(12).

2.2.3 Aggregated Speed Characteristics of Different Roadays

The last category of studies investigates theicgiahip between aggregated speed
characteristics and crash frequency/rate. Thisystiegdign is consideredfacility-based
approach, i.e., comparing speed characteristicsafaty associated with different road

segmentsl(l). A number of studies have been conducted usisgélsearch design
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because facility speed data tend to be easierttonotnan the data required in the first
two described research approaches. The hypotlsethiatipoorly designed roads that

results in high crash risk have different speedanttaristics from lower crash risk roads.

Garber and Gadiraj®) investigated whether a discrepancy between dessigad and
speed limit influences operating speed variabilitigich in turn influences crash
occurrences. Traffic data and crash data wereatetleover 36 sites in Virginia including
urban freeways, rural freeways, urban arterialglrarterials, and rural major collectors.
Individual vehicle speeds and traffic volume weodlected for 24-hour periods using
automated traffic data recorders. Design speedvdaseobtained from the highway log
sheets. The authors performed an ANOVA test andddbat average speed, speed
variance, design speed, and highway type haven#isant effect on crash rate. A
regression model was developed to quantify theiogslship between crash rate and speed
variance. It was concluded that the crash ratgeased with increasing speed variance
for all facility types. In addition, the different@tween posted and design speeds has a

significant effect on speed variance.

Lave (L3) proposed a concept of coordination between dsivarthe road. In this study,
the author used speed variance as a measure afdhgination. For example, high speed
variation among drivers on a road segment of istas®uld refer to low driver
coordination and vice versa. The author hypothesilzat low driver coordination led to
higher fatality rates. In the study, fatal crasbadend driving speed data were collected
for the period 1981-1982 from 50 states for sixssifications of roadways (i.e., rural

interstates, arterials, and collectors; and urbeevays, highways, and arterials). Speed

14



variance was calculated as thé"§®rcentile speed minus the average speed. Several
regression analyses were performed with fatality s a dependent variable. The author
found that mean speed was not statistically sicauifi in his crash prediction models;

however, variation from the mean was significant.

Anderson et al.1(7) studied the relationship of safety to severalngeinic design
consistency measures for rural two-lane highwaye &f these measures was the speed
reduction on a horizontal curve relative to thecping tangent or curve. The speed
reduction values for 5,287 horizontal curves westeneated from speed prediction
equations. The authors found a positive relatignbletween the crash frequency and
speed reduction on a horizontal curve. In otherdspthe greater the speed reduction
experienced by drivers on a horizontal curve, tleaggr the crash involvement of that

curve.

In summary, the facility-based study examines éhationships of the aggregated speed
characteristics and safety at multiple road faesit The use of aggregated speeds of the
roadway can avoid the problem of estimating thegoash speeds of vehicles as seen in
Section 2.2.1. Nevertheless, one criticism to #uodlity-based approach is that the speed-
safety relationship established from this appraachther weak because the aggregated
speed measured over the study period might netatetthe actual speed distribution at the

time of the crash occurrence$l1( 29.
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2.3 SURROGATE SAFETY DEFINITIONS

Numerous studies have considered speed-relatedureeass a potential parameter in the
investigation of roadway safety. These measuresféea defined differently based on
the purpose of the study and the available dateat@n method. This section

summarizes the speed-related measures found iropseresearch.
2.3.1 Speed

It is clear that higher pre-crashed speed genesdtggher impact and therefore increases
in likely crash severity. Additionally, at a highgpeed, the driver has less time to

respond to the incident and is less likely to sastidly avoid the crash.

Aljanahi () investigated the effect of the following speedaswees on the expected

number of crashes:
« The 85 percentile speed

« The 93 percentile speed

1 .
* Root mean square of measured speRM&S = ~ n _v?, wherev;is the

i=1%i>

i" individual speed pointandi=1,...,n.

Mean speed is also used by several studies tolisktétie relationship between speed

and road safetyp( 9, 13.
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2.3.2 Speed Variance

Standard deviation and variance of speeds meaatigedpecific location were used in

several studie( 9. The formula follows the conventional varianedcalation:

, el —9)?

O' =
v n—1

)

whereo,? is the speed variance afids the mean of the speed measurements... v,

at a specific location.
2.3.3 Other Forms of Speed Dispersion

Lave (L3) used speed variance as a measure of the dispefsspeeds among drivers.
Since the actual variance or standard deviatispeéds was not available in the dataset,
the author approximated the speed variance usinditference between the'85
percentile speed and the mean speed at a givetiolocéhe difference was assumed to

be one standard deviation of observed speeds as@vvitten as:

SV =Vgs — V

whereSV is the speed variancés is the 85' percentile speed, aidis the average

speed at a given point.

Aljanahi et al. §) estimated the expected crash frequency usinfptlosving measures,
Coefficient of Upper Speed (CUSS) and Skewnessxl(8h, as the surrogates for

variance of speeds:
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Vo — V.
CcUSS = 2> 50
Vso

whereVgs andVs, are the 85 and the 58 percentile speeds, respectively, and

V93 - VSO

Sl =2x————
Voz = V5

whereVys, Vs, andV,, are the 98, 50", and ¥ percentile speeds, respectively.

2.3.4 Speed Reduction

Speed reduction from tangent to horizontal curwtiees has been proposed as a

measure of design consistengy (29. It is defined as:
AV85 = V85, — V85,

whereV 85, is the 88' percentile speed on a tangent sectionlét}. is the 8%'
percentile speed on the following curvature. Thalfmodel showed that the higher the
speed reduction at a curvature, the greater thecteg number of accidents at that

location.
2.3.5 Acceleration Noise

Acceleration noise was first proposed by Hermaal €26) in 1959 as a means to
measure traffic conditions and driving behaviorisTineasure is different from the
previous speed measures in that acceleration moderived from speed data of an
individual vehicle recorded along the corridorheatthan speed data of multiple vehicles

at a single measurement point.
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Acceleration noiseq) is defined to be the root-mean-square of thelacaon, which

can be formulated as follows:

o2 = % [} (a(t) — agy)?dt, and

o1
wr = 7 aOde = D) - ()

where v(t) anda(t) are the speed and acceleration of a car atttaméa,, is the average

acceleration of the car for a trip taking tife

The value of acceleration noise varies by driveis taaffic conditions. Herman et al.
found that a driver driving 5-10 mph faster thaerage traffic speed resulted in higher

acceleration noise.

A few year later, Jones and Po3)( tried to use this parameter to quantify roadedry
and traffic condition in Adelaide, Australia. Thethors examined the effect of different
roads, drivers, and traffic conditions on accelerahoise. Eight runs were made by two
drivers on three road sections (with two road sasticontaining significant horizontal

curvature) during daylight traffic conditions.

The results showed that the acceleration noiseswagdicantly greater on roads with
more horizontal curvatures. In addition, on the sae@ction, a down grade tends to result
in greater acceleration noise than an up gradeattters explained that on a down
grade it is more difficult to maintain a constapésd when negotiating a sharp curve

compared with an up grade. This suggests thantkeaction effect between two
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geometric features, e.g., sharp curve on a dowsédiion, can be captured using the

acceleration noise parameter.

Even though the authors did not directly deterntingerelationship between the
acceleration noise and number of accidents onrdiiteoad sections, the authors
concluded that a road with multiple curves, whiglmiore likely to cause a crash, also
tends to yield a greater acceleration noise. Talslemmarizes the studies in the past with
their research focus and definitions of speed tianaFew studies attempted to capture
speed along corridor segments primarily due togagent limitations. Knowledge gained
from this section will be used to develop a newrdebn of speed variation based on

GPS data.

Table 1: Summary of speed variation definitions fron previous studies

Year Authors Research Topic | Facility Location Speed Data| Speed
Type Collection | variation
Definition
1962 Jones and Effects of roads, | Urban/ Adelaid Tachograph, Root-mean-
Potts @7) drivers, and Suburban Hills, square of
traffic on Roads Australia acceleration
acceleration noise
1964 Solomori5) | Measuring pre- | Rural 11 States in | Estimated | Difference
crash speed highways the U.S. from crash | between pre-

report, spot| crash and
speed study mean speeds

1985 Lavel?3) Aggregate speed| Interstates, | 50 States in | NA Difference
and fatality rate | arterials, the U.S. between mean
and speed and 85
collectors percentile
speed
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Table 1: Summary of speed variation definitions fron previous studies(Continued)

Year Authors Research Topic | Facility Location Speed Data| Speed
Type Collection | variation
Definition
1989 Garber and | Aggregated speed Interstates | Multiple Traffic data | Variance of
Gadiraju @) | and crash and arterials| locations in | recorder speed from the
involvement in rural and | Virginia mean
urban areas;
Collectors
in rural area
1999 Anderson Design Two-lane State of Estimated | The 85th
a7 consistency rural Washington | from speed | percentile
measures and highways prediction | speed
crash frequency models difference
between two
successive
segments
1999 Aljananhi) | Aggregated speed Highways UK and Pneumatic | Std Deviation,
and crash Bahrain sensors CUSSa, Sib
involvement
2002 Yuan and Aggregated speed Rural 10 States in | NA Speed variance
Garber 28) and crash interstates | the U.S.
involvement
2006 Jun23) Driver’'s Speed Freeways, | Atlanta, GA | GPS- Difference
Characteristics | arterials, observed between
and Crash History and local travel data | driving and
roads posted speeds
acceleration
noise, cruise
duration, etc
2006 Abdel- Aggregated speed Urban Orlando, FL | Loop Coefficient of
Aty(29) and crash freeways detector variation of
involvement speed
2007 Kockelman | Aggregated speed Urban Orange Loop Standard
and Murray | and crash freeways County, CA | detector deviation of
(12 involvement aggregated
speeds
Note:
Ves—Vs0

&Coefficient of Upper SpeedUSS =

b Skewness Indexs] = 2x

Vo3—Vs0

93— V7

50
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2.4  EXISTING CRASH PREDICTION MODELS

This section describes statistical models and maskaimptions that have been used by
previous researchers. Until the last decade, noast safety research assumed that crash

frequency and traffic volume have a linear relaghap.

A crash prediction model was developed to evaltreeffect of median treatments on
urban arterials in Phoenix, AZ and City of Omahg, ®0). The authors assumed
negative binomial distribution of the residuals arsg¢d maximume-likelihood techniques
to estimate model parameters. The crash frequeasyalgo assumed to have non-linear
relationships with traffic volume and segment léngthe 189 selected segments were at
least 0.75 mile in length and at least 350 ft atvasn signalized intersections. The three-
year crash data associated with the study segrnmetsied 7,125 midblock accidents.
The researchers determined whether a crash wasiassbwith the signalized
intersections from the crash report by using tigefisection-related” field found in the
reports. The researchers computed the crash nataised-curb, TWLTL, and undivided
median treatment groups. Based on this preliminagtysis, the raised-curb median has
the lowest crash rate, followed by the TWLTL, amdlivided treatment. With regard to
land uses, business and office type land usesfaenel to have a higher crash rate than
residential or industrial land uses. The statis@eelysis involved two stages: 1) use of
analysis of variance (ANOVA) to determine factdratthad a significant effect on crash
frequency and 2) calibration of the crash predictimodel using the Generalized Linear
Model (GLM) approach. The ANOVA results suggesteat iand uses could be grouped

as business/ office and residential/ industridhad uses within the same group have
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similar crash trends. In addition, driveway densityl unsignalized side street were
found to be significant factors for crash frequenoysegments with a business/ office

land use group, but not on segments with a resalémdustrial land use group.

Alijanahi et al. b) investigated the relationship between severalsores of speed and
crash rate on highways, 9 sites in the U.K. andite® in Bahrain. Speed and traffic flow
data were collected at a selected spot on eachsitg pneumatic sensors. The
researchers used 5-year crash data in the U.K4-gmar crash data in Bahrain. The

multiplicative form was used to construct the crasidel:
u=kLF*HPS®

whereu is the expected number of accidents per four y@amBahrain) and five years (in
the U.K.),L is the length of road segment in kilometétss the traffic flow (18 vehicles
per year)H is the percent truck; arslis a measure of speed characteristics. The model
responsey, was assumed to have a Poisson distribution anthtidel parametera, b,
andc were estimated by maximum likelihood. The varidbleas an exponent of 1,
therefore, the authors assumed that number of esasiproportional to the length of
road segment. The results showed positive reldtipaetween speed characteristics
(e.g., mean speed and speed variability) and csgstremile. However, these

relationships were not statistically significantldhe authors suggested further studies.

Design consistency and safety relationship wereateodin (L8) using the GLM

approach. The following model form was used:
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E(Y) = agL®V92e2i=1 /%)

whereE (Y) is the expected crash frequentys the section lengthy, is the AADT;x; is

any of them variables in addition td and V; anda andb are model parameters.

25 STATISTICAL MODELING APPROACH

The proposed statistical analysis tasks for devetoy of the crash prediction models,
i.e., Safety Performance Functions (SPFs), willude selecting the safety measurement
for the models, model assumption, and model forhe fbllowing sections discuss

details of each proposed task.
2.5.1 Safety Measurement for Model Development

One of the objectives of this research is to dgvelarash prediction model using speed
characteristics as predictor variables, allowimg$portation safety engineers and
practitioners to identify black spots in the roadwork. Two safety measurements are
widely used for ranking sites for safety investigat namely, crash count and crash rate.
However, it is known that the expected crash fregyaloes not have a linear
relationship with traffic flow and, as a resultetbrash rate should not be used to compare
the safety of two entitie81-33. Figure 3 illustrates the relationship betweekDX

and crash frequency. The slope of this graph reptesrash rate, which changes when
AADT reaches a certain threshold of each facilfyet In other words, different road
functional classifications (e.g., minor arterials|lectors, and local streets) have different
crash characteristics. This research thereforegsegthe use of crash frequency as a

dependent variable in the crash model.
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Figure 3: Relationship between Traffic Exposure andafety 34)

2.5.2 Model Forms

Hauer 85) summarized that there are three forms of statéisthodels commonly used

for road safety research:

Additive model:Y = L x (B, X, + B2X, + )

Multiplicative model:Y = L * (8,X,°1X,% ...)

Multiplicative model (exponential bas&):= L  (ePoef1X1eh2Xa )

where Y is the expected crash frequency (crashesggenent length-unit time or crashes

per unit time) and L is the segment length.

An Additive model is appropriate for point variablguch as driveways and the presence

of traffic signs while a multiplicative model is ayopriate for segment variables such as
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lane width or shoulder type, which influence crask along the segment. The
relationship between the predictor variables anpbddent variable is usually determined
by exploring the data through graphs and otheralizations. A suggested generic model

form by Hauer 85) is:

Y = a(L * Multiplicative Portion + Additive Portion)

whereMultiplicative Portion = f,(AADT) * f1(X1) * f2(X3) * ... and

Additive Portion = g,(AADT,X;) + g,(AADT,X;) + g;(AADT, X3) + -+

In the equation abov#, indicates the expected number of accidents ocguon a road
segment during a time period. In additianis a scale parameter which takes into account
traits that are not included in this model suclwvaather and driver demographics and

is the length of segment. The notatigpé), f;(:), andf, () represent functions of the
variablesAADT, X, andX, which have multiplicative influence to the expectedsh
frequency whileg,(+), g>(-), andgs(-) denote the functions of the variabls X, and

X35 which have additive influence to the expecteditfesquency.

2.5.3 Modeling Approach

The quantified relationships between surrogate areasand crash frequency are
developed using a Generalized Linear Modeling (Gladproach. The three components

of the GLMs are36):

An Error Distribution — the distribution of the daplent variable.
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A Link Function — the function that shows how tiveehr function of the explanatory
variables are related to the expected value ofgbgonse. The general form is as

follows:
gu) = Boxo + Brx1+... +Brxp
whereg(u) is the link function of the expected value of teeponse.

The Variance Function — the function presents ¢hationship between variance of the
dependent variable and its mean. The general féthreosariance function of the

responsg is as follows:

Var(y) = oV (u)

where@is the dispersion parameter avi(l/) shows that the variance is a function of the
mean. When the error is normally distribut¥¢) is 1 andgis 6. And when the error

has Poisson distributioN(y) is ¢ and gis 1.
2.5.4 Underlying Distribution Assumption

It is generally accepted that crash count occuaehallow the Poisson proceds/( 33,

34, 37 for the following reasons:
» Crash frequencies are non-negative integers.
* A high number of crash events at a single locasaare.

The Poisson probability mass function follows toenf:
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Vi ,—u;
N
P(X =y = 7

i

In the equation abov®(X =) is the probability that the observed number ofcarts
is y during period i when X is Poisson distributétso, p; = the expected number of

accidents that occur during the period of interest

One basic assumption when a random variable xvisliBoisson distribution is that its

variance is equal to its expected value, or

X~ Poisson, Var(X) L.

However, Kononov34) indicated that this property does not hold fastr data in some
cases. For instance, some crash data set are fegitesented by a long tail distribution,
which usually indicates high variation. The autposposed to use a negative binomial
distribution assumption when the crash data aredisfgersed, i.e., the variance of the
data are greater than the mean. fiégative binomial probability mass functitollows

the form:

-1

F(a‘1+yi)( ap; )“( 1 )“

PX =y, =
E=¥)=3 T v \Tvag

with the varianceVar(x) = u + au?

In the equation above, is the overdispersion parameter estimated by #vsamum log-

likelihood of the negative binomial functiof(r) = (r —1)!, r is a positive integer.
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2.5.5 Tests of Goodness of Fit

The goodness of fit of a Poisson or negative bimbmiodels can be assessed using the

following statistical measured?, 38, 39

« Ordinary multiple correlation coefficient {R

i —9)?

2 1=~ T
S Yoo D

wherey; is the observation (crash frequency on corriflovith y; as the
fitted value from the model andas the sample average. The R-square
measures how much variation can be explained biittad model
compared with the model with only an intercept t€pin Therefore, an R-
square closer to one indicates the fitted modable to explain most of

the variation in the data.

+ Deviance test: the Poisson deviance, i.e., G-8t#jss of the form:
n
D = 22(%’ log(vi/f) — (vi — )
i=1

The deviance follows thg2distribution with n-p degrees of freedom

where there are n observations and p parameténs imodel.

» Dispersion parametesf): A measure of degree of dispersion of the data

is of the form:
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Pearson X?
Oy = ———
n—p

and,

Pearson X? = ZM
U ovar(m)

Values greater than 1 indicate under-dispersiotevthe values less than
1 indicate over-dispersion. The ideal conditiongventhe true variance

equals mean, represents the dispersion value of one

26 SUMMARY

This chapter reviewed the previous research regauspeed and safety relationships.
Previous research works can be generally classifiedhree groups: event-based,
driver-based, and facility-based studies. Thisatission uses the facility-based
approach, i.e., comparing speed characteristicsafety associated with different road

segments.

Several safety surrogate measures including sppeéd variation, speed reduction, and
acceleration noise, were also discussed. Among timesisures, only speed reduction and
acceleration noise capture speed variability abbegrridor. As a result, there is a need to
develop profile-based traffic attributes using ittrumented vehicle data for potential

use as safety surrogate measures.

The last section reviewed the statistical modefmeihods used in the road safety

analysis. Crash frequency was proposed as the depewariable in this study as the
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crash frequency is not proportional to traffic voke. The GLM approach with the
assumption of Poisson or negative binomial distrdsuof the error term is commonly

applied in the crash prediction model development.
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Chapter 3. DATA

This chapter describes the data collection metloggolor speed, crash data, traffic data,
and the road characteristics data. Additionally¢csithe speed data were obtained from
the instrumented vehicles of a random selectiairiokrs in the Atlanta region, speed
data might not available on all links. Thereforeparidor selection methodology is also

developed.

3.1 DATA COLLECTION

The following subsections describe data collectr@mthodologies and data related issues.
Further detail may be found in the FHWA projectaeg6). Data are classified into four
primary groups including speed data, crash da#fiddata, and road characteristics
data. The original speed data collection and corrsglection plan and procedure were
developed as part of the FHWA project. The proyezs primarily conceived with
determining the effect of roadway features on djiggaspeed. The data collected for the

FHWA project was then subsequently used for tHsref
3.1.1 Speed Data

Unlike previous studies that have measured spaatisf@eed distributions at spot
locations the FHWA study and this research focasethe variability of speeds along
stretches of pre-selected corridors using GPS-eedipehicle speed data. The
Commute Atlanta data employed in the studies iresugbcond-by-second vehicle
trajectory data collected from January 2004 to Dewsy 2004. Each second of

Commute Atlanta GPS data contain the trip ID, d@éteg, vehicle speed, position

32



(latitude-longitude), travel direction, road ID tviinile post, and satellite data quality

information (used in automated data processingaiadity assurance routines). Table 2

summarizes the instrumented vehicle record at&#and their descriptions.

Table 2: Instrumented Vehicle Record Attribute List

Attribute | Description

TRIPID A combination of Driver ID, Date, Time infioration

DATE Date (yyyymmdd)

TIME Time (hhmmss)

LAT Latitude

LON Longitude

SPEED Speed (mph)

HEAD Azimuth, angle between north and heading dioes (degree)

SAT Number of satellites

PDOP Position dilution of precision

RCLINK | Road classification link number (i.e. unigigentifier assigned by the state department
transportation to all roadways.)

BEG_MP | Beginning mile point

of

Using Geographic Information System (GIS) routirntbs,second-by-second vehicle

position data are overlaid on a GIS map and lirtketthe roadway design and operating

parameters (such as speed limit, lane width, curgaetc.). Figure 4 (a) illustrates a plot

of GPS vehicle location, study segment 35, on arsby second basis. Each line in

Figure 4 (b) represents the speed trace of anithdiVtrip, from the starting point to the

ending point of a corridor.
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Figure 4: GPS Speed Data of Study Segment 35 Nortbbnd (a) Overlaid on the GIS Map and (b)
Speed Profile Plot

3.1.2 Crash Data

By analyzing crash history data provided by the iGeoDepartment of Transportation
(GDOT) within a GIS analytical framework, crashleattoccurred in the proximity of the
selected corridors can be identified. The fourry@802-2005) average of crash counts

for each roadway link is used to minimize potenydr-to-year anomalies.
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Figure 5: Projection of GDOT Crash Data onto the Rad Network

Figure 5 shows the crash data locations along on@lor for the 2002-2005 time period.
Hence, crash histories can be linked with spagiaéd data, to the extent that crash
position data in the database are accurate. F@jah®ws aggregated crash data by
plotting crash counts against the milelog (located .01 mile increment, numbered
along the corridor) of South Atlanta Street fromakea Drive to Marietta Highway.
Figure 6 illustrates that the number of crashesifsogntly increases at the signalized
intersections at the corridor end points. Sincg eegmental crashes are of interest in
this research effort, crashes that occurred inrttegsection vicinity, i.e., within 250-ft

radius of the intersection, will be removed frore #imalysis.
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3.1.3 Traffic Data

Traffic count data will be included in the safetgg@iction model to incorporate the effect
of traffic volume on crash involvement. Averagendal Daily Traffic (AADT) data

were obtained from the GDOT’s State Traffic and &eftatistics (STARS). GDOT
conducts annual traffic counts throughout the staaeway system as part of the
Highway Performance Monitoring System (HPMS) progra-or this study the average

of AADT values from 2002 to 2004 were used.

3.1.4 Road Environment Characteristics

Pertinent road characteristics data such as roade@amyetry, functional classification,
speed limit, land uses, and driveway density wetkected from multiple sources such as

GDOT’s Road Characteristic (RC) file, site visierial maps, etc.
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Figure 6: GDOT Crash Data Counts vs. Milelog
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3.2 CORRIDOR SELECTION

Since the activity data used in this study weraioleid from 460 instrumented-vehicles
operating freely, some road link might not haveespéata available. This section
develops a methodology to collect speed data frarcorridors with relative high

number of drivers and trips.

3.2.1 Methodology

In designing the FHWA project data analysis plamg primary aspects were considered
when selecting corridors for analysis: 1) maximggsample size, i.e. the number of
drivers and the number of trips, and 2) ensurirg sfficient explanatory variable

control would be available in the analysis. Tlsatites were selected to ensure a balance
in terms of number of road feature types as wetiamaber of trips across different

drivers.

To achieve these goals, all corridors within thelgtarea, for which instrumented
vehicle data were available, were ranked basetd@number of trips being made on
each link. Then the top 100 segments in the mirterial, collector, and local street
functional classes were selected. As the focibeoFHWA study was on low- to mid-
speed urban facilities, higher functional classesamot included in the final corridor
selection. Among top 100 links selected for easitfional class, candidate segments
were re-ranked by the coefficient of variati@p)(of the number of trips per driver, i.e.,

ratio of standard deviatiow) to the meany):



A roadway link with a low coefficient of variatiamplies that the majority of drivers on
this link have similar trip totals, while a highef@icient of variation implies a few drivers
accounted for the majority of trips. The objectlug ranking was to select those

corridors with trip distributed among a higher garage of drivers.

The RC links were prioritized such that the lowe coefficient of variation, the higher
the priority. The corridor prioritization may bespected visually using GIS software,
color-coding the top one-hundred RC links in eamddrclassification based on their
coefficient values, i.e., corridors with lower cheient have a darker color than the ones
with higher coefficient. Figure 7 shows a selattd RC links that are included in the
top one-hundred lists for the minor arterial (blumllector street (green), and local street
(orange) classifications. In addition, dark cdinks have higher (i.e., lower,) priority

than light color links.

To help to ensure that the developed crash predictiodel is representative of roadways
throughout the Metro Atlanta region the selectedidors were distributed throughout 11
sub-regions of the Metro Atlanta area defined ier EHWA effort. The 11 sub-regions
(N1, NE1, SE1, SW1, NW1, N2, NE2, SE2, S, SW2, [di¢R) utilize the freeway

structure as boundaries (see Figure 8).
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Figure 7: Color-coded RC links

Other corridor selection criteria included: 1)fonn cross-section along the stretch, 2)

no mainline traffic control between corridor endms, 3) corridor length greater than

2,000 feet, and 4) speed limit not exceeding 45.mph

Through visual inspection of the corridors, cantbdaorridors were selected according to
their priority and distribution among the 11 subioms outlined in corridor section
criterion 2. Corridors were also eliminated thigk ot meet the initial minimum length
requirement between traffic control devices. Faheselected corridor, design and
operations characteristics such as number of daysywnumber of side streets, type of

end point traffic controls, speed limit, numbeiaries, and road functional classification

were obtained from field observation.
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Figure 8: Sub-Area System Map

A total of ninety-three corridors were selecteddoalysis based upon these criteria.
Over the entire 12-month period, a total of 6,601,9econd-by-second data points
(roughly equivalent to 1,838 hours of travel tinngre collected from 408 drivers.
Across the 93 corridors, the average number okdsiper corridor is 56, ranging from
10 to 216 drivers. A total of 77,455 trips weresetved across all of the corridors, with

each corridor traversed by between 33 and 7,908.tri

Table 3 shows the demographic information of theigpants. It should be noted that

there is higher distribution of female drivers listsubset of data than in the Commute
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Atlanta database. Distribution of younger drivdspappears to be less than those in the

full dataset.

Table 3: Demographic distribution of participants

Female Male All
Age Group
15-24 13 (62%) 8 (38%) 21  (5%)
25-34 33 (62%) 20 (38%) 53  (13%)
35-44 51 (54%) 43 (46%) 94  (23%)
45-54 48 (48%) 51 (52%) 99  (24%)
55-64 52 (58%) 38 (42%) 90  (22%)
65+ 22 (43%) 29 (57%) 51  (13%)
Total 219 (54%) 189 (46%) 408 (100%)

3.2.2 Corridor Selection Result

Ninety-two corridors were initially selected fortdanalysis and modeling. Out of these
initial 92 corridors, 33 are Minor Arterials (36932 are Collector Streets (35%), and 27
are Local Streets (29%). Figure 9 and Figure IL8tilate the distribution of selected
corridors. The quantity in the box found in eaab segion in Figure 9 indicates the
number of selected corridors in that sub regidns hoted that sub-regions SW1 and SE1
are under-represented due to low availability oSGRta in these two sub-regions. This
lower availability of GPS data is primarily explathby the sparser density of households
in these regions participating in the Commute A#ddroject 22, 40. The distribution of
households (Figure 11) depicts a higher densith@participants in the northern regions

that those in the southern region.
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Figure 9: Sub-area System Map with Number of Seleetl Corridors in each region
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Figure 11: Locations of the Commute Atlanta ProjectParticipating Households @2)
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3.3 SUMMARY

The data collection and corridor selection methogigs described in this chapter were
originally developed for the FHWA project, whichnaerned the effect of road
environment features on operating speed. This aftitiged the same GPS dataset, with
additional crash data and traffic volume data,aostruct a road safety screening tool.
Therefore, the data collection and corridor setecthethodologies from the FHWA

could be adopted for use in this study.

To develop a road safety screening tool, the spaadh, traffic volume, and road
characteristics data are required. The speed da&@abtained during the one-year period
(2004) from the GPS-instrumented vehicles. The j@ar period (2002-2005) of crash
data were obtained to account for the regressidinetanean (RTM) phenomenon
characterized by crash dag&i). The traffic volume of the selected corridorsidgrthe
same period as crash data were also obtained. ¢h@adcteristics data such as speed
limit, signalized intersection locations, and ragsbmetric features were obtained during

the site visit.
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Chapter 4. DATA PROCESSING

With the total of 6,661,991 records of second-bgesel GPS data and 1,285,424 crash
data records, much of the efforts in this dissiEmatvere spent on processing the data.
This chapter described the two key tasks: speamratessing (Section 4.1) and crash

data processing (Section 4.2).

4.1 SPEED DATA PROCESSING

The original data processing algorithms were deyedoas part of the FHWA project
“Effects of Urban Street Environment on Operatimg&ds” 6) and further refined as
part of this research effort. Utilizing the FHWAgalithms and refinements in this effort,
it is possible to sort the speed data by numertitibtes (i.e., likely free-flow vs. non-
free-flow, day vs. night, continuity across theraor, weather conditions, etc.) to

explore potential relationships with safety as wélseen in the following chapters.

A complete list of estimated attributes may be fbimTable 2, followed by a discussion

of the estimation of each attribute in the datacpssing section.
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Table 4 Estimated Attributes per Vehicle Record

Attribute | Description

GAP Gap time between the current and previous pdg&c)

DIST1 Distance from the current data point to tfaetsg point of the corridor
DIST2 Distance from the current data point to thdieg point of the corridor
COMP Indicator variable, 1 for complete trip, andtBerwise

DIR Direction of travel

LTIME Local time

NIGHT Indicator variable, 1 for a trip made durinight time, and O otherwise

RAIN Indicator variable, 1 for a trip with rainirgpndition and O otherwise

QUEUE Indicator variable, 1 for a trip with dowresim queue longer than 400 ft,
and 0 otherwise.

SIGN Sign of the difference between the currenedpnd speed filter threshold.

FF1 Indicator variable, a,b,c, or d for free-flopeed type 1 and 0 otherwise.

FF2 Indicator variable, a,b,c, or d for free-flopeed type 2 and 0 otherwise.

ACC Acceleration value (mph/sec)

CTL Indicator variable, 1 for a speed point unddluence of downstream
traffic signal control and O otherwise.

DEV Indicator variable, 1 for a trip with high dation in speeds and 0
otherwise.

SIGNAL | Indicator variable, 1 for a data point wjtbor signal quality

PCT80 Indicator variable, 1 when a trip containkast 80% of good quality data
in a trip and O otherwise.

Each of the 10 algorithms in this section estimatese trip characteristic for each data
record (i.e. every second of instrumented vehieka ds a data record) and appends an
associated attribute value to the record. Pri@xiecuting the algorithms, the raw data
processed in the Drive Atlanta Lab is sorted inseparate file for each corridor, with the
records in each corridor file grouped by driver anded by timestamp. The data
processing algorithms which are described in tHeviang, are then applied to each

corridor data file.
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Table 5 illustrates example raw vehicle activiggalof driver number one on corridor
00. It is seen that the same driver may travemsedime corridor more than one time
during the one-year study period. The differentdraals may be distinguished using the
time gaps in the data sequence, i.e., one tripmatte on January 162004 and another

trip was made on the T'®f the same month.

Table 5: Layout of the Raw Vehicle Activity Data ofDriver Number 1 on Corridor 00

DRIVER ID | DATE TIME LAT LON SPEED | HEAD | SAT | PDOP
DVR_01 20040116 214924 34.0304P3 -84.2481p5 41.16 1.6% | 8 2
DVR_01 20040116 214925 34.030565 -84.24801 41.56 64| 8 1.7
DVR_01 20040116 214926 34.030686 -84.2478b8 42.14 583% | 9 15
DVR_01 2004011 214927 34.0307Dp4 -84.2477 4278 72%67.| 8 1.6
DVR_01 20040116 214928 34.030775 -84.247589 4295 0.137 | 8 1.6
DVR_01 20040116 214929 34.030841 -84.2473f6  43.04 1.797 | 9 15
DVR_01 20040116 214930 34.0309111 -84.2472111 43.1p5 2.657 | 7 2
DVR_01 2004011 214931 34.03098 -84.247048 43.22 3473 | 7 29
DVR_01 20040119 214958 34.031048 -84.246883 32.88 6.5 | 6 3.09
DVR_01 20040119 214959 34.031116 -84.24672 340y .1658| 6 3
DVR_01 20040119 215000 34.031186 -84.2465p8 35.01 9.5 | 6 5.19
DVR_01 20040119 215001 34.031268 -84.246395 36.1] .3161| 7 2.29

4.1.1 Trip Identification

We defineDR{ as thet" record for drived, TR,’(' as thekt" record in trigj, and a trip as
a period of continuous travel. The objective @& tinst algorithm is to assign eadbiR{

to a trip, allowing for the identification of eaoticord by tripTRj, in addition to driver
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DRY. Each trip over a corridor utilizes a unique tigmber, i.e. multiple drivers do not

reuse trip IDs.

In the initial portion of the algorithm, a new redattribute GAP is created and
appended to eaddR?. GAP(DRY) is defined as the time interval betweenithe

1thandit® record of drived. If GAP(DRY) is greater than ten seconds then recaésd
assigned as the beginning of a new trip. Thp Identificationalgorithm is executed as

follows:

Determine Sef
initializej = 1.k = 1.
ford = 1toD {
fori=1tol,
GAP(DR®) = TIME(DR{) — TIME (DR )
if GAP(DRY) > 10 seconds {
updatek = jandj = j+ 1.

}

SetTR] = DR{.

}
}
where,
D = the set of all drivers on a corridor
Ji = the set of all trips on a corridor
K = the set of all records in a trip
I = the set of all records for driver

DR® = thei" record for drived,

TR] = thek™ record in tripj

TIME(DRY) = timestamp oDR{

GAP(DRY) = time interval betwee@ — 1) andi® record of driver
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4.1.2 Smoothing data using Kalman Filter

While most of GPS receivers, including the SiRF 8teeceiver deployed in this study,
have an integrated data filtering and smoothing@sees to partially mitigate errors in
the data stream, some random errors still remathisndataset4l, 42. Quality of speed
and location data is critical to the determinatdikely free-flow trips. Therefore, to
reduce the impact of random errors a modified Kalfiiger is utilized. A detailed

description of the utilized Kalman filter may beufa @1).
4.1.3 Trip Continuity

In measuring many of the speed characteristics désirable that a vehicle traverse the
entire corridor with no intermediary activity stop8s the data set is a collection of daily
trips representative of the many activities indiaats undertake uninterrupted traversals
are not guaranteed. Vehicles may enter or dejpartdrridor at internal points, such as a
driveway, gas station, etc. For this effort, tripat pass through both corridor boundary
intersections are considered complete trips, otisertine trip is considered incomplete.
Recall in theTrip Identificationalgorithm a trip is defined as a continuous sedoyd
second stream of data (allowing at most a 10 spbgtween records). The impact of
this trip definition is that a trip chain, i.e. awr stopping or diverting along the corridor,

would be identified as separate trips in Tmg Identificationalgorithm. Thus, for the

Trip Continuityalgorithm it is only necessary to determine if adividual trip,TRj,

passes through both corridor endpoints. For thadyais, a trip is deemed to have passed
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through an intersection at a corridor end poithé vehicle passes within 100ft of the

intersection center.

The algorithm consists of two primary steps: deteenthe distance from the GPS
location of each record to the corridor boundatgnsections and check that at least one
record location within each trip is within 100ft tbfe corridor boundary intersections.
We manually determined the default orientationaafrecorridor as south-to-north or

west-to-east.

The algorithm is implemented as follows:

Determine distance to corridor boundary interseesio

forj = 1to] {
fork = 1t0K;{

CalculateDIST1(TR})
CalculateDIST2(TR})

Check for passing boundary intersections.

forj = 1toJ .
COMP(TR})
_ {0 if ((mkin DIST1(TR]) > 100 ft) or (min DIST2(TR}) > 100 ft))

1 otherwise
forallk’'sintripj.

}

where,

DISTl(TR,’;) = Euclidean distance from poiktof trip j to corridor south (east) boundary
intersection
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DISTZ(TR,];) = Euclidean distance from poiktof trip j to corridor north (west)
boundary intersection
COMP(TR;) = Complete trip attribute of trip 1 if complete trip, O otherwise

Figure 12 shows an example of a complete trip study corridor, with a continuous trip
that passes through both boundary intersectiorgurd-13 illustrates an incomplete trip.
This trip (west to east) passed through one boyndaridor but departs the corridor

prior to reaching the second boundary intersection.
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Figure 12: Example of a Complete Trip on Hammond Dve
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Figure 13: Example of an Incomplete Trip on Hammod Drive

Figure 14 shows the combined effective oftifiye identificationandtrip continuity
algorithms. Shown in Figure 14 is the travel atfiof a single vehicle as it crosses the
corridor in the westbound direction, leaves theidor bounds for 385 seconds and then
traverses the corridor eastbound. The trip idieation initially divides this activity into
three trips, two in the westbound direction and ionthe east bound direction. The
westbound travel is divided into two trips as autesf the 29 second gap between two
records. Therip continuityalgorithm evaluates the three trips, with only ¢lastbound
trip being identified as complete. It is unknowithie westbound vehicle left the
corridor, there was an equipment malfunction, ens@ther reason for the 29 second
data gap. Regardless, the data are incompletaarsiitable for the determination of
continuous speed characteristics, thus it is dasithat the westbound activity be
identified as incomplete. As seen in Figure 13 Rigdire 14, the combination of the two
algorithms successfully removes vehicle activigtttioes not represent complete trips or

contains incomplete data.
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Figure 14: One Entire Trip Separated into Three Sb-Trips

4.1.4 Direction of Travel

In subsequent algorithms, such as the determinafiacceleration and decelerations

zones (Section 4.1.8), the direction of travelddrip is required. ThBirection of

Travelalgorithm determines the trip heading, and appandsttribute to each trip record

with this data. Th®irection of Travelalgorithm compares the distance from the

location of the first record of a trip to the so@fest) and north (east) boundary

intersections. If the starting location is closethe corridor’s south (west) intersection,

the direction of travel is northbound (eastboutherwise the direction of travel is

southbound (westbound).

The algorithm is implemented as follows:

Compare distance to boundary intersections to sating

forj = 1to] { _ _
if DIST1(TR]) <DIST2(TR)) {
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assignDIR(TR,’;) = NB (or EB) for allk’s in trip j

}
else{
assignDIR(TR,{) = SB (or WB) for allk’s in trip
}
}
where:

DIR(TR,J(') = the direction of travel of trip

4.1.5 Local Time and Nighttime

Lighting conditions may influence a driver’s speékherefore, each trip is assigned an
attribute identifying whether it occurs during tth@y or night, allowing for a sorting of
trips by lighting conditions prior to the developm®f speed models, if desired. A trip is
considered a nighttime trip if it starts before igsm or after sunset. Since the sunrise and
sunset time varies significantly throughout therysanrise and sunset times specific to
each trip were calculated. A Sun altitude of -B.88grees is chosen in the determination
of sunrise/sunset as it is the position where fieuedge of the disk of the Sun touches
the earth’s horizon, accounting for atmosphericaafon. We also adjusted the
calculated sunrise and sunset times by addingraiBQte buffer to the sunrise time and
subtracting a 30-minute buffer from the sunset tirRer this dataset, approximately 23

percent of the complete trips were identified asuoieng during nighttime.

The algorithm for identifying whether a trip ocoeirduring nighttime or daytime
contains two primary steps. First, it is necessargreate a trip attribute with the local

time (Eastern Standard Time for this study), asGR& timestamps are recorded in
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Greenwich Mean Time (GMT). The calculated sunssetime are then compared to the

trip start time.

The algorithm is a follows:

Calculate local time

forj = 1to]{
fork = 1toK
LTIME(TR)) = local time (EST) of IME (TR;,)

}

Daytime or nighttime determination

forj = 1to]{
RISE = sunrise time oDATE (TR}
SET = sunset time aPATE (TR;)

for all k’s in trip j:

0 if RISE+30min<LTIME(TR') < SET-30min

NIGHT(TR,) = {1 otherwise

}

where:

LTIME(TR,{) = Local time (EST) for record of trip j
DATE(TR,’(') = Date for record of trip j

RISE = Local sunrise time foDATE(TR,{)

SET = Local sunset time deATE(TR,](')

NIGHT(TR,{)= attribute of record of trip j indicating daytime or nighttime at time of
record
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4.1.6 Inclement Weather Conditions

Inclement weather may influence a driver’s spe€kis step detects trips that likely
occurred during rain conditions (snow/ice condisiavere not observed during the study
period). The determination of potential inclemestather during a trip is based on the
hourly precipitation data from several weatheristet in Metro Atlanta. These weather
stations are located at the Fulton County AirpbaKalb-Peachtree Airport, and
Hartsfield-Jackson Atlanta Airport (see Figure 1B)trip is considered to have likely
occurred under inclement weather conditions if raestsle rainfall is recorded at the two
closest stations during the 2-hour time window beetbe trip. This rule identified
approximately 20 percent of the daytime complefestas occurring during potential
inclement weather conditions. While a portiontd# trips identified as inclement
weather trips likely did not experience inclememather, it was decided to implement a
conservative rule for trips utilized in the speedd®l development. However, given this
rule it should be noted that it would be inappraf&ito create a set of “inclement
weather” speed models using trips identified akement weather trips, as many of these

trips may have occurred under clear weather cadti
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Determine the two closest weather stations toiteegdoint of tripj. Letw be weather

station ID’s from 1 to 3.

Figure 15: Locations of the Three Weather Stationgldentified by Blue Indication)
forj=1toJ{

The algorithm is implemented as follows:

=1to 3{

for w

distance from the station w to the first pamtrip j,

DIST(w)

TR

}

=0.

initialize sum

forw =1 to 2§

2 hours) td.TIME (TR}){

v
PRECIP(w

fort = (LTIME(TR]

hourly precipitation amount at statiar}

t)

sum + PRECIP(w

)
)

timet.

,t)

)

sum
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1 if sum>0
0 otherwise
for all k’s in trip j

RAIN(TR]) = {

}

Note that 1’ and 2’ are the ID’s of the two closstsitions to trip. It follows that
DIST(1") < DIST(2") < DIST(3).

where:
w = Local time (EST) for recorkl of trip |

DATE(TR{) = Date for recordk of trip j
RISE = Local sunrise time faDATE(TR/)
SET = Local sunset time fabATE (TR’)

NIGHT(TR,’(') = attribute of record of trip j indicating daytime or nighttime at time of
record

4.1.7 ldentify Potentially Non-Free-Flow Trips

In the next algorithm, we apply a series of devetbplters is applied that utilize the
characteristics of a trips GPS trajectory datagip ldentify complete trips that were
likely non-free-flow trips. As a first step in dgleping these filters, a Graphic User
Interface (GUI) application, called the GPS Speedfile Viewer, was constructed. This
application plots the speed profiles — distancetjfi’om the corridor starting point (X-
axis) versus vehicle speed in mph (Y-axis) — fotrgds, or trips during a user selectable
time period, that occurred on a corridor. Forregke, Figure 16 depicts the speed
profile of westbound trips on Corridor No. 20, Haomd Drive, between Perimeter

Center Parkway and Peachtree Dunwoody Road.
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Figure 16: Example Speed Plot using the Speed PilefViewer

Figure 16 illustrates that a number of vehicles maye stopped or significantly slowed
in the corridor mid-section during their trips. oRr the graph, it is clearly seen that these
stopped and slowed vehicle trips are not in free+fbperation. Each of the filters

developed to identify these trips is summarizethefollowing sections.

Initially, a time-of-day filter was considered, dehg peak period traffic as non-free-

flow and non-peak period traffic as free-flow. Hower, upon inspection of the candidate
corridors several irregular peak hour periods imewrcial and warehouse districts were
identified as well as and commonly accepted norkpears clearly exhibiting non-free-
flow trip characteristics. Thus, time-of-travelsied filters did not adequately identify
likely non-free-flow or likely free-flow trips. Tovercome the peak time based filter

drawbacks, a combination of filters based on tharacteristics was developed. These
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are 1) downstream queue filter; 2) fixed speedrfitith free-flow pattern recognition,
and; 3) variable speed filter with free-flow patt@ecognition. The combination of these
filters successfully identified the peak and nomdpbour trips that did not exhibit free-
flow behavior, in essence enabling the use of b&ipeak hours with respect to the

individual corridors.

A) Downstream Queue Filter.

As shown in Figure 16, vehicles are often captimezlqueue at the downstream end of a
trip. When the stopping location of the vehicldigates a significant queue length the
vehicle should not be assumed as free-flowing erugfstream portion of the corridor, as
a lengthy queue characterizes likely congesteditond. A vehicle stopping more than
400-feet upstream of the center of the trip energdction was selected as the queue
length at which free-flow travel was no longer likeThe downstream queue filter
identifies trips that have a speed lower than 5 mghe range from the mid-point of the
corridor to 400 feet from the downstream locatidine 400-feet value was selected
following a pattern recognition and sensitivity Bysés on the corridors. Initially, a
separate set back value for each functional claatidn was investigated, however, the
400-ft value conservatively identifies queued vidsdor all locations and subsequent

filters capture other irregular trips.

Figure 17 illustrates the effect of removing trigentified by the Downstream Queue
filter. For our data set approximately 6 percdrthe daytime, non-inclement weather,

complete trips were identified using this filter.
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The algorithm is implemented as follows:

Check the distance from recdkan trip j to the ending point

forj = 1toj{
fork = 1t0K;{

UEUE(TR)) =
¢ (TR 0, otherwise
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Figure 17: Trip Speeds (a) Before and (b) After Aplying Downstream Queue Filter
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Figure 18: Four Speed Patterns Defining Potential ilee-Flow Speed Trips (Figure Credit: Karen
Dixon, Oregon State University)

B) Fixed Speed Filter with Free-Flow Pattern Redtign:

Figure 18 represents potential simplified free-flspeed profile trip patterns across a
corridor. Occasionally a vehicle may encountenan-free-flow” pattern as depicted in
Figure 19. Patterns similar to those seem in Edi® may occur, for example, when a
study vehicle is trailing a vehicle that reducesespto execute a turn mid-block. To
identify trips that are clearly not free-flow duethis phenomenon, it is necessary to
identify trips that experienced speeds less thiaxed cutoff value, 10 mph in this step,

not located in the corridor boundary acceleratiodexeleration zones.
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Through visual inspection identifying a trip thabhates this rule is a relatively simple
matter. However, due to the large number of taipg the desire to test the sensitivity of
overall trip loss to the cutoff value an efficienttomated implementation of the rule was
desired. This was accomplished through the usepaittern recognition approach where
a negative sign represents speeds less than tigmales! cutoff speed and a positive sign

speeds greater than the designated cutoff speed.

The first step in the pattern recognition checlesghttern sign at the mid-point. For a

trip to be considered likely free-flow through tbaridor, it is assumed that the vehicle
must be traveling at free-flow speed by the comrimal-point. Any trip with a negative

pattern sign (i.e., speed less than a pre-detechuu®ff value) at the mid-point may

safely be assumed to not be traveling at free-8peed.

Next, the pattern recognition algorithm considgrsesl data in the area starting from the
upstream intersection to 400 feet before the entleotorridor. The 400-foot area
defined as a queuing zone is excluded from thepatecognition since stop locations of
vehicles in the downstream queue can be varietipdsisible free-flow patterns are
depicted in Figure 18 . The pattern recognitiggoathm compares an individual trip
with each of the four pre-defined free-flow patterrif the trip does not match with any
of the free-flow pattern, it will then be determihas a likely non-free-flow trip. More
particularly, the algorithm starts with splittingrg into two halves at the midpoint and
considering speed pattern of each half at a tiltee algorithm then finds the matching

pattern from the pre-defined patterns below:
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If the first half consists of exactly one sign cbarirom minus to plus and
the second half consists of exactly one sign chémoge plus to minus, the
trip matches the free-flow pattern in Figure 18de notation for pattern

(@) is (—+, +-).

If a trip does not have any sign change in botkdsbhnd has a speed
above the cutoff, it matches the free-flow patterfigure 18b. The

notation for pattern (b) is (++, ++).

If the first half does not have any sign change lzala speed above the
cutoff, and the second half consists of one sigangk from plus to minus,
the trip matches the free-flow pattern in Figure.1&he notation for

pattern (c) is (++, +-).

If the first half consists of one sign change frommus to plus and the
second half does not have any sign change, thenatphes the free-flow

pattern in Figure 18d. The notation for patternigd-+, ++).

If a trip does not match any of the above, it enitified as a likely non-

free-flow trip.

Examples of non-free-flow trips are depicted infeg19. For instance, if a vehicle

enters the corridor after being stopped (i.e.vitacle was stopped at a signal light or

stop sign) and accelerates to a speed greatefi.tharph by the time it reaches the

midpoint of the corridor, the algorithm would reoae the sign change in the first half
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of this trip as one sign change from minus to plearthermore, if the same vehicle
decelerates and stops due to a signal light orstypat the downstream intersection, the
algorithm would recognize the speed pattern irsgmnd half as a one sign change from
plus to minus. Finally, the algorithm combines ithfermation from the first and second
halves and determines this trip as a free-flowgagern (a). Now, if the same trip has an
additional change from positive to negative to pesi- representing vehicle deceleration
to a speed below 10 mph and then acceleratiorspeed above 10 mph - the trip is

identified as a non-free-flow trip and is removeahh the free-flow data set.

At the conclusion of the fixed speed filter, approately eight percent of the trips not
identified as likely non-free-flow by the downstnegueue filter were identified as likely

non-free-flow trips by this filter.
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The algorithm is executed as follows:

Compare GPS speeds with 10 mph threshold
forj = 1to] {
fork = 1t0K{
; +1 if SPEEOTR/)>10
SIGN(TR}) = ! _ ATR)
-1 otherwise

}

Determine pattern parameters

forj = 1to]{
initialize changes_front = 0 and changes_back = 0
fork = 1t0K; — 1{

if DIST1(TR]) < L/2{
if SIGN(TR])# SIGN (TR, ){
from_front =SIGN (TR,’(')
to_front =SIGN (TR}, ,)
changes_front = changes_front + 1

}

else{
if SIGN(TR;) #SIGN(TR;, ){
from_back =SIGN(TRJ)

to_back =SIGN(TR., )
changes_back = changes_back + 1

}
} .
if DIST1(TR)) = L/2{
midSpeed SPEED(TR;)
}

}

Assign trip pattern (FF1) as defined in Table 6patterns that are not defined by this
table will be marked as non-free-flow trips.
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Table 6: Potential Free-Flow (FF1) Speed patterns

midSpeed | changes_front from_front to_fror|1t chanpask | from_back to_back| FF1
0 1 1 c
0 1 1
1 -1 1 d
>10
0 1 1 b
1 -1 1
1 1 -1 a
Else 0
Note that L = corridor length

changes_front number of sign changes within the upstream dfathe

corridor

changes_back number of sign changes within the downstrearhdial

from_front
to_front
from_back

to_back

the corridor

= sign notation before sign change i tipstream half of
the corridor

= sign notation after sign change in the igasth half of the
corridor

= sign notation before sign change in the mkiveam half
of the corridor

= sign notation after sign change in the detweam half of
the corridor

C) Variable speed filter with Free-Flow Pattern Rgaition

The previous step removed trips that contain spksdsthan 10 mph not located in the

acceleration and deceleration zones. However, fgure 20b, it is noticeable that

some remaining trips are still under likely nonefidow conditions. The ten-mph speed

filter line works well on low speed roadways, e2h,mph posted speed limit, but

frequently fails to catch non-free-flow trips omigher speed facilities, e.g., 40 or 45

mph posted speed limit. As a result, a variabeeddilter is developed to identify the

non-free-flow trips remaining not identified by tten-mph filter. The variable free-flow

speed cutoff on each corridor is dependent on eawidor’'s speed limit and driver’s
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mean speed, as will be seen in the following sactid sensitivity analysis was
performed to determine an approximate minimum véduéree-flow speed conditions.
It is again assumed that by the corridor mid-painthicle should be able to achieve

free-flow speed.

Mid-Point Free-Flow Speed Determination

This analysis investigated several potential véeighitoff speeds to identify trips not at

free-flow speed at the corridor mid point:

* Speed limit-10 mph

» Seventy percent of the drivers’ mean speed atah#dor midpoint

» Seventy percent of the speed limit

» Seventy percent of minimum(driver's mean speededienit)

Though all trips are depicted in the speed prgifités, at several sites many of the trips
were unique to one driver. As a result, the amslysed the average speed per driver to
estimate the mean speed for Options 2 and 4. Tlwsviag algorithm utilizes the forth
condition — seventy percent of minimum betweeneits/smean speed and speed limit.
However, each of the given cutoffs was investigdgadhanging the threshold value in
the following algorithm. The forth condition wadimately chosen as it seemed to

provide the best results for the given dataset.
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The algorithm is implemented as follows:

Calculate mean speed among drivers at midpoirtteo€orridor

J
1o 1% ]-
meanSp = BZ_ SPEED(TR. .,)
d=1] =1

j

where:SPEED(TR!_,) = speed at midpoint of trijp
J4 = number of trips made by driver
D = total number of drivers in the corridor

Determine the variable speed threshtishid.
trshld = 0.7*min(meanSp, speed limit)

Compare GPS speeds with the variable speed threshol

forj=1toJ{

for k=1 toKj{

.« _ |+1 if SPEEQTR!)>trshid
SIGN(TR}) = ! , QTR) 2 trs
-1 otherwise

}
}
Determine pattern parameters (similar to fixed ddéter)
forj =1toJ{

initialize changes_front = 0 and changes_back = 0
for k=1 toK-1{
if DISTATR!)< L/2{
if SIGN (TR])# SIGN(TR], ,{
from_front :SIGNTR,{)
to_front = SIGNTR,];H)
changes_front = changes_front + 1

}

else{
if SIGN(TR)) # SIGN(TR]., ,){
from_back = SIGN(R)
to_back = SIGN(R/., ,)
changes_back = changes_back + 1
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}
if DISTATR) = L/2{ # check speed at mid point
midSpeed = SPEEDR;)

Assign trip pattern (FF2) as defined in Table 4p3patterns that are not defined in this

table will be marked as likely non-free-flow trips.

Table 7: Potential Free-Flow (FF2) Speed patterns

midSpeed | changes_front from_front to_froAmt changask | from_back to back| FF2
0 NA NA c
0 NA NA
1 -1 1 d
>trshid
0 NA NA b
1 -1 1
1 1 -1 a
Else 0
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Figure 21: Speeds (a) Before and (b) After Varie&iree-Flow Speed Filter
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4.1.8 Removing data points in the acceleration and decelgion zones

To obtain free-flow speed conditions, the zonedaioimg acceleration or deceleration
effects from the traffic control at the two endscofridors is determined. This step trims
the instrumented vehicle trajectories, removingdat points within the acceleration and
deceleration zones. To implement this filter ihecessary to determine the deceleration
and acceleration zone distances. A combinatiopeéd and acceleration values was

used to detect acceleration and deceleration n®tbmehicles due to traffic control.
The acceleration value of data pdinACC(TR! ) was calculated using the central
difference formula,

_ SPEEOTR!,,)-SPEEOTR.))
~ TIME(TR!,,) -TIME(TR.,)

ACC(TR))

The central difference formula is widely used técakate acceleration and it provides
higher accuracy than those derived from forwartamkward difference formulagJ).

Deceleration and acceleration lengths were deteunseparately as follows:

A) Deceleration zone determination:

In this study, the deceleration zone is definethazone in which at least 90 percent of
the individual trips begin to decelerate due tffiraontrol (e.g., stop sign, traffic signal)
at the corridor end point. In addition, we definlkd start of a vehicle’s deceleration
process as the location at which its decelerai@reater than 1 mph/sec. The 1 mph/sec

deceleration rate accounts for the normal fluctuwnaiin driving behavior during free-flow
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conditions and GPS receiver error. Finally, theetlration zone is taken to end at the

downstream intersection of the corridor.

The algorithm for the deceleration filter is below:

Determine midpoint of the corridor, midpoint = L/2.

For each trip, start from the midpoint moving tod/éine end of corridor to
find the first instance that the trip’s speed ssléhan 10 mph (See Figure

22).

Starting from the location in the previous stepymapstream and
identify the first instance that that the vehicldeceleration becomes less
than 1 mph/sec (Figure 23). This point is thetistgdocation of

deceleration due to traffic control for the trip.

Repeat these steps for every trip in the corridafttain a list of
deceleration starting locations. After obtainitgrsng locations for every
trip, the locations (distance from downstream seetion) are sorted from

high to low.

Find the 98' percentile location from the list. This is defihes the start

of the deceleration zone for the corridor (See FEqi4).
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Figure 23: Reverse Motion to Find the Initial Decedration Location < 1 mph/sec



o7l i .. i 90Percentof the trips
OB eeeeemes 1
o . i i tinitiatec decelergion within |
' s s s s e : ;

4000 4200 4400 4600 4800 i T v oo £e0D
Distance

Figure 24: Example Plots of Deceleration Points faa Corridor’s Trips

The algorithm is implemented as follows:

Calculate acceleration rate for each data point
forj = 1to] {
fork = 2toK —1
SPEEQTR!,,) - SPEEQTR.,)
TIME(TR.,,) -TIME(TR.,)

ACC(TR]) =

}

find the starting point of deceleration of each tri
lower bound speedpowSp= 10 mph
forj = 1to]{
fork = 1t0K {
find mink’ where(SPEED(TR},) < lowSp) AND (DIST2(TR},) < L/2)
fork=k to1{
find k” where ACCTRy,,)<-1
storeDIST2(TRy,,) into decArray

}

decDist = the 98 percentile of distance in thizcArray

Determine whether a data point is located withandkceleration zone.
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forj = 1to]{
fork = 1toKj;{

1,if DIST2(TR!) < decDist

CTL(TR]) =
(TR {O,otherwise

}

B) Acceleration zone determination:

The acceleration zone is defined as the zonerggaatithe upstream intersection to the
location where 90 percent of the trips begin toraggeat cruising speed. As with the
deceleration, a trip is assumed to begin operatirgyuising speed when acceleration rate

drops to less than 1 mph/sec.

Algorithms:

* Determine midpoint of the corridor, midpoint = L/2.

* Based on speed and distance data for a vehic|estag from the midpoint
moving toward the starting point of corridor todithe first location that a
vehicle’s speed is less than the cutoff speed Vulngch is defined as the
minimum between speed limit minus 10 mph and 25.nfpdr example, if
speed limit is 30 mph, the lower bound speed lifleb& 20 mph and if

speed limit is 45 mph, the cutoff speed line wél2b mph (Figure 25).

 Based on acceleration and distance data, move daWarend of the
corridor and search for the first location at whikh vehicle’'s

acceleration rate drops below 1 mph (Figure 26).
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Repeat these steps for every trip traversing threesaorridor to obtain a

list of the trip acceleration ending locations.tekfobtaining acceleration

ending locations for every trip, the locations {@ige from upstream

intersection) are sorted from low to high.

Find the 98 percentile location from the list and assign tdshe

acceleration zone end point location.

-------------------------------------------------------------

_____________
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Figure 25: Reverse Motion to Find First Point belav Lower Bound Speed Threshold (Corridor ID
35 NB, lower bound line = 25 mph)

77



Acceleration (MPH/S)

1 . PP .

1000 2000 3000 4000 5000
Distance (feet)

Figure 26: Forward Motion to Find First Location with Acceleration Rate < 1 mph

Note that the lower bound speed lines between aat@n zone and deceleration zone
are based on different criteria because these aseschave different traffic
characteristics. For deceleration zone caselikaly to see vehicles slow down to
speeds below 10 mph within the corridor bound&y the other hand , in the
acceleration zone, it is likely that vehicles stayttheir acceleration process from a
location upstream of the corridor boundary, esgarting from the middle of the
upstream traffic queue or starting from the stopvidaere the cross street is four-lane
road with a median. Therefore, these vehicles wellyhave a speed greater than 10

mph prior to entering to corridor however still iiedergoing the acceleration process.
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The algorithm is implemented as follows:

find the starting point of stable speed of eagh tri
lower bound speedpwSp= min(speed limit-10,25)
forj = 1to]{
fork = Kto1{
find maxk’ where(SPEED(TR;,) < lowSp) AND (DIST1(TR;,) < L/2)
fork = kK’'toK {
find mink” whereACQ(TR},,) > 1
storeDISTl(TR,’(') into accArray

}

accDist= the 98' percentile of distance in ttaecArray
Determine whether a data point is located witheahceleration zone.
forj = 1to]{

fork = 1toKj;{

CTL(TR]) = {l if DIST2(TR!) < accDist

0, otherwise

By implementing the acceleration and deceleratearch algorithms on the corridors in
this study, it is found that the acceleration zomestly range from 400-1000 ft (with an
exception of 1240 ft on one corridor) with an ageraf 500 ft. The deceleration
distances range from 500-1000 ft with an averad@0fft. Figure 27 compares speed

profiles before and after removing the acceleratind deceleration data points.
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Figure 27: Speeds (a) Before and (b) After Accelation/Deceleration Filter

4.1.9 Remove highly deviated trips

This filter is a final filter to add in the identhtion of likely free-flow trips. After

excluding speed data in the acceleration and detele zones from the dataset, there are
still some trips with high speed variation. Thipayof trips implies non-free-flow
conditions and should not be included in the ansly$herefore, a lower bound speed
criteria to remove trips with high speed deviatiees developed. Quantile-Quantile plot
(QQ-plot) was used to visualize the characterstispeed data. Based on the QQ-plots,
majority of the corridors demonstrated a similatgra of the speed data in which speeds
began to deviate approximately minus two standaxgations from the mean. The QQ
plot in Figure 28 (b) shows that speed data deWiata normality when data are beyond

two standard deviations from the mean. This fileenoves trips with speed data
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exceeding two standard deviations from the meayurEi29 depicts the result from the
low speed trip filter. Note that approximatelyddrcent of the trips from the previous

step were detected as highly deviated trips byfiies.

The algorithm is implemented as follows:

find the mean and standard deviation of all daiatp@n the same corridor

J K _ ) K o
V=—"1_3S SPEEOTR)), o=~ 33 (sPEEQTR!) -V )
K.k K —1 ik
forj = 1toj{ |
DEV(TR) = {1 for ¥ if min SPEED(TR;) <V — 20
0 for V otherwise
}

sm7,1,B.csv Q2 Plot of Sample Data versus Standard Normal
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Figure 28: Speeds and Quantile-Quantile Plot of Gddor No. 21 Westbound
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Figure 29: Speeds (a) Before and (b) After Applyia Low Speed Filter

4.1.10 Check Quality of GPS signal

Criteria on Number of Satellite (SAT) and Posititution of Precision (PDOP) should
be established based on the acceptable data agcdeda availability, and other
characteristics of GPS data collected for this\stU@DOP is an indicator of the
reliability of the GPS data and is geometricallyieglent to the inverse of the volume of
the pyramid formed by the satellites in view anel @PS receivedd). In this study,
acceptable quality GPS data are defined as datarmitimum number of satellites
(SAT) of 4 and range of PDOP value between 1 a(®2842. Additionally, the
minimum percentage of acceptable quality data &sherip has been set to 80%,

meaning that if more than 80 percent of data pdmots one trip pass the GPS signal
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criteria, this trip will be included. As a resu22 percent of the trips from the previous

step were detected as trips with more than 20 pefoe quality GPS data by this filter.

It is important to note that the GPS signal qudlitgr is applied after the acceleration/
deceleration filter because the 20-percent criisrizased on number of data points
(generally equivalent to travel time in second$he low quality signal condition
occurs when the vehicle is stopped in the queugngdor the green light, it is likely that
the trip will a significant percentage of low qugldata points, however these exist
outside the midblock areas of interest. Therefda¢a points in the acceleration and
deceleration zones should be detected and exchefede checking the GPS signal

guality to maximize the number of usable trips.
The algorithm is implemented as follows:

Determine quality of GPS data points
forj = 1toj{
fork = 1t0K; {

- if (SAT=> 4)AND (PDOP< 8
SIGNAL(TR)) = {]‘ L JAND( )

0, otherwise

}
}
Determine percentage of good quality data for ¢aph
forj = 1to]{

I -
; if —>» SIGNALTR!)=>= 080
PCT80(TR)) = a Kij:;‘ HTR)
0, otherwise

}
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Once GPS data had gone through the data processngse the following attribute

values to determine free-flow condition trips:

COMP(TR/) = 1, NIGHT(TR’) = 0,RAIN(TR/) = 0, QUEUE(TR/) =0,

FF1(TR/) # 0,FF2(TR/) # 0,CTL(TR/) = 0,DEV(TR’) = 1, PCT(TR/) = 1.

After the data processing, the number of corrideais reduced to 61 due to data
availability criteria chosen to ensure sufficieatalfor later modeling efforts. These
criteria were 1) the effective corridor length regter than 1000 ft and 2) the number of
drivers during the free-flow condition is at letext. Approximately 66 percent of total
trips on the remaining 61 corridors were identifeedpotentially non-free-flow patterns
or low quality of data. There are total of 15,1684 made by 408 drivers within the
selected corridors during year 2004 and the 406s8@8nd-by-second GPS data points,

equivalent to 113 hours of travel.
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4.2 CRASH DATA PROCESSING

The four-year crash data from January 2002 to Deeer2005 are obtained from
GDOT'’s crash database system. These data are stoxidrosoft Office Access (mdb)
format. More than 1,200,000 accidents occurrediwittie State of Georgia during this
four-year period. Multiple tools were utilized taery and manipulate crash data
including Microsoft Office Access 2003, Perl progiraing language, and ArcMap GIS

software.

The GDOT Crash database contains more than 10Gtatautes for each crash record.
Table 8 excerpts data attributes that are releteettite purpose of this study. The 14
fields that are considered in this study includesbrID, date and time, road characteristic
(RC) link number, milepoint, latitude and longity@anual average daily traffic

(AADT), first harmful event, weather condition, ligcondition, pavement surface
condition, manner of collision among vehicles irnwgal in the crash, contributing factor,
and traffic control type. Note that first harmfweat is defined as the first event in a

traffic collision to result in injury or propertyathage.

Several steps of data manipulations were develtappdepare and filter data before
application to the model development, includinged®iining crash location, identifying
nighttime and inclement weather incidents, anddests related to pedestrian, bicycle,

and animal.
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Table 8: Relevant Crash Attributes from GDOT CrashDatabase

Field Name Description Coded Values
ACC_ID Accident ID

ACC_JULDT Accident Date mm/dd/yyyy
ACC_ATIME Accident Time

ACC_HE1_TYPE

First Harmful Event

01-Overturn
02-Fire/Explosion
03-Immersion
04-Jackknife
05-Other Non-Collision
06-Pedestrian
07-Pedalcycle
08-Railway Train
09-Animal

10-Parked Motor Vehicle

11-Motor Vehicle in
Motion
12-Motor Vehicle in

Motion - In Other Roadway 28-Curb

18-Bridge Rail
19-Guardrail Face
20-Guardrail End
21-Median Barrier
22-Highway Traffic
Sign Post
23-Overhead Sign
Support
24-Luminaire/Light
Support

25-Utility Pole
26-Other Post
27-Culvert

13-Other Object (Not 29-Ditch
Fixed) 30-Embankment
14-Deer 31-Fence
15-Impact Attenuator 32-Mailbox
16-Bridge Pier/Abutment  33-Tree
17-Bridge Parapet End 34-Other Fixed Object
ACC_WEAT_TYPE Weather 1-Clear 5-Sleet
2-Cloudy 6-Fog
3-Rain 7-Other
4-Snow
ACC_LITE_TYPE Light Condition 1-Daylight 4-Dark-Lighted
2-Dusk 5-Dark-Not Lighted
3-Dawn
ACC_SURF_TYPE Surface Condition 1-Dry 4-lcy
2-Wet 5-Other
3-Snowy
ACC_MNRC_TYPE Manner of Collision 1-Angle 5-Sideswipe - Opposite
2-Head On Direction
3-Rear End 6-Not A Collision With

4-Sideswipe - Same
Direction

A Motor Vehicle
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Table 8: Relevant Crash Attributes from GDOT CrashDatabase (Continued)

Field Name

Description

Coded Values

VEH_CONF1_TYPE

Contributing Factor 1

01-No Contributing Factord 6-Surface Defects

02-D.U.l
03-Following too Close
04-Failed to Yield

05-Exceeding Speed Limit

06-Disregard Stop
Sign/Signal

07-Wrong Side of Road
08-Weather Conditions
09-Improper Passing
10-Driver Lost Control
11-Changed Lanes
Improperly

12-Object or Animal
13-Improper Turn
14-Parked Improperly

15-Mechanical or Vehicle

Failure

17-Misjudged
Clearance
18-Improper Backing
19-No Signal/Improper
Signal

20-Driver Condition
21-Driverless Vehicle
22-Too Fast for
Conditions
23-Improper Passing 0
School Bus
24-Disregard Police
Officer

25-Distracted
26-Other

VEH_TRCNTL_TYPE

Traffic Control

1-No Stop Present
2-Traffic Signal
3-RR Signal/Sign
4-Warning Sign

5-Stop or Yield Sign
6-No Passing Zone
7-Lanes
8-Other

LOC_RCLINK_IDEN
TIFIER

RC Link Number

LOC_ACC_MILELOG | Milelog
LOC_X Longitude
LOC Y Latitude

LOC_SIGNAL_TYPE

Road Signal Type

S-Traffic Control Device

(Red,Amber,Green)
P-Traffic Control

w/Pedestrian Signalization

A-Stop Sign
F-Flasher-Other than
Overhead Beacon
L-Traffic Control Device
with Turn Arrow
B-Beacon-Overhead
Flashing Amber

R-Beacon-Overhead
Flashing Red

C-Stop All Direction
Y-Yield Sign

W-Yield Sign Opposite
Direction of Inventory
O-Stop Sign Opposite
Direction of Inventory
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4.2.1 Crash Location

Crash records can be overlaid on the GIS street lasing latitude (LOC_Y) and
longitude (LOC_X) information. However, the latieidnd longitude information is not
available for every record in the GDOT’s crash Hate — almost 40 percent of the
records (505,410 out of 1,285,424 records) do agtHatitude and longitude

information.

Another way to locate accidents is the linear iemg system. In this system, the
location of an event is determined by a linear memaalong a reference element. GDOT
initially stores crash data using the linear refiereg system and then converting the
locations to the Cartesian coordinate because tledognare constantly changing but the
Cartesian coordinate is more absolute. The GDOfBisitdatabase uses the fields “RC

link Number” and “milelog” to locate an event.

The “Linear Referencing Tools” in the ArcToolboxgiage was used to locate crash
records with missing latitude and longitude cooatin First, the tool “Create Routes”
was used to create a referencing route. The Gl&metwork obtained from the Georgia
Institute of Technology DRIVE lab was input as adanap to create a referencing route.
Next, the crash records were located on the ret@rgmoad network using the “Make
Route Event Layer” tool. This tool located crastaiions based on the associated RC

Link ID and milepoint information.
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Note that 47,659 of crash records (approximately fiercent of the total crashes) do not
contain either Cartesian or linear referencing dowte informations; and therefore, are

disregarded from the study.

4.2.2 Intersection-Related Crashes

Since this study focuses on road segments ratharitibersections, accidents located
within the 250-ft distance from the traffic-contied intersections were identified as
intersection-related crashes and removed fromutibdr analysis. The information about

the signal type at the intersection was obtainethffield visits.

After removing the accidents located in the 25€aftius from the intersection, the
records were further verified using the field “LO®IGNAL_TYPE” available in the
GDOT crash database. Even though, crashes loctkeaisa 250 feet away from the
intersection are unlikely to be intersection-redateashes, there is approximately 10

percent of the records are coded as one of theWoibs:

LOC_SIGNAL_TYPE = “S” (Traffic Control Device)

= “P” (Traffic Control w/Pedestrian Signalizatip

= “C” (Stop All Direction)

= “L” (Traffic Control Device with Turn Arrow)

The crashes with the codes above were removedthreranalysis as the crash was likely

intersection related.
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4.2.3 Weather and Light Condition

In this step, crashes that occurred during nighi@nnclement weather conditions were
removed as the study was aimed at investigatinghaboperating conditions. The crash

records with the following attributes were removed:

ACC_WEAT_TYPE = 3(Rain) and 4(Snow)

ACC_SURF_TYPE = 2(Wet), 3(Snowy), 4(Icy), and 5(&bh

ACC_LITE_TYPE = 2(Dusk), 3(Dawn), 4 and 5 (Dark)

4.2.4 Crash Type

Crashes associated with non-motor vehicle factach as animals, pedestrians and
bicycles were removed. The crash records witHdhewing attributes were removed:
ACC_HE1l TYPE = 6 (Pedestrian), 7 (Pedalcycle), fif#al), and 14 (Deer). Table 9
depicts the crash counts and percentage by thié&rmful event type. Eighty-seven
percent of the crashes were associated with thermehicle in motion and less than two
percent of the total crashes were associated \eillegirians, pedalcycles, and animals.
Approximately two percent of the crashes duringfthe-year period were associated

with the roadside utility poles.
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Table 9: Crash Counts and Percentage by First Harmfl Event Type

First Harmful Event Counts Percent
Motor vehicle in motion 3024 87.20%
Non collision 22 0.63%
Pedestrian 16 0.46%
Pedalcycle 13 0.37%
Animal 2 0.06%
Deer 34 0.98%
Utility pole 72 2.08%
Others 357 10.29%
Total 3468 100.00%
4.2.5 Results

Of the 1,285,424 accidents in the State of Geoth&xe are 3,120 accidents located on
the 86 study corridors (excluding intersection4edisaccidents) during the four-year

period.

Of the 3,120 segment crashes, 25 percent occumgagdnclement weather.
Approximately two percent of the segment crasheslired a pedestrian or bicycle. In
addition, 22 percent of the segment crashes oatduweng nighttime. After applying the
filters in sections 4.2.2, 4.2.3, and 4.2.4, 6Gpet of the accidents records remained and

were used in the model development.
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43 SUMMARY

This chapter described the data processing algosittheveloped for speed and crash
data. The speed data processing algorithms frorR WA project were used in this
study to identify speed profiles during various d@itions. Trip attributes that can be
determined using the developed data processingitg include trip continuity,
direction of travel, daylight condition, weathemndiition, likely free-flow trip pattern,

traffic-controlled influence zone, and GPS signadlidy.

Several steps of data manipulations were develappcepare and filter data so that they
can be associated with the processed speed deda.drash locations were determined
using the linear referencing method. Next, crasginevlocated within the 250-ft radius of
an intersection were removed. Light and weatheditimms were determined from the
crash record attributes. Finally, crashes relatquetiestrians, pedalcycles, and animals

were removed from the dataset.
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Chapter 5. TRAFFIC ATTRIBUTES

5.1 INTRODUCTION

As seen in the literature review, many speed-rdlatdfic parameters have been defined
in previous studies. Most of these parameters airg-pased, i.e., measurements at a
specific location. In this chapter, we propose s&Meaffic parameters derived from one-
dimensional spatial data to capture different icatharacteristics along the corridor. The
proposed traffic attributes can be grouped integhmain categories: speed-related
measures, stop pattern measures, and other meabeespeed-related measures attempt
to indicate the consistency of vehicle speeds endahdway while the stop pattern

measures attempt to capture the movement condliotsy the corridor.

5.2 SPEED-RELATED MEASURES

In this section, speed variations and other spekded measures based on previous
studies 22, 23 are examined for use as potential surrogate messi road safety. All
speed measures in this section exclude data freradbeleration and deceleration zones

as this study is focused on midblock performance.
5.2.1 Speed Variation (SD85)

The 88" percentile speed is selected as it is widely iseadway designers and
practitioners to represent the normal operatingltmm of the roadway45b). The speed
variation parameter (SD85) captures the variatfcth® 85" percentile speed at pre-

specified intervals along the corridor and is cltad using the following formula:
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N

1 _ 2

SD85 = mzl(vss,i - UBS) :
i=

In the equation aboveys ; indicates the 85percentile speed at th location, where
there areV equally-spaced locations along the corridor, aggdis the mean of the &5
percentile speeds along the corridor. As SD85viareability measure of operating speed,

only likely free-flow trips are included in the nseae calculation.

The South Atlanta Road corridor (Southbound) wéecsed to demonstrate the
calculation of speed measures. This corridor B@&laine road with a reversible lane is
classified by GDOT as a minor arterial. In addititive primary land use of this corridor
is dense residential (apartment complexes) and agiah. The corridor is bounded by
traffic signals. Approximately 680 trips were reded” during the one-year study period
with 45% of the total trips made under the likelgd-flow condition, based on the
algorithm presented in the previous chapter. S@escent of the trips entered or exited
the corridor at a midblock location. The speed ipralf all trips made on this corridor is

illustrated in Figure 30.
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Figure 30: Speed Profiles on the South Atlanta Roa8outhbound with the Red Dashed Line
Indicating the Acceleration and Deceleration Zones

Sensitivity Analysis of Sampling Distance

Since spacing distance between two measured posgsnfluence the calculated speed
variation, this subsection investigates the sevisitof the speed measures to the spacing

distance.

The purpose of this effort is to determine the naggiropriate sampling distance for the
speed variation calculation, for this dataset. Aduly short sampling distance will
increase the computational time without gainingi@galtial information while an overly
long sampling distance will not yield the true adnility of speed along the corridor. For
example, Figure 31 depicts the"88ercentile speed profiles of the South AtlantadRoa

Southbound based on two sampling distances, 1&@ftL000 ft. It is seen that the speed
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variation of the 100-ft sampling distance followag thatural frequency of the 85
percentile speed along the corridor. The 1000+fidang distance, on the other hand,
does not adequately capture th& @&rcentile speed variation. For example, the speed

variation between 2000 ft and 3000 ft is entirelgsed.
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Figure 31: Profile of the 8%" Percentile Speed on the Corridor ID 35 Southboundsing 100-ft and
1000-ft Sampling Distances

To investigate the impact of spacing, 81885 values were calculated by varying the

spacing distance from 50 to 1000 feet, using at 25cfement. Figure 32 illustrates the
sensitivity of the speed variation due to samptiiggance for 12 corridors in the study.
Each line in the plot represer®t®85 of the specific corridor at the respective sangplin

distance. In general, it can be seen that the sypaéation value is relatively constant in
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the narrow spacing region, i.e., between 50 tof2@dile the calculated values tend to
vary at higher sampling distances. Therefore, ffaeinig distance of 200 ft is
recommended for the speed variation parameter.lRdeuother corridors are
summarized in Appendix B. Note that tfiB85 has an increasing trend with greater
spacing distance in general. This is because stdmigsviation is inversely proportional
with number of sampling points (N). Therefos#85 tends to increase as number of

sampling points decreases.
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Figure 32: Sensitivity of Speed Variation to the Sacing Distance
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5.2.2 Mean of 85" Percentile Speed (M85)

Several studies concluded that higher speed roaglvesylts in a higher crash risk. The
mean of the 85 percentile speed85) along the corridor is included in this study im a
attempt to investigate this hypothesis. As Wiff85, M85 measure is based on likely
free-flow trip data. Thé185 is formulated as:

Z?’=1 Ugs,i

M85 =
N

Figure 33 illustrates the relationship betwé&85 andM85. The measure M85
represents the average'8ercentile speed of the corridor while variatidrhe 85"
percentile speed profile around the mean is reptedebySD85. For South Atlanta Road

Southbound, th6D85 is 2.324 mph and thE85 is 40.5 mph.
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Figure 33: Variation of the 85" Percentile Speed from Mean on South Atlanta Roaddsithbound

Sensitivity Analysis of Sampling Distance

Figure 34 shows that, unlikiD85, the speed paramet#85 is relatively insensitive to
the spacing distance. In addition, the M85 valuesdwot increase as sampling distance
increase. Therefore, the 200-ft sampling distaecemmended fa§D85 is also

reasonable to calculate the35.
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Figure 34: Sensitivity of the Average 88 Percentile speed to the Spacing Distance

5.2.3 Coefficient of variation (CV85)

Similar toSD85, this measure;V85, also attempt to represents'8%ercentile speed
variation. InCV85, theSD8S5 is divided by the mean speed to reduce the effespeed

magnitude. The coefficient of variatio6|(85) is calculated as follows:

— S$D85
~ M85
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Sensitivity Analysis of Sampling Distance

Figure 35 shows that the fluctuation@f85 has a similar pattern as thatsi#85. This

is expected a6V 85 is SD85 scaled by 85, which is relatively constant at any sampling
distance. From Figure 35, it is seen that CV83able from 50 to 200 feet and is
increasingly variable at larger spacing distanceakesult, the spacing of 200-ft was

selected for CV85 calculation.
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Figure 35: Sensitivity of the Coefficient of Variaton to the Spacing Distance
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5.2.4 Interquartile Range of 85" Percentile speed (1Q85)

The Interquartile Range of 8%ercentile speed@85) is defined as the difference
between the third and the first quartile of th& &rcentile speed based on likely free-

flow trip data along the corridor. It is formulatad:

1985 = Q3(vgs) — Q1(vgs)

whereQ3(vgs) andQ1(vgs) are the third and the first quartiles of thd'grcentile

speed samplevgs 1, vgs 2, ..., Vgs ) Of the N locations along the corridor.

As with SD85 andCV85, this parameter measures the fluctuation of thegScentile
speed along the corridor. Howev&p85 does not depend on the number of sam@Ngs (

as doesD85 andCV85. That is,/Q85 does not increase dsdecreases.

The interquartile range of the Bpercentile speed profile on South Atlanta Road
Southbound is illustrated in Figure 36 where thparpine is the third quartile and the

lower line is the first quartile. The interquartite this profile is 2.5 mph.

Sensitivity Analysis of Sampling Distance

Figure 37 shows that the fluctuation/@85 due to sampling distance. Unlik®85,
1985 does not have an increasing trend when the sagnhgistance is larger. From the
figure, it is seen thatQ 85 is stable from 50 to 200 feet and increasinglyalde at larger

spacing distance. As a result, the spacing of 20a$ selected farQ85 calculation.
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Figure 36: The 83" Percentile Speed Profile with the Interquartile Ramge Marked by Dashed Line

1Q85 : 3500 <L< 7000

(=]
=7 — 22 EB
- - 22 WB
---- 23 NB
®© T=- 23 SB
35_NB
-—- 35 SB
T © 4 42 NB
£ LS 42_SB
To) S e L. Tt 58_WB
& <+ '-2;3’“‘{3-“:"?.-“ \-_.,s_ R R =:
TN Vs v 4 T~ 8TNB
. 1,', Tyl ; s Ay -—- 87_SB
|t ;;;{ i AR
-.h.-‘_:'f“*'-- -/“/#'"\a /ﬁ Y -{r...
—_—— f\_, -\,,\J ’\‘G."""- )—"'——)“\\n,.fcn-.-’—
~ ‘, = \f'\ s -
o 4

| | | | | | |
0 200 400 600 800 1000 1200

Sampling Distance (ft)

Figure 37: Sensitivity of the Interquartile Range ¢ 85" Percentile Speed to the Spacing Distance
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5.2.5 Variation of the 85th speeds Percentile from the s®ed limit (SVLIM)

The difference between the operating speed andmispeed at a particular location can
be used to measure the design consistency of ke sagd elemen#@). However, the
design speed is not readily known for most of theidors. Thus, speed limit was
utilized, which is typically related to the desigjpeed 45). In this study, since we have
speed measurements along the corridor, a new nee@$Url M) is proposed to quantify

the design consistency along the roadway:

N
1 2
SVLIM = mZ(USS,i - VLIM)
=

where vgs ; indicates the 85percentile speed at tH& location where there arne
equally-spaced locations along the corridor, Bng} is the speed limit of the corridor.
Note that the 85 percentile speed is assumed to represent of thtipg speed of the
roadway. The calculation is similar to the spee@sunee in Section 5.2.1. The only
difference is that the variation is calculated bynparing the observations with the

corresponding speed limit.

The variation of the 85percentile speed from the speed limit is illugtcsin Figure 38.

The variation from speed limit is almost 6 mph bis corridor.
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35_SB: Variation of V g5 from Speed Limit
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Figure 38: Variation of the 85" Percentile Speed from Speed Limit on South Atlant&oad
Southbound

Sensitivity Analysis of Sampling Distance

Figure 39 shows the sensitivity 8F LIM to the sampling distance. It is seen tHiaL.IM
is stable from 50 to 200 feet and increasinglyalalg at larger spacing distance. As a

result, the spacing of 200-ft was selectedSWLIM calculation.
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SVLIM : 3500 <L< 7000
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Figure 39: Sensitivity of the Coefficient of Variaton (SVLIM) to the Spacing Distance

5.2.6 Mean of Speed Band (M_BND)

Speed bandA) is defined as the difference between th8 gércentile and the's
percentile {45 — vs) speed during likely free-flow condition at a sifiegoint. This
point-specific measure is intended to capture tr@ation of multiple trips’ speeds at a
single location. The speed band profile of Souttaite Road Southbound is shown in

Figure 40. It is seen that this variation meassim@oit constant throughout the corridor.

Therefore, the proposed measure is the averadpe ofariability of the speed throughout

the corridor and is of the form:
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N
1
M_BND = NZ Ap;
i=

whereAp ; is the speed band at location i of the N sampbiegtions on the corridor. The

mean of speed band of the South Atlanta Road Soutttbcorridor is approximately 9

mph.
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Figure 40: The 95" and 5" Percentile Speed Profile of South Atlanta Road Selbound
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Sensitivity Analysis of Sampling Distance

Figure 41 shows the sensitivity of M_BND to the géing distance. It is seen that
M_BND is stable from 50 to 400 feet and with iresmg variability at larger intervals.

To be consistent with other measures, the spadi@Q®@ft was selected for M_BND

calculation.
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Figure 41: Sensitivity of the Speed Band (M_BND) tthe Sampling Distance Interval
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5.2.7 Variation of Speed Band (SD_BND)

The variation of the speed band is closely rel&bettie mean of the speed band. This
measure is designed to capture the variation iwvahi@bility of the speed (i.eAg) along

the corridor and is formulated as:

1 o 2
SD_BND = HZ(ABJ — M_BND)
i=1

Note thatAg ; indicates the speed bangd{; — vs;) at the " location, where there ané
equally-spaced locations along the corridor, Bh@&ND is as previously defined. The
variation of speed band South Atlanta Road Southédagiseen in Figure 40. The

SD_BND for this corridor is around 1.5 mph.

Sensitivity Analysis of Sampling Distance

Figure 42 shows the sensitivity 80_BND to the sampling distance. It is seen that
SD_BND is stable from 50 to 200 feet with increasing ahiiity at larger sampling

intervals. As a result, the spacing of 200-ft walested forlSD_BND calculation.
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Figure 42: Sensitivity of the Variation of Speed Bad (SD_BND) to the Spacing Distance

5.2.8 Acceleration noise (AN)

Acceleration noise is defined as the root meanreguaf the acceleratio27):

T
o2 = % jo (a(t) — agy)?dt

or

T
g% = lf a(t)?dt — (agy)?
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where v(t) anda(t) are the speed and acceleration of a car atttanea,, is the average
acceleration of the car for a trip taken duringetif This time-averaged calculation gives
more weight to the low speed data points; therefohen the vehicle is stationary during
the trip, the authors suggested omitting the stdpjpee from the calculation to avoid
bias from the low speed data points. Alternativilg, acceleration noise could be
defined in terms of space averages, i.e., averagogleration values at every certain

distance 27).

In this study, the acceleration noises were caledlasing both likely free-flow trips only
and all vehicle trips during daylight and dry raadface condition. The datasets are
generated using the algorithm developed in theipusvchapter. It is hypothesized that
the acceleration noise during free-flow conditisraifunction of the noise caused by road
geometries and drivers. The dataset of all tripgndudaylight and dry conditions

includes free-flow trips as well as non-free-flawps. Therefore, the acceleration noise

should include that resulting from traffic condi& road geometries, and drivers.

Under the free-flow condition, acceleration noiaécualated using the time-averaged and
space-averaged methods are expected to be sikdarever, when including non-free-
flow trips, the presence of stopped data points mdyce the calculated acceleration

noise when using the time-averaged method.
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Space-Averaged Acceleration Noise

The value of the space-averaged acceleration f@iégof a trip is approximated by:

Note thata; is the acceleration rate at locatiowhere there ar® equally-spaced
locations along the corridor, aads the mean of thy acceleration samples. To evaluate
the sensitivity of the spacing interval, intervadsre tested from 50 ft to 200 ft. It is
further noted that the acceleration noisg, is the acceleration noise of a single trip.
However, the subject of interest in this studyhis ¢orridor rather than the trip. That is,
acceleration noise in this study is considered @®perty or characteristic of the

corridor. Therefore, acceleration noise from mustipips should be aggregated to one

single value to represent the corridor.

To accomplish this, first, acceleration noise oftiple trips made by the same driver are
averaged to represent the driver’'s acceleratiosendVe obtain the driver’s acceleration
noise ¢;2) by aggregating the acceleration noisgg)of T trips made by the same

driver:

whereo,;? is the average acceleration noise of drier
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Next, acceleration noise from multiple drivers averaged to represent the corridor’s
acceleration noise. We obtain the corridor’s aaedien noise §,.?) by aggregating

acceleration noiseg{?) of D drivers on the same corridor:
1 D
2 _ E 2
g, = = g,
Cc D d
d=1

whereo,? is the acceleration noise of corridor

As aforementioneds,? is calculated for both free-flow condition and taiibs during
daylight and dry conditions. These are denotedMg'F for the acceleration noise of the
free-flow trips anddN_AF for the acceleration noise of the all trips durdaylight and

dry conditions.

Sensitivity Analysis of Sampling Distance

Figure 43 shows the sensitivity AN_FF to the sampling distance and Figure 44 shows
the sensitivity ofAN_AF to the sampling distance. It is seen that, in gggn@N_AF is
higher and more variable tha®_FF. This is becausg@N_AF includes trips under likely
non-free-flow condition. In addition, boW_AF andAN_FF are relatively stable from
50 to 200 feet and becomes more variable at la@®pling distances. As a result, the

spacing of 200-ft was selected for the acceleratmse calculation.

113



AN_FF : 3500 <L< 7000

15

— 22 EB
-- 2 WB
-+ 23 NB
-=- 23 SB

35 _NB
- -—- 35 _SB
42 NB
42_SB
58 WB
74_EB
87_NB
87 _SB

1.0

(mph/sec)

AN _FF

0.0
|

[ [ [ [ [ [ [
0 200 400 600 800 1000 1200

Sampling Distance (ft)

Figure 43: Sensitivity of Acceleration Noise undeFree-Flow Condition (AN_FF) to the Sampling
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Time-Averaged Acceleration Noise

Figure 45 represents a non-free-flow trip travegstouth Atlanta Road Southbound
corridor during the weekday PM peak. The total@tdime through the corridor was 198
seconds. The stopped time — defined as speed thae5 mph — of this trip was 99
seconds, equivalent to 50% of the total travel ti8tationary data points associated with
the zero acceleration rates as shown in Figurdd@ result, including the stationary

data points in the calculation reduces the magaitfdhe acceleration noise.
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Figure 45: Speed Profile of a Non-Free-Flow Trip Taversing the Corridor South Atlanta Road
Southbound
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Speed, Acceleration Rate vs. Time
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Figure 46: Speed (Left Axis) and Acceleration RatéRight Axis) vs. Time of a Non-Free-Flow Trip
In this study, the time-averaged acceleration n@igd of a single trip is approximated

by:

wherea; is the acceleration at tinieand is measured at every one second throughout the
N seconds of the trip’s travel time, ands the average acceleration of the trip. The time-
averaged acceleration noise for driveg4) and corridor §.%) were obtained in the same

manner as in the space-averaged case.
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Comparison of With and Without Stopped Time Acceleration Noises

The corridor’'s acceleration noise values for exattygly segments were calculated and
plotted in Figure 47. The left hand side figuredapicts AN values under all traffic
condition while the right hand side figure (b) d#piAN values under free-flow

condition (i.e., all trips during daylight and drgndtions). The x-axis represents the
acceleration noise calculated from all data poants the y-axis represents the
acceleration noise calculated from the same dabagetithout stopped time — defined as
data points having measured speed less than Skpire 47(a) shows that all the points
are located at or above the x=y diagonal line. Tiemns that, after removing stationary
data points, AN tends to increase for all traffomdition. Note, the stopped time does not
appear to have a significant impact on the acceberaoise in this study because the
corridor’s acceleration noise was averaged fromtigialtrips and multiple drivers.

Figure 47 (b) shows that acceleration noise urikelyl free-flow condition are not
significantly affected by the calculation methaoe, i with or without stopped time in the
dataset. This is as expected as the free-flow tondiloes not include any trips with a

low or zero speed.

In summary, the stopped time causes the underdsimaf the acceleration noise under
all traffic condition; therefore, it is suggestedremove the stopped time before

calculating the time-averaged acceleration noise.
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Figure 47: Comparison of Acceleration Noises (mphég) With and Without Stationary Data Points
under (a) All Traffic Condition and (b) Free-Flow Condition

Comparison of Time-Averaged and Spaced Average Acceleration Noises

Since there are two possible methods to calcuteg@ctceleration noise, this sub-section
determines which calculation method is approptiatine dataset in this study. It is noted
that the 200-ft sampling distance was used to tatietthe space-averaged acceleration

noise under free-flow and all traffic conditions.

Figure 48 illustrates the acceleration noise coreghlly the time-averaged and the space-
averaged methods. Figure 48 (a) shows the acdeleratise given all trips under
daylight and dry conditions. When the acceleratiorse is high, the time-averaged

method tends to give a higher value. This is bez#us time-averaged method tends to
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oversample at lower speed which also tend to hayleehacceleration/deceleration rates.
Figure 48 (b) shows the acceleration noise undempially free-flow condition. It is

seen that under this condition, the acceleratiosetwom both methods yield similar

results.
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Figure 48: Relationships between Time-Averaged anfipace-Averaged Acceleration Noise (mph/sec)
under (a) All Traffic Condition and (b) Free-Flow Condition

As a result, this study selects the time-averagedlaration noise calculation method as
it is reflective of the variation due to traffictexference when considering all trips and

provides a similar result to the space-averagethduhe free-flow condition.
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5.3 STOP-RELATED MEASURES

Crash frequency is highly correlated with roadgeigures such as driveway density,
side street density, median type, and adjacentuard0, 32, 47, 48 Several measures
related to stopping maneuvers are proposed toseptéraffic characteristics influenced
by roadside features mentioned previously. Unléssrwise stated, all stop-related

measures utilize all trip data during daytime andabnditions.

5.3.1 Stop Frequency per Trip per Mile (STOPS)

The stop frequency per trip per mile is essentigibyratio of number of stops while the
instrumented vehicles traverse the midblock seaicthe corridor to number of trips that
traversed the corridor per unit length. As statedy trips made during the daylight and
dry road surface condition are considered. A sisghp is defined as the moment when
the vehicle reduces its speed under 5 mph untépleed again exceeds 5 mph. There can
be more than one stop along the corridor in a sitrgh. For example, the speed profile
plotted in Figure 49 experienced five stops whiod ¥ehicle traversed South Atlanta
Road Southbound. The paramef&0PS can be formulated as:

No.of Stops
No.of Trips * Length

STOPS =
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Figure 49: Speed Profile of a Non-Free-Flow Trip Taversing the Corridor 30SB

5.3.2 Coefficient of Variation of stops within 100-ft black (CV_S100)

While STOPS measures the stop frequency per trip per lengtheo€orridor, another
measure was desired to indicate the dispersiotopflecations. Figure 50 compares
speed profiles and stop location distributionsaad torridors, namely Roberts Drive
Southbound and Westside Parkway Westbound STIGPS values for the corridors
Roberts Drive Southbound and Westside Parkway Wastbare 0.33 and 0.35
stops/trip-mile, respectively. Even though 8T®PS values are similar, the speed
profiles and histograms show that the distributiohthe stop locations are quite different

for the two corridors. That is, stop locations avbBrts Drive Southbound are more
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evenly distributed compared with those on WestBide&kway Westbound. The difference

in stop location distribution might result in diféat crash distribution.
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Figure 50: Speed Profiles and Histogram of Stop Frpiency in each 100-ft block along the corridor
(a) Roberts Drive Southbound and (b) Westside Parkay Westbound

Therefore, the measu¥ _S100 or the coefficient of variation of stops withinokal00-

ft block is developed to capture the differencdistribution of stop locations. First, the

road segment is divided into 100-ft intervals. Nefxe number of stops within each

interval is determined. This is similar to creatagistogram of stop location frequency
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with a 100-ft bin size. Mean and standard deviatibffequency in each bin are
calculated. Finally, we obtain the paramet®#,5100, as the ratio of mean to standard
deviation of the frequency of stop locations. i ¢ formulated as:

SD_5100

CV_SlOO == m

whereM_5100 andSD_S100 are the mean and standard deviation of stop frexyuie

the corridor intervals.
5.3.3 The 90" Percentile Count of Stops within 100-ft Interval§P90_S100)

Side streets or driveways with high traffic volunmeay create higher numbers of
conflicts with the main street traffic and, in tumncrease the crash risk. Thé"90
percentile highest stop frequency within 100-femal represents degree of conflict

between the main street and the side street oeway on the corridor.
5.3.4 Moran’s Index of Number of Stops within 100-ft Blok (MI_S100)

The Moran’s Index49) provides a measure of the spatial auto correlaifca variable.

For this study, it is desired to measure the cati@h between the value of stop frequency
in one location (interval) and values in neighbgrinterval. When the high stop
frequency interval are located close to each dthene area and low stop frequency
intervals are also located close to each othendarleer area, it indicates that majority of
vehicles tend to stop in the same location, whmhlad be a major driveway with high
conflict. These areas have the potential to be bigkh locations. The Moran’s Index can

be calculated as:
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[ = N ¥y Xy wi (g — f)(xj —X)
(B, Xy wij) T, (g — D)2

where N = Number of intervals along the corridor

x; = Stop frequency of intervali = 1, ..., N

x; = Stop frequency of the neighbor interygl = 1,...,N

w;; = A weight indexing location afrelative toj

Moran’s Index varies between -1 and +1. The valasecto +1 indicates high clustering
pattern of stop locations, i.e., high and high @rexocy intervals or low and low frequency
intervals are close to each other. On the othed hidwe value close to -1 indicates a
highly dispersed pattern or uniform distributionstdp locations, i.e., high and low
frequency interval are alternately next to eacteotiWhen Moran’s Index is zero, the
stop locations are distributed randomly. Figurelbistrates the example of dispersed,
random, and clustered spatial patterns. As an ebeaimphis study, the Moran’s Index

for Robert Drive Southbound is -0.03 while the eafar Westside Parkway Westbound

is 0.74.
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Figure 51: Spatial Distribution Patterns (50)

54 OTHER MEASURES

5.4.1 Percent Through-Traffic Trips (P_THRU)

The ratio of through traffic trips to all tripsised to determine degree of activity of land
use along the corridor during daytime, dry roadaxe conditions. The term “all trips”
include through traffic as well as the enteringtiexj trips to/from the side streets or
driveways along the corridor. A high percentagéhobugh traffic indicates low activity
land use, which also indicates low traffic on sstieet/ driveways. The percent through
traffic trips can be formulated as:

No.of Through Traffic Trips

P_THRU =
- No.of Total Trips
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5.4.2 Percent Free-Flow Trips (P_FF)

The proportion of potentially free-flow trips (det@ined using the algorithm in Section
4.1.7) to all trips is used to determine degregaific congestion during the daytime and

on dry road surface condition. The percent free+flops can be formulated as:

No.ofFree — Flow Trips
P_FF = .
No.of Total Trips

55 SUMMARY

The traffic attributes can be divided into thretegaries including speed-related
measures, stop-related measures, and other meabBheespeed-related measures capture
the speed characteristics of the roadway, includjreed variation, mean of the"85
percentile speed, coefficient variation of th& @@rcentile speed, interquartile range of
the 84" percentile speed, variation from the speed limian and variation of the speed
band, and acceleration noise. The stop-relatedumesisapture the conflict movement
characteristics of the roadway including stop fegey, coefficient of variation of stops
within each 100-ft long interval, the @@ercentile count of stops within each 100-ft long
interval, and the Moran’s Index. The other measuaggure the intensity of land use
activities, including percent through trips andqast free-flow trips. The traffic

attributes to be considered in the model developreiort are summarized in Table 10.
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Table 10: Summary of Traffic Attributes

Traffic Variable Description

SD85 Variation of 88 percentile speed along corridor

M85 Mean of 88 percentile speed along corridor

Cv85 Coefficient of Variation of 85percentile speed along corridor
1Q85 Interquartile range (Q3-Q1) of 8percentile speed along corridor
SVLIM Deviation of 84" percentile speed from speed limit along corridor
M_BND Mean of speed band (85" percentile speed) along corridor
SD_BND Deviation of speed band (85" percentile speed) along corridor
AN_FF Acceleration noise of free-flow trips

AN_AF Acceleration noise of non-free-flow trips

STOPS Stop frequency per trip per mile

CV_S100 Coefficient of variation of stops withinQt@ interval

P90_S100 The 90percentile count of stops within 100-ft interval

MI_S100 Moran’s Index

P_THRU Percent through-traffic trips

P_FF Percent free-flow trips
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Chapter 6. SENSITIVITY OF SPEED MEASURES

6.1 INTRODUCTION

This chapter explores the effects of data filtdes;eloped in Chapter 4, on the speed
measures, developed in Section 5.2. The analystsiigates the sensitivity of the
measures to the application of sequential filtews the effect of individual filters. The
former analysis, discussed in Section 6.2, detegmihe changes in speed measures after
each data filter is applied sequentially. The fadealysis, discussed in Section 6.3, tries
to answer the “what-if” type of questions. For arste, one might wonder what if we do
not apply the weather filter because we do not es@her data, how it is going to affect

our speed measures given other conditions remaisdime.

6.2 SENSITIVITY TO SEQUENTIAL FILTERS

6.2.1 Methodology

As stated, the speed measures in Section 5.2 \abndated using likely free-flow data
during the non-inclement daylight conditions. THentification of a trip as likely free-
flow during non-inclement conditions is based ®egdes of identified filters. In this
section, the speed measures are calculated attierfitaring step to see how the values

of speed measures vary as each data filter is s@glg applied.

Table 11 lists the seven data filters being usdtie analysis. Table 12 identifies the
eight incremental steps in the application of itters starting from run number 0, which
does not have any filter applied, to run numbewfrich has all seven filters applied. The

“plus” symbol in front of the filtering codes in ke 12 indicates that one additional
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filter is included to the previous filter set. Orthe trips that pass all filtering criteria in
each run will be used to calculate the speed meadar the corridor. Table 13 shows the
data structure of the data file used to calculaespeed measures for each run. Each line
represents individual trip’s speed data sampledye2@0 ft, tagged by nine filter values.
The filter values are determined for every tripading to the discussion in Section 4.1.
The distance sampling interval for the speed measiatlows Section 5.2. The first

record states that trip No. 1 (TRPO1) of driver lIgDVRO01) occurred during daylight
(L=1), inclement weather (R=1), free-flow traffioradition (Q=0,F1=4, F2=1, and D=0),
and had a high GPS signal quality. This trip waslenen Friday (W=5) between 9:00

and 11:00 time period (0O=2).

Table 11: Data Filter Code Description

Filter Number | Description Code

in Section 4.1.

5 Daylight Filter L

6 No Rain Filter R

7A Queue Filter

7B Free-Flow Filter Type | F1

7C Free-Flow Filter Type Il F2

9 Highly Deviated Trips Filter| D

10 GPS Signal Quality Filter S
Weekday/Weekend w
Peak/ Off-Peak Period O
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Table 12: Sequence of Filters Applied to the Spedaata

Run Filters Applied | Code
0 RAW
1 L +L

2 LR +R

3 LRQ +Q

4 LRQF1 +F1
5 LRQF1F2 +F2
6 LRQF1F2D +D

7 LRQF1F2DS +S

Table 13: Data Structure of GPS Speed Data with Taged Filtering Information

Filter Value Speed Data

TRIP ID L R Q F1| F2| D| S| W| O| @O0ft @200ft

DVRO1_TRPO1 | 1 1 0 4] 1 o] 1 5 2| 34.00 37.09 38.p8
DVRO1_TRPO2 | 1 0 0 2| 4 o] 1 6 2| 38.83 38.47 39.43
DVRO1_TRPO3 | 1 0 0 4| 4 1 1 4 2| 35.04 33.15 34.77
DVRO1_TRPO4 | 1 0 0 2| 2 1 1 1 4/ 36.28 32.28 30.p1
DVRO1_TRPO5 | 1 0 0 2| 4 1 1 2 5| 40.33 39.06 39.49
DVRO2_TRPO1 | 1 0 1 0| O 1 1 5 3| 32.06 30.05 28.173
DVR0O2_TRPO2 | 1 0 0 4] 1 1 1 5 5| 4131 41.53 39.71
DVRO2_TRPO3 | 1 0 1 0| O 1 1 5 4/ 3459 34.65 32.82
DVRO2_TRPO4 | 1 0 1 0| O 1 1 1 4/ 35.68 32.63 35.56
DVRO2_TRPO5 | 1 0 0 2| 4 o] 1 4 2| 38.05 38.99 40.68
DVRO3_TRPO1 | 1 0 0 2| 3 1 1 1 3| 37.08 32.25 27.59
DVRO3_TRPO2 | 1 1 0 2| 2 o] 1 1 3| 41.70 39.69 40.01
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6.2.2 Results and Discussions

Six corridors were selected for sensitivity anay3iwo of the six corridors have
relatively low variation (26 Eastbound and 71 Westid), two corridors have relatively
high variation (40 Eastbound and 71 Westbound),taadcorridors have high stop
frequency (03 Eastbound and 35 Southbound). Theedeyf variability was determined
from the calculated SD85 and the frequency of steg® determined from the speed

profile plots.

The results are presented in bar chart format (Ei§@ to Figure 57) where each figure
reports eight traffic attributes 85, M85, CV85, 1Q85, SVLIM, AN, M_BND, and
SD_BND) and two data availability attributes (No. of darg and No. of trips) for the
individual corridor. An individual bar chart repesgs the sensitivity of one measure,
where each bar shows the value of the speed meafsarrgngle scenario. The denotation
of filter code is listed in Figure 9. Filters amgsientially added from left to right, i.e., the
left most bar does not incorporate any data filtenle the right most bar has seven

filters applied.

In general, the speed measures derived from tHe8tentile speed/§s) profile such as
SD85, M85, CV85, andIQR85 are minimally affected by the filter set. For exae) the
Vg5 profiles before appending any filters and aftgulgipg all seven data filters on South
Atlanta Road Southbound is illustrated in Figure B& before and after speed profiles
show that the profile pattern remains relatively same except a slightly offset

(approximately 1 mph higher) after the filteringopess. The small change in speed
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profile is due to the fact that the filters Q, F2, and D are designed to remove
potentially non-free-flow trips, which normally irapt trips with lower speeds.
Therefore V5 tends to increase slightly after removing poteiytiaon-free-flow trips.

This results in a stabD85 and a small increase df385.

The variation from speed limit &% (SVLIM) is more sensitive to the data filters than
the measureSD85, M85, CV85, andIQR85 . That is, the design consistency parameter
shows a gradually increasing trend with the segei@ndilters. The likely reason is that
the measur§VLIM squares the difference betwd&g and the speed limit. Therefore,
even a small increase in mean speed along theloomiould noticeably increase the sum

of squares of the difference betwdgg and speed limit.

Acceleration noiseAN) decreases as more data filters are applied.rébigt is
reasonable as the data filters increasingly remaweiitional potentially non-free-flow,

which are the trips that that tend to have higleeekeration noise than the free-flow trips.

The speed band/{; — V;) indicates the difference between the high anddpeeds at a
point location, which represents speed variatioa specific point on the road. The two
speed band measures, namélyBND andSD_BND determine the magnitude and
variation of the speed band along the corridopeesvely. The data filters seem to have
the highest influence on these two measures. BoBWD andSD_BND have a

decreasing trend as more data filters apply.

The decreasing trend &f_BND implies that the size of speed band decrease®es m

potentially non-free-flow trips are removed in fileering process. The measure
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SD_BND also has a decreasing trend. The results showththaariation of the speed

band decreases as more of potentially non-free-tgps are removed.

To visualize the sensitivity of the speed band atadilter, the speed band profiles of
South Atlanta Road Southbound are plotted in Fig@eThe speed band is bounded by
the 95" (Vys) and ' (V) percentile speed profiles. The “before” speeddtiardenoted

by two black solid lines and the “after” speed b@denoted by two red dashed lines.
Interestingly, this figure shows that the dataefitinfluence mostly the low speed
percentile and rarely to the high speed percenthelV; speed profile changes
dramatically after the data filtering process whiieVys speed profile remains mostly
the same. Additionally, thi& pattern became similar to thg; after the data filtering
process. In conclusion, the size of speed b&h® VD) decreases after the data
processing becausi; increases whil&ys remains relatively constant. Furthermore, the
speed band has less variabili§p( BND) along the corridor because thgpattern

becomes similar to thig,s.
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Figure 52: Sensitivity of Sequential Data Filtersa the Traffic Attributes on Corridor 03 Eastbound
(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type IF2=Free-Flow Type Il, D=Deviated Trips,
S=GPS Signal)
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Figure 53: Sensitivity of Sequential Data Filtersa the Traffic Attributes on Corridor 26 Westbound
(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type |F2=Free-Flow Type Il, D=Deviated Trips,
S=GPS Signal)
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Figure 54: Sensitivity of Sequential Data Filtersa the Traffic Attributes on South Atlanta Road
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D=Deviated Trips, S=GPS Signal)
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Figure 55: Sensitivity of Sequential Data Filtersa the Traffic Attributes on Corridor 40 Eastbound
(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type IF2=Free-Flow Type Il, D=Deviated Trips,
S=GPS Signal)
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Figure 56: Sensitivity of Sequential Data Filtersa the Traffic Attributes on Corridor 71 Westbound
(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type IF2=Free-Flow Type Il, D=Deviated Trips,
S=GPS Signal)
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Figure 57: Sensitivity of Sequential Data Filtersa the Traffic Attributes on Corridor 92 Southbound
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6.3 SENSITIVITY TO INDIVIDUAL FACTORS
In this section, the filters of interest are swéadlon and off from the filter set to

determine how each filter affects the speed pararset

6.3.1 Methodology

Eleven scenarios (numbers 0, 1,2...10) were modeledih an understanding of the
influence of individual filters. The testing facsoand filter combinations are described in
Table 14 and the filter codes are depicted in TableThe “Code” column in Table 14
indices what filters are turned on or off companeth the base scenario “LRFS”. The
plus sign indicates the filter is turned on andriirus sign indicates the filter is turned
off. For example, the code “-F+0O” denotes thatsbenario number 10 has the free-flow
filter turned off and the off-peak filter turned,a@ompared with the base case filter

sequence, LRFS. Therefore, the filters appliedhi® combination are L, R, O, and S.

In Table 14, the base scenario (No.1) has thedilieR, F and S on while other filters,
namely, W, O, and D are turned off. Scenario Ns.@hen there are no filters applied to
the speed data, accounting for a calculation of/tlee of speed measures when no data
filtering processes are involved. Scenarios 2 tes8the influence of the daylight,
weekday/weekend, inclement weather, free-flow cioorli off-peak period, highly
deviated trip pattern, and GPS signal quality, eeipely. Scenario 9 tests the sensitivity
of speed measures when the GPS signal filter iBepfirst, instead of being the last

filter. The last scenario, number 10, tests whetheroff-peak period can be used as a
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surrogate of the free-flow pattern algorithm sinoesome situations, the speed profile

data may not be available.

Note that in this section we combined three freevffilters, namely, Q, FF1, and FF2 as
free-flow filter (F). This is necessary as thesters are designed to be run together and
in sequences. In addition, the off-peak filter @@s not appear in the previous analysis.
The off-peak period is defined in Table 16. Themdtk periods exclude the pre-defined
peak periods which are the morning peak (7:00-910@) midday peak (11:00-13:00),
and the evening peak (16:00-19:00). The Weekdayf() is also included to

determine the difference between a full week (MgnaSunday) and weekday only

(Monday to Friday) traffic characteristics.

142



Table 14: Planning Matrix to Determine Individual Factor Effects, 11 Runs

No. Effect Filter ABase |L | W|R|F | O| D| S
Sequence

0 Raw Data -LRFS

1 Base LRFS LRFS | x X | X X

2 Daylight RFS -L X| X X

3 Weekday LWRFS +W X X X X X

4 Rain LFS -R X X X

5 Free-Flow LRS -F X X X

6 Off-peak LRFOS +0 X X X[ X X

7 Highly-Deviated Trips LRFDS +D X X X

8 GPS Signal LRF -S X X X

9* GPS Signal Sequence SLRF SLRHA X X X X

10 Off-peak, No F Filter LROS -F+O X X

*Note that Run 9 applied the same set of filterRan 1; however, GPS Signal filter was used afitee
step in Run 9 to determine the sensitivity of theesi measures due to the sequence of filters.

Table 15: Filter Code Description

Code | Filter

L Daylight Filter

W Weekday Filter

R No Rain Filter

F A Set of Free-Flow Filters

(Q+F1+F2)

O Off-Peak Filter
Highly Deviated Trip Filter
S GPS Signal Check Filter
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Table 16: Off-Peak Periods

Off-Peak Period Time Period
1 Midnight-7:00
2 9:00-11:00

3 13:00-16:00

4 19:00-midnight

6.3.2 Results and Discussion

The sensitivity analysis results for the six seddatorridors are presented in the bar chart
format from Figure 60 to Figure 65. Each figure teams ten bar charts: eight are the
results of speed measures and the other two cttastg number of drivers and number of
trips left from the filtering process. An individuaar chart contains 11 bars, which report
the values of the same speed measure from llirfgteombinations listed in Table 14.
The denotation of the filter code is listed in Takb. The values of every bar should be
compared with the base case, LRFS to determinefteet of the factor that has been

turned on or off.

The followings are the results and comparisons eeitweach of the ten filter

combinations and the base scenario.

No Filter (-LRFS)

In most cases, the speed measures relatéd ichanged only slightly after all the filters
were removed. The measur§®85, CV85, and/Q85 increase a little. This means that
Vg5 only slightly more variable if we do not use tlileefs. The average df;5 along the

corridor (M85) remains stable with or without the filters.
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The design consistency paramet&f /M) has a decreasing trend due to loWgrwhen

all the filters are removed.

The higher value of acceleration noigV() is consistent among the six corridors. This is
a reasonable result as the acceleration noisgeceed to be lower under free-flow

traffic condition @2).

Regarding the speed band measures, the HizeND) and variability §D_BND) of
speed bandlfs — Vs) increases significantly after removing the ddtars for most of

the corridors.

In summary, the “-LRFS” and the “LRFS” provide slaniresults folsD85, M85, CV 85,
and/Q85 as these variables are not highly affected byhtirefree-flow traffic.
However, the “-LRFS” scenario yields significangther speed band measures and
acceleration noise while giving a lower valueS&f.IM. Therefore, it is reasonably

acceptable to derive&D85, M85, CV85, andIQ85 from the raw speed data.

The followings are the summary of the effects @fitidividual filters to the free-flow
data set. Note that since every corridor has diffespeed characteristics, the summary is

the findings from the overall results, rather tlcanridor-by-corridor descriptions.

Light Condition (-L)

The comparison between daylight (LRFS) and all @#S) speed data show that the
speed measures have similar values during themthpight. This implies that the

potentially free-flow trips during the day and nigiave similar characteristics.
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Weekday Only (+W)

The variation measures seem to be a little lowesrmincluding only the weekday free-
flow trips in the data. This is likely because weak and weekend trips have different

characteristics. Combining the two distributionsrease the variability in the dataset.

Weather Condition (-R)

Removing the weather filter does not significaraffect the speed measures of the likely
free-flow trips. This is likely due to small numbartrips being made during the rain

condition.

All Traffic Condition (-F)

The result is in line with expectation. That i free-flow filters remove the speed
variability due to the traffic condition. The meassi of speed variability increases as the

free-flow filters are removed.

Off-Peak Only (+O)

Adding the fixed off-peak filter does not affecethpeed measures of the already likely
free-flow trips. This means the free-flow filterextively remove the non-free-flow trips

during the fixed peak time.

Highly Deviated Trips (+D)

The highly deviated trip filter does not signifitgnaffect the speed measures of the

likely free-flow trips.
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No Signal Quality Check (-S)

With or without signal check filter does not afféice speed measure results significantly.

Check GPS Signal Quality First (SLRF)

The GPS signal quality check filter is used to daiee the percent time an individual

trip contains “good” quality GPS signal data (thiecia are described in 4.1.10). If more
than 20 percent of the signal data is identifietbasquality, the trip is identified as

having low quality data and removed from analy§lss filter is strategically placed after
the acceleration/deceleration zone filter so tbatduality data in these zones would not
be included. That is, as the low quality data & &lcceleration/deceleration zones is
removed before the signal check filter, this trgsta higher chance to pass the 80 percent
good signal criteria. The assumption is that sigairft portion of low quality data tend to
be found under stop conditions, which are mordyike occur at intersections. As this
study is concerned with midblock performance, isgetion data, and thus the source of

much of the low quality data, will be removed ast jp the standard filters.

The SLRF filter combination places the signal chiglthér as the first filter. The SLRF

case shows very similar results to the LRFS case.

Off-Peak Period as a Free-Flow Filter (-F+O)

This scenario tests the possibility to use thepeffik period as a free-flow filter.

The results show that the -F+O filter does not cedihe variation as significantly as the

free-flow filter. In some corridors, there is ev@higher speed variation than the raw data
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case. One reason for this behavior may be thditxee off-peak period might not match
with the real off-peak time on those corridors. fEfere, the off-peak filter might remove
free-flow condition trips while leaving non-freesil/ condition in the dataset. As a result,
the speed data become more variable. In summagyixid off-peak filter should not be

used as a surrogate for the free-flow filter.
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Figure 60: Sensitivity of Data Filters to the Traffc Attributes on Corridor 03 Eastbound (L=Light,
W=Weekday, R=No Rain, F=Free-Flow, O=0ff-Peak, D=Dgated Trips, S=GPS Signal)
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Figure 61: Sensitivity of Data Filters to the Trafic Attributes on Corridor 26 Westbound (L=Light,
W=Weekday, R=No Rain, F=Free-Flow, O=0ff-Peak, D=Dgated Trips, S=GPS Signal)
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Figure 62: Sensitivity of Data Filters to the Trafic Attributes on South Atlanta Road Southbound
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Figure 63: Sensitivity of Data Filters to the Trafic Attributes on Corridor 40 Eastbound (L=Light,
W=Weekday, R=No Rain, F=Free-Flow, O=0ff-Peak, D=Dgated Trips, S=GPS Signal)
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Figure 64: Sensitivity of Data Filters to the Trafic Attributes on Corridor 71 Westbound (L=Light,
W=Weekday, R=No Rain, F=Free-Flow, O=0ff-Peak, D=Dgated Trips, S=GPS Signal)
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Figure 65: Sensitivity of Data Filters to the Trafic Attributes on Corridor 92 Southbound (L=Light,
W=Weekday, R=No Rain, F=Free-Flow, O=0ff-Peak, D=Dgated Trips, S=GPS Signal)
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6.3.3 Summary

This chapter discussed the sensitivity of speedsarea to the data filters used in the data
processing. The analyzes were performed in two er@nthe sensitivity of the speed
measures as filters are sequentially added thetisggof the speed measures to

individual filters.

The findings from thesequential filtering analysiare summarized below:

» The speed measures derived fridggn seem to have little sensitivity to the
sequential data filters. This is because the §lteere designed to remove
non-free-flow trips, which usually contain low sple#ata points.

Therefore, the filters have little impact on thg profile.

 The measurdN tends to decrease as additional filters are aghplibis is
because each subsequent filter removes additibealariability from the
data. However, the variability reduction due to o#mg the non-free-
flow trips seems to be insignificant. It is possilihat the method by which
the AN is calculated in this study smoothes out the nfs@®a traffic
congestion. That is, acceleration noise from midtigps made at
different times of day and different days of theewenade by the same
driver were averaged to obtain the representatiVdor that driver.
Driver’s acceleration noises were then further aged to obtain the
representative N of the corridor. Therefore, the AN in this studyniot

substantially affected by the non-free-flow corutiti
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* The measures derived from the speed b#pd- Vc), such as M_BND
and SD_BND, were more significantly impacted byfitiers than the
above measures. This is because the filters sulzbamfluence the low
speed element, of the speed band. More specifically, the filters
increasé/s but notVys along the corridor, therefore, the size of speadiba
(M_BND) reduces substantially. In addition, the filtezsove the
variability of thel’s due to potential traffic congestion resultinghie Vg
profile along the corridor similar to thgs profile. As a result, the size of
speed band becomes more consistent along the @momtlich in turn

reduces the variance of the basifl, BND, along the corridor.

* The measure SVLIM tends to increase as more fitegsapplied. This is
becauséy; slightly increases along the corridor after theeptally non-
free-flow trips were removed. Therefore, thg is further away from the

speed limit.

* When comparing the traffic attributes of differeotridors, the variance
measures seem to be consistent. More specifi@tgsridor with
relatively high values o D85 tends to have higGV’85, IQR85, andAN

as well.

The findings from théndividual effectanalysisare summarized below. The comparisons

are made between the LRFS case and the otheres.c
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The individual effect analysis showed a similaufeas the sequential
analysis for the speed measures derived fgynThat is, these speed
measures seem to have little sensitivity to theieetjal data filters. This
is because the filters were designed to removefremflow trips, which

usually contain low speed data points.

The daylight effect does not have a significantactmon the speed
measures. It is unknown if the study corridor hieeg lighting that may
be impacting performance. Also, the sample sizb®hight time trips are
relatively small, e.g., 20 percent of the tripscomridor 03 Eastbound

were made during the night time.

The variation measures seem to be a little lowesnwdnly weekday free-
flow trips are considered. This is likely becaussekday and weekend

trips have different characteristics.

When removing the free-flow filter set, the measus®85, CV85, IQR85
and SVLIM seems to be only slightly impacted while speed band

measures, namely M_BND and SD_BND increase signiflg.

The sequence of applying GPS signal filter doesaffett the result.

The off-peak filter does not typically yield thensa result as the free-flow
filter. This is likely because different corriddrave different peak period

which can vary daily and seasonally even on theesaonridor.
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It is seen that the +D filter (removing highly dated trip) might overly
reduce the variation of the speed data. For exartipeSD85 of corridor
71 Eastbound and 92 Southbound were reduced bgrsémt and 40
percent, respectively. The variation from the rgadmetries might be lost
due to this filter. Therefore, the highly deviateg filter should be

removed from the filtering process.
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Chapter 7. MODEL DEVELOPMENT

This chapter discusses the model development effothis effort, crash frequency per
unit of roadway length is the predicted variabld #me traffic attributes in Chapter 5
along with roadway classification, corridor lengaéimd traffic volume are used to
construct the prediction model. In the first sectad this chapter, road facilities are
classified using a combined road classificatiod taffic volume criteria. Section 7.2
explores the distribution of the dependent variatilash frequency. The relationship
between crash frequency and ADDT is investigate8dation 7.3. The regression tree
technique used to determine the predictor variabldgscussed in Section 7.4. The
model development methodology is described in 8ecti5. and the results are

summarized and in Section 7.6.

Thus far in this research effort, speed measures baen calculated by direction of
travel as significantly different speed charactarsswere often observed in the opposing
traffic directions on many corridors. The differepieed characteristics are likely a result
of differences in road features such as land usesway density, the direction of
horizontal curvature, etc. This suggests that thsltcprediction model should be
constructed by direction. However, ninety-threecpat of the study corridors are
undivided roads and the direction of travel at leriaspact cannot be accurately
determined without the police crash reports. Attthee of this research, the crash reports

are available only from 2004-2005.
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Given this limitation, the model considers the brdata from the two travel directions
aggregated together. The speed measures are atdineal using a weighted average by
number of drivers in each direction. Further resleawhen crash reports become
available, will seek to explore modeling power gairby considering each corridor

direction separately.

7.1 ROAD CLASSIFICATION FOR SAFETY

The literature on crash prediction models ofterugrstudy locations by categorical
variables such as traffic control type, divided/wiakd, and functional classification
prior to the model calibratior8®). One possible grouping explored for this researah
by function classification. The 61 final corridaran be classified into three groups based
on the GDOT's road functional classification syste@mely, minor arterial, collector,
and local street (note that the data is origindigw from the FHWA project, the Effects
of Urban Street Environment on Operating Speedg;winclude no major arterial data).
However, the road characteristics might not be tely represented by the GDOT’s
current functional classification due to changekid use and traffic volume over time.
Therefore, this section investigates whether thdystoadways grouped by GDOT’s

classification demonstrate similar speed and safegyacteristics.

Table 17 describes the study corridor charactesisti terms of average traffic volume,
and corridor length, and road classifications. @erage, the minor arterial corridors
have the highest traffic volume, followed by cottas and local streets. In terms of

corridor length, the three road classificationséhagproximately the same section length.
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Table 17: Road Characteristics by Functional Clasfication

Functional No. of AADT Corridor Length (ft)
Classification | - Corridors Min Max Average Min Max Average
16 25 12,465 38,325 23,801 1,746 5,575 3,319
17 23 5,160 21,660 13,059 1,99p 5,143 3,29p
19 13 1,096 19,557 9,811 2,408 5,672 3,349
Total 61 1,096 38,325 16,770 1,74p 5,612 3,31p

7.1.1 Definitions

Because the information on the GDOT’s functionaksification is limited, the

definitions from multiple sources are considerethis study. Functional classification is

defined by the FHWAHR1) as “the process by which streets and highwayganeped

into classes, or systems, according to the charatservice they are intended to

provide.” NCHRP Report Number 5045) also described the characteristics of each

class in detail. Figure 16 illustrates the excénq this report.

Table 18: Typical Characteristics for Urban Road Chssifications, Excerpt from @5)

Functional
Classification

Anticipated Speed

Service

Typical Cross Sectign

Minor Arterial 35-55 mph Balances between Multilane divided or
mobility and access undivided

Collector 30-50 mph Connects local roads|t@-3 lanes with curb ang
arterial gutter

Local Streets 25-35 mph Permits access to | Two lanes with curb

abutting land

and gutter
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7.1.2 Data Exploration

The objective of this section is to understanddiséribution of the crash data among the
different facility types. The examination startgtwplots of crashes per mile over all road
classes. The histogram of the crashes per milaiarin Figure 66(a) shows a rough
estimate of the density of the dependent variatsbsshes/mile, which is clearly not
normally distributed. Since the histogram plotesstive to the bin size, the kernel
density estimation was also generated in Figurb)6@he density estimator for a sample

setXy,..., X, is of the form:

whereK represents the kernel function angdis the size of the bandwidth analogous to
bin size of the histogram plot. The optimal bandtvican be calculated from the

formula:h}, ~ 1.066n~/> (52).

The kernel density function suggests that thehasinile distribution is not unimodal
and might have a few different distributions resglin this dataset, i.e., one having mode
at approximately 20 crashes/mile and the othemgaiws mode at approximately 80
crashes/ mile in the four-year time period. Thigasation might also be due to the
difference in traffic and geometric characteristéslifferent facilities. The right panel of
Figure 66 shows the individual data points by jatssorted value of crashes/mile

against its index. It is seen that the data pdortsnany corridors have low crash
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frequency and about 4-5 corridors apparently halvglaer crash frequency than other

corridors.
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Figure 66: Distribution of Number of Crashes per Mie for All Corridors (a) Histogram, (b) Kernel
Density Estimate, and (c) Index Plot of the Sorte¥alues.

Next, we investigated road characteristics by trwad functional classifications, namely,
minor arterial, collector, and local street. Thegot of number of accidents in four
years of different road classifications is showethie left panel of Figure 67. Apparently,
one minor arterial has an extremely high numbearaghes relative to the other corridors
during the four-year period. There are also twdienst on the local street group while the
collector group does not show any outliers. In &iddj the crash distribution of minor

arterial class is obviously different from the eatior and the local classes, i.e., the
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median number of accidents on minor arterialsrisatfold that of the collectors and six-

fold that of the local streets.
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Figure 67: Boxplots of Number of Crashes (Left) andNumber of Crashes per Mile across Different
Road Classifications (Right)

When number of crashes is standardized by thedworieéngth, the distributions of crash
frequency across classes remain proportionallyteoh$See Figure 67, right panel). That
is, the median of the minor arterial is approxinateree-fold that of the collectors and
five-fold that of the local streets consistent wile volume differences. In addition, the
first quartile of the minor arterial is only sligptarger than the third quartile of collector
group. Unlike the total crash count variable, theations of the crashes/mile variable
between collector and local groups are more alike,the interquartile ranges of both
groups are similar. Unlike the previous plot, twdl@rs from the collector are revealed

and only one outlier is shown in the local group.
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Other exposure measures such as traffic volumeamalor length might be helpful in
distinguishing the separation in the crash distrdou The left panel of Figure 68 depicts

the AADT distribution for the different road claBsations.

Based on the AADT distribution, some collectorsén&®ADT values similar to the minor
arterial group and other collectors have AADT valsanilar to the local street group.
The boxplot of corridor lengths in the right panéFigure 68 shows that median lengths
of the three road classifications are similar. Wieor arterial group seems to have a

wider range of corridor length than the collectod docal street groups.
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Figure 68: Boxplots of Traffic Volume (Left) and Caridor Length (Right)

In the next section (Section 7.1.3), we deploysth#istical method to classify the

bimodal crash frequency distribution based on tlaglway functional classification.
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7.1.3 Technical Approach

The regression tree technique was used to sttafgistribution of crash frequency by
the road functional classification variable andeottraffic characteristic variables. This
technique is often used in data exploratory analysdetermine how the data might be
grouped, and which variables are important, whadehtorm should be used%, 53.
Therpart (RecursivePartitioning) package, which can be implemented inRhe
statistical analysis software, was used to constrae models. The regression tree is
built by first searching for a single predictor izdnle and its split point to obtain the “best
fit”, then separating the data into two groups @orary partitioning) according to the
criterion found in the first step. The process cums recursively until some stopping
rule is satisfied34). The tree model then simply uses an averageeofesponses at each
node to represent its predicted value. Inrffeet module, the split variable and its split
value are chosen when the residual sum of squR®S)(is minimized. The RSS is

computed as:

RSS(partition) = RSS; + RSSy

whereRSS = ¥ (y; — ¥)? andy is the mean of the response in each partit@h (

There are a few stopping rules that can be coettotl therpart package %6):

* minsplit the recursive binary partitions will stop whee thumber of

observations in a node is less thanrthesplitvalue.
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* minbucketthe algorithm will not split if either the lefr eight branch will
have the number of observations less thamtimbucketvalue after the

split.

* cp(the threshold complexity parameter): the algonitiill not split if the
overall R-squared does not increase by at lgasthe R-squared is of the

form (39, 53, 5%:

R 9 _4_ % Zi(vey = %)
SST Y%y — )_’)2

where y; ; is the observation i at the terminal ngde

J; is the predicted value of the response at theit@dmodej

y is the grand mean of all the observations

7.1.4 Results

The regression tree results are showed in Figur@&@grow a large tree, the cost
complexity,cp, is set to be as low as 0.001. The minimum nurobdata points before
splitting the nodeminsplit is 10 and the minimum number of data points afpditting,
minbucketis 5. Sixteen traffic attributes, traffic volumaad functional classification

variable were included as input variables. Sixtg-observations are used as the input.

As a result, the variables used in this tree ineladceleration noise during all traffic

condition AN_A) and free-flow conditionAN_F), traffic volume AVG_AADT), stop
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frequency per trip per mileSTOPS), functional classificationHC), interquartile range of
the 84" percentile speed@85), and Moran’s IndexMORANS). Among these variables,
FC,AVG_AADT, andAN_F are the first few splitting variables in the tr@&e root node

error is the ratio of the total sum of squareshefdependent variable to the sample size.

The first split is on thé'C variable, 36 corridors are either collector ordlogtreet with a
mean response value of 26 whereas 25 corridonigu@ arterials with the mean
response value of 71. This supports our boxploédagion in Figure 67 that crash
frequency on minor arterial is higher than the ot groups. After the first split, the

total sum of squares reduced from 97,200 to 22,8600 = 67,000.

Figure 70 visualizes the results in the tree diagi@mat. The tree diagram illustrates
guite an interesting result. For local and colleghmup, the safety is determined by
AVG_AADT,AN_A, MORANS, 1Q85, andSTOPS. All the mentioned variables, except
1085, represents the level of traffic activity along ttorridors. On the other hand, the
safety on minor arterial is influenced AW_F andAVG_AADT. The variableAN_F is

the acceleration noise measured under the potgrfti@é-flow condition; therefore, only
the noises caused by driver and road geometrigscteled. The finding from this result
(for the corridor included in the study) is thag¢ thafety on the minor arterial class is
influenced by road geometries while the safetytmndollector and local classes is
influenced by traffic activity along the roadwayhis is reasonable as the collectors and

local streets have higher accessibility than theomarterials.
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The cost complexity table shows the valuemwparameter indicating how well the tree
improves as the number of nodes or splits incred$esR? is improved by 31 percent
after the first split, followed by 18 and 7 percafter the second and third splits,
respectively. The relative errare( error) is the ratio oSSE to SST, or equivalently

1 — R?, whereR? is the usual coefficient of determination in lineegressionxerror and
xstddenote the cross validation error and cross viatidatandard error. The plot on the
left in Figure 71 shows that the first split (FGleos the most information. The figure on
the right also shows the 10-fold cross validatimorewith number of splits and suggests

that the tree should include only the two splits.

Regression tree:

rpart(formula = CPL ~ P_THRU + P_FF + STOPS + MI_S1 00 + SD85 +
SVLIM + M85 + SD_BND + M_BND + AN_AF + AN_FF + 1Q85 + CV85 +
CRAWL_P + FC + AVG_AADT, data = dat, method =" anova", control =

rpart.control(minsplit = 10,
minbucket = 5, cp = 0.01, maxcompete = 4, maxsu rrogate = 5,
usesurrogate = 2, xval = 10, surrogatestyle = 0 , maxdepth = 30))

Variables actually used in tree construction:
[1] AN_AF  AVG_AADT CV85 FC M_BND S TOPS

Root node error: 97201/61 = 1593
n=61

CP nsplit rel error xerror xstd
10.30846 0 1.0000 1.02230.2139
2 0.16555 1 0.6915 0.9843 0.2309
3 0.06587 2 0.5260 0.9429 0.2036
40.05290 3 0.4601 0.9728 0.1984
50.02765 4 0.40720.9512 0.1762
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60.02113 5 0.3796 0.9854 0.1680
70.01648 6 0.35841.0096 0.1684
8 0.01000 7 0.34201.0563 0.1865
node), split, n, deviance, yval

* denotes terminal node
node), split, n, deviance, yval

* denotes terminal node

1) root 61 97200.7400 44.691150

2) FC=Collector,Local 36 22252.9300 26.216130
4) AVG_AADT< 11511 20 4847.8720 14.287600
8) M_BND< 11.6122 14 640.0568 8.428776 *
9) M_BND>=11.6122 6 2605.9430 27.958200 *

5) AVG_AADT>=11511 16 11002.0200 41.126780
10) STOPS< 0.1195111 7 1991.3090 26.431320
11) STOPS>=0.1195111 9 6323.2530 52.556580

3) FC=Minor Arterial 25 44965.6900 71.295180
6) CV85< 0.03466276 14 9082.6310 48.806540

12) AN_AF< 0.670254 5 4920.0990 32.556410 *
13) AN_AF>=0.670254 9 2108.6780 57.834400 *
7) CV85>=0.03466276 11 19791.3700 99.917090

14) AN_AF< 0.8014879 6 9895.4850 80.180710

15) AN_AF>=0.8014879 5 4754.1620 123.600700

Figure 69: Regression Tree Results of All Corridors
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FC}——bc

AVG_AADTk 1.151e+04 CV85<.03466
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Figure 70: Regression Tree with Functional Classifiation (The Left Branch “bc” is the Collector and
Local Street Group and the Right Branch is the Mina Arterial Group)
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Figure 71: Plots of the R-Squared (Left) and the Rative Error from Cross-Validation (Right) for
the Different Splits of All Corridors

According to the regression tree results, the mantarials appear to be very different
from the collectors and local streets. Using thecfional classification as a split, we
might be able to re-arrange the study corridors iwo groups, namely, Higher
Classification (HC) and Lower Classification (LOhe HC group would contain all the
minor arterial corridors and some of the collectwlsle the LC group would contain all
the local street corridors and the remaining cotlesc The reasons of the rearrangement
into the HC and LC group are as follows: (1) theoniarterial usually has a clear
distinction from the local street; (2) the collect® harder to be distinguished from the
local or minor arterial as the collector is thengion between the minor arterial and the
local street. Some collectors might have charastiesimore similar to the minor arterial
while the other might have characteristics moralamto the local streets. To classify the
collector corridors into HC or LC, a split varialdad its split value was determined by

fitting the regression tree using only the colleacorridors. The results in Figure 72 show
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that the R-squared is improved by 37 percent uaM@ AADT<11,500 vehicles/day as
the first split. Therefore, the split variable ajowith its split value of 11,500
vehicles/day will be used as a split criteria. Mspecifically, collectors with AADT less
than 11,500 would be classified into LC group amel¢ollector corridors with AADT at

least 11,500 would be classified into HC group.

Regression tree:

rpart(formula = CPL ~ P_THRU + P_FF + STOPS + MI_S1 00 + SD85 +
SVLIM + M85 + SD_BND + M_BND + AN_AF + AN_FF + 1Q85 + CV85 +
CRAWL_P + FC + AVG_AADT, data = subset(dat, FC == "Collector"),
5 method = "anova", control = rpart.control(minsp lit =5, minbucket =
cp = 0.001, maxcompete = 4, maxsurrogate = 5, usesurrogate = 2,
xval = 10, surrogatestyle = 0, maxdepth = 3 0))

Variables actually used in tree construction:
[1] AVG_AADT M_BND SD_BND STOPS SVLIM

Root node error: 13878/23 = 603.4

n= 23

CP nsplit rel error xerror  xstd
10.380570 0 1.00000 1.09579 0.35736

20.342674 1 0.619431.14338 0.38116
30.078719 2 0.27676 0.67320 0.24323
40.033785 3 0.19804 0.69743 0.18464
50.031562 4 0.164250.71897 0.18298
6 0.011033 5 0.13269 0.72232 0.18611
7 0.001000 6 0.12166 0.74804 0.18958
n=23

node), split, n, deviance, yval
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* denotes terminal node

1) root 23 13878.220000 27.345000
2) AVG_AADT< 11511 11 1215.826000 11.517430
4) M_BND< 8.643337 5 27.842320 4.365471*
5) M_BND>=8.643337 6 719.104300 17.477390
10) STOPS< 0.0518867 3 168.840300 8.933114
11) STOPS>=0.0518867 3 112.236200 26.021670
3) AVG_AADT>=11511 12 7380.764000 41.853610
6) SD_BND>=1.22708 9 2019.974000 30.360000
12) SVLIM< 6.707976 3 261.921400 14.778850
13) SVLIM>=6.707976 6 665.578100 38.150570
26) SD_BND>=1.8914153 9.195342 33.0989
27) SD_BND< 1.891415 3 503.269400 43.2022
7) SD_BND< 1.22708 3 605.079200 76.334440 *

50 *
00 *

Figure 72: Regression Tree Results of Collector Cadors
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Figure 73: Regression Tree for Collector Corridorsusing All Traffic Characteristic Variables
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Figure 74: Plots of the R-Squared (Left) and the Rative Error from Cross-Validation (Right) for
the Different Splits of Collector Corridors
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The scatter plot in Figure 75 supports the regoessee result. The number of crashes
per mile tends to be higher when AADT is greatantti1,500 vehicles/day (separated by

a vertical dashes line).

The regression tree shows that there is a didiiffetrence in the crash characteristics
between the facility with AADT less than and gredban 11,500 vehicles/day. That is,
the collector with AADT less than 11,500 has a mezsponse value of 11 while the
facility with AADT greater than 11,500 has a measponse value of 41. Consequently,
a new functional classification system was propo3ée collectors with AADT less than
11,500 vehicles/day and all local streets were geduogether and called the “Lower
Classification” (LC). The Minor Arterials and thellectors with AADT greater than

11,500 vehicles/day are defined as the “Higher ffiaation” (HC).
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Figure 75: Scatter plot of Crashes/Mile vs. AADT orCollector Corridors with Regression Fit (R-
Squared = 0.157), and the dotted line separating tlaat AADT = 11,500 vehicles/day
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From Table 19, it is seemed that the average AADR@HC group is more than twice
of the LC group. In addition, the average corritbmgth for the HC group is similar to

that of the LC group.

Table 19: Sample Size, AADT, and Corridor Length byNew Road Classification

Functional No. of AADT Corridor Length (ft)
Classification | Corridors Min Max Average Min Max Average
HC 37 11,873 38,325 21,692 1,74 5,515 3,328
LC 24 1,096 19,557 9,179 2,408 5,672 3,299
Total 61 1,096 38,325 16,769 1,74 7,856 3,31p

There are total of 1,217 accidents over the 4 geaod on the 20 miles of HC road
segments and 232 accidents on the 13 miles of B@ segments. The crashes per mile

of the HC group is approximately three times tHahe LC group.

When divided by manner of collision, rear end tgpeshes account for more than fifty
percent for both HC and LC groups, followed by angbe with approximately a quarter
of the total accidents. It is observed that thepetages of head on and opposite direction
sideswipe accidents are higher on the LC than tBe®he potential reason is that the LC
roads generally do not feature TWLTL or raised rapdi The same direction sideswipe
for HC roads likely have a higher percentage asiieoads generally have higher

traffic volume, allowing for more opportunities ftris type of incident. Compared with
the state roads (urban and rural) during the samegpan, the non motor vehicle

collisions for the urban streets are much loweirsTinplies that the surrogate measures
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related to traffic congestion might be the bettggl@natory variables for the urban street

data set in this study. The statistics are sumradria Table 20.

Table 20: Crash Distribution by Manner of Collision

Not a
Sideswipe-| Collision with
Road Crash Rear | Sideswipe-| Opposite Mother
Class Counts Angle Head on End Same Dir Dir Vehicle
HC 1,217 26% 2% 52% 12% 2% 6%
LC 232 26% 4% 54% 4% 3% 9%
Total 1,449 26% 2% 53% 10% 2% 6%
State of
Georgia | 1,004,6757 27% 2% 36% 9% 3% 24%

*Crash counts from 2002-2005 without traffic sigimathe vicinity of collision

7.1.5 Discussions

Figure 76 illustrates boxplots of various variabM&th the number of incidents per mile
(CPL) variable, many of the observations are watlasated by HC/LC classification
system. The CPL distribution of the LC group is imlmwver than that of the HC group in
general. The median of the LC group (10 crashes)nslless than one-fifth of the HC
group (57 crashes/mile). The two outliers of thedrGup have much higher crashes/mile
values than the rest of the LC group. The CPL \safoethese two corridors reside
between the mean and thé™%ercentile value in the HC group, and would therehot
have been detected as high crash locations if ahtl LC corridors were combined.

This functional classification alone reduces theaten in the crash data by 28 percent.
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The traffic volume of the HC group has a higher rmedhan that of the LC group, by
approximately 2.5 times. This indicates that theshrfrequency is not proportional to the
traffic volume. Regarding the corridor length, tH€ group has a higher variability of the

length than that of the LC group.

In general, the variation of speed profis@85) of the HC group is lower than the LC
group. This is reasonable as the road geometri¢iseoHC group tend to have a higher
design standard. The mean of"g%ercentile speed of the HC group is only slightly

greater than that of the LC group.
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7.2

DISTRIBUTION OF CRASH FREQUENCY

Various distribution plots for the HC and LC growpe illustrated in Figure 77 and

Figure 78, respectively. It is seen that crashuesqy is not normally distributed. Based

on the shape of the crash frequency distributiamsddn and negative binomial

distributions were used. A number of studies hdnmvs that crash data fitted well with

the Poisson and negative binomial distributidhg G0, 32, 57-60

Crashes/Mile Crashes/Mile Crashes/Mile
0 —
g - 7 B
g © °© b= &
: o £ g :
< a2 8 = ++‘\‘"'+
5 8 8- o
3 ° g 8 e
NI ] § o
ettt
1] a
o -~ § B R TTTI TN W T B 1 o
I T T 1 o 1 T T T 1 1T T T T 1
(0] 50 100 150 0] 50 100 150 200 0O 5 10 20 30
Number of Accidents/Mile N =37 Bandwidth =17.75 Index
(a) (b) (©)

Figure 77: Distribution of Number of Crashes per Mie for Higher Classification Corridors (a)
Histogram, (b) Kernel Density Estimate, and (c) Inéx Plot of the Sorted Values.
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Figure 78: Distribution of Number of Crashes per Mie for Lower Classification Corridors (a)
Histogram, (b) Kernel Density Estimate, and (c) Inéx Plot of the Sorted Values
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7.3 CRASH FREQUENCY AND AADT

Many crash prediction models have been developied WADT as a predictor variable

to represent traffic exposure of the roadwalys (8, 32, 34, 35, 37, 48, 58, 60).6Ihis
section investigates the relationship between tashcfrequency per mile and the traffic
volume on different road classifications. In Figi& the scatter plot of the crash
frequency per mile vs. the AADT and the regressioshows that the two variables have
a positive relationship. The R-square of 0.29 iaths that traffic volume alone explains
29 percent of the total variation of the crash ditean be seen that in the lower traffic
volume range, the data points are more clusterahdrthe fitted line and becomes more

varied when the traffic volume increases.
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Figure 79: Scatter Plot of Crashes per Mile vs. AAD with Regression Fit (R = 0.292) of All
Classifications

Previous studies3(Q, 32, 34, 3preported that crash frequency and AADT have a non

linear relationship, that is, the ratio of crastginency to the AADT is not constant
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throughout the AADT range. This implies that thiatienship of crash and traffic
volume might not be the same for different roadsifécations. Regression lines were
fitted for the HC and LC roads separately in Figi®e For the HC group, the fit shows a
low R-square and the AADT is not a significant aate for predicting crash frequency.
For the LC group, the fit shows that the AADT isignificant variable in the model,

explaining 20 percent of the variation in the model
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Figure 80: Scatter Plot of Number of Crashes per Mé vs. AADT with Regression Fit of (a) Higher
Road Classification and (b) Lower Road Classificatin

These results provide insight regarding the impéttaffic volume to the crash trend on
different road classifications. That is, the traffiolume has a higher impact on the LC
group and has little impact on the HC group. Otrefic attributes of the HC roads

might have a higher influence on the accidents tharely the traffic volume.
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7.4  ANALYSIS OF INFLUENTIAL FACTORS

The first step of statistical analysis involved tlse of statistical tools to understand the
predictor variables that might have relationshijith whe response variable, i.e., crash
frequency per unit lengtiCPL). Note that only speed-profile variables are cdesad in
this study to keep the crash prediction model praktor a road network screening
process. Including road geometries and roadsidareEsamight have improved the
prediction power but would require demanding dafiéection efforts and hence makes

the model costly for an initial screening tool.

The regression tree technique is used to expler@portance of each variable. The HC
and LC groups are analyzed separately as showigume=81. All the potential

explanatory variables were first supplied to bt HC and LC models.

—> : Hi
Dependent Variable: Model HC: Higher Class

Crashes /Mile —1 Model LC: Lower Class

Figure 81: Final Model Development Structure
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7.4.1 Results

Model HC: Crashes per Mile for Higher Classificatio

The results for the Model HC are shown in Figure®@# corridors are split into six
groups using four variables includitd) BND, SD_BND, STOPS, andSVLIM. As seen

in Figure 83, the variabl€T OPS is used as the first split and it reduces theati@am by

19 percent. The left node with STOPS < 0.36 hasdineesponding mean response of 53
accidents per mile over a four year period. Thhatrigpde with STOPS > 0.36 has the
corresponding mean response of 95 accidents perawdr a four year period. The R-
squares of further splits are much smaller. Theskalidation error in Figure 84

suggests that the error increases as more spitsdalied.

Regression tree:

rpart(formula = CPL ~P_THRU + P_FF + STOPS + MI_S1 00 + SD85 +
SVLIM + M85 + SD_BND + M_BND + ANT_A + ANT_F + IQ85 + CV85 +
FC + AVG_AADT, data = hc, method = "anova", con trol =

rpart.control(minsplit = 9,
minbucket = 3, cp = 0.01, maxcompete = 4, maxsu rrogate = 5,
usesurrogate = 2, xval = 10, surrogatestyle = 0 , maxdepth = 30))

Variables actually used in tree construction:
[1] M_BND SD_BND STOPS SVLIM

Root node error: 59375/37 = 1604.7

n= 37

CP nsplit rel error xerror  xstd

10.189199 0 1.00000 1.0309 0.25367
20.076698 1 0.81080 1.3403 0.28601
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30.056138 3 0.65740 1.4006 0.31329
4 0.001000 5 0.545131.3870 0.32625
> dat_rpart

n= 37

node), split, n, deviance, yval

* denotes terminal node

1) root 37 59374.6200 61.74656
2) STOPS< 0.3567338 29 26588.9200 52.59479
4) M_BND< 13.89791 24 17087.9200 46.91634
8) SD_BND>=1.473479 8 1158.8040 27.29626 *
9) SD_BND< 1.473479 16 11309.7500 56.72638
18) SVLIM< 9.146291 11 7930.2020 48.12635
36) STOPS<0.1608791 5 1351.7350 27.0734 2*
37) STOPS>=0.1608791 6 2515.5620 65.6704 6*
19) SVLIM>=9.146291 5 776.1402 75.64643 *
5) M_BND>=13.89791 5 5012.5150 79.85138 *
3) STOPS>=0.3567338 8 21552.0700 94.92173 *

Figure 82: Regression Tree Results for the Model HC
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Figure 83: Regression Tree Diagram and its Correspaling Box Plot for Model HC
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Figure 84: Plots of the R-Squared (Left) and the Rative Error from Cross-Validation (Right) for
the Different Splits for Model HC
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Model LC: Crashes per Mile for Lower Classification

The results for the Model LC are shown in Figure B%e corridors are split into five
groups using four variables includiddV_A, P_FF, P_THRU, andSTOPS. As seen in
Figure 86, the variabl€TOPS is used as the first split and it reduces theatiam by 59
percent. The left node with STOPS < 0.59 has tlheesponding mean response of 12
accidents per mile over four years. The right n@ite STOPS > 0.59 has the
corresponding mean response of 63 accidents perawdr four years. Note that there are
only three observations on the right node. The &asep of further splits are very small.
The cross validation error in Figure 84 suggesds dinly the first split reduces the cross

validation error and the error will increase as bemof splits increases.

Regression tree:

rpart(formula = CPL ~P_THRU + P_FF + STOPS + MI_S1 00 + SD85 +
SVLIM + M85 + SD_BND + M_BND + ANT_A + ANT_F + 1Q85 + CV85 +
CRAWL_P + CRAWL_I| + BLK_P_01 + FC + AVG_AADT, d ata = Ic,
method = "anova", control = rpart.control(minsp lit =9, minbucket

= 3,

cp = 0.001, maxcompete = 4, maxsurrogate = 5, usesurrogate =
21
xval = 10, surrogatestyle = 0, maxdepth = 3 0))

Variables actually used in tree construction:
[1] ANT_A P_FF P_THRU STOPS

Root node error: 10471/24 = 436.28

n= 24

CP nsplit rel error xerror  xstd
10.638042 0 1.00000 1.1301 0.52269
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20.069542 1 0.36196 1.0955 0.54058
30.014496 3 0.22287 0.9335 0.34044
4 0.001000 4 0.20838 0.9620 0.33745
> dat_rpart

n=24

node), split, n, deviance, yval

* denotes terminal node

1) root 24 10470.6000 18.397380
2) STOPS< 0.5923704 21 2370.9720 12.091350
4) ANT_A< 0.8457284 12 500.1113 7.687239
8) P_THRU>=0.8615558 7 75.8281 4.681509
9) P_THRU< 0.8615558 5 272.5050 11.895260
5) ANT_A>=0.8457284 9 1327.7660 17.963510
10) P_FF< 0.6067029 6 241.9371 10.840800 *
11) P_FF>=0.6067029 3 172.6345 32.208930 *
3) STOPS>=0.5923704 3 1418.9460 62.539580 *

Figure 85: Regression Tree Results for the Model LC
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Figure 86: Regression Tree Diagram and its Correspualing Box Plot for Model LC
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Figure 87: Plots of the R-Squared (Left) and the Rative Error from Cross-Validation (Right) for
the Different Splits for Model LC
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7.4.2 Discussions

Model HC: Crash Frequency per Mile for Higher Cldgstion

The cross validation error in Figure 84 estimai@s this tree model will perform in
practice. The figure shows that the model mightpeform well with other datasets.
Since STOPS is the most influential variable inninedel, the relationship between
STOPS and CPL is illustrated by the scatter pldtigure 88. The STOPS variable does
not appear to be a good classifier between thealmavhigh crash road groups. The
splitting line is very tight with five observatioémost on the line. Corridors 35, 33, and

21 are on the right side while the corridors 17 3Bdhre on the left side of the line.

Despite the low R-square and high cross validatioar, the model results can be used to
investigate the relationship of the response tt @aciable. The direction of relationships
between the respons€RL) and the predictor variables in the tree modelewgmerally

as expected with the exceptionS&fi_BND. For instance, the crash frequency increases
as the stop frequency increases. The regressiesii@vs that when ti#'OPS is

greater than 0.36 stops/mile/trip, the number ofdemnts increases two-fold. For the
variableM_BND, the number of accidents also increases as thesl dnd widens. The
high variation from the speed limit along the roagwSV LIM) associates with high

crash frequency. The direction of variation of spband §D_BND) to the response is
counter-intuitive, i.e., the crash frequency desesaas the variation of speed band

increases.
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#-Stops/trip/mile vs CPL

35
. e
=1 i 3
71 i
! 14
— I
o o :33
Q O |
&+ - |
§ 894 g5 2-1
g— ba6 !
Qo 38 17 15
o | 78 20%2 :
n 7 8%_‘:2 23
BB 73"
289 ,
96 ;
o 9224 : 28
| : | | I
0.0 0.5 1.0 15
tempdat$STOPS

Figure 88: Scatter Plot between Stop Frequency andumber of Crashes per Mile. The Vertical line
shows the data separation at STOPS=0.36 Stops/Triyile.

Model LC: Crash Frequency per Mile for Lower Cldigsition

The LC model indicates th#'OPS variable being the most influential variable. The
cross validation error in Figure 87 shows thatdafhrer increases for a number of splits
greater than one. This means that onlyXi@PS variable has a predictive power in
practice. The scatter plot STOPS versusCPL is shown in Figure 89. It is seen that the
splitting line atSTOPS = 0.59 separates the high crash and low crasidoosrquite well.
The three corridors with stop frequency per trip pde greater than 0.59 have relatively
high crashes while the others have relatively loaskes. This is in line with expectation

as a corridor with high number of stops indicatksly higher traffic congestion. Note
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that high traffic congestion does not necessanigly high traffic volume. For example,
corridor number 40 has twice the traffic volumecagidor number 30 but half the
number of stops. This means reducing number okstopthe road may also reduce

number of accidents on the road, depending on #taaod used.

#-Stops/trip/mile vs CPL
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Figure 89: Scatter Plot between Stop Frequency andumber of Crashes per Mile for the LC Group.
The Vertical line shows the data separation at STO®=0.59 Stops/Trip/Mile.

Regarding the direction of the relationship totégponse, two variables are in line with
expectation. For instance, high acceleration nasseciates with a higher number of
accidents. Also, a high percentage of throughitréffr low percentage of turning
movement to/from the driveways) associates withelogerash frequency. The last split is
counter-intuitive. It indicates that high percergayj free-flow traffic associates with high

crash frequency.
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7.5 MODEL DEVELOPMENT

Regression tree and the linear regression techsigrgedeployed in the model
development effort. The regression tree results fiiwe previous section are compared
with the results from the linear models construdtethis section. The model with a

better R-square is selected.

Using multiple linear regression might not be apiate with the crash data because the
response can take only positive integer valuegslamdrash counts are unlikely to have a
normal distribution. A Generalized Linear Model (8).approach was applied with a

log link function as described in Section 2.5.3isTdpproach ensures that the fitted
values are positive and does not require the degpgnariable to be normally distributed

(62). The followings are model development for the &l LC corridor groups.

Model HC: Crash Frequency for Higher ClassificatiBoadways

HC: Tree Model with Stop Frequency Variable

The tree model witSTOPS as the most important explanatory variable is usbe
result is shown in Figure 90. The mean respongesde@nts in 4 years per mile) are 53
for the left node and 95 for the right node. ThedRrare for this model is 0.19. The
further splits are not shown because the tree mumiétl not be significantly improved

by adding more variables.
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Figure 90: Regression Tree Diagram for Model HC wit R-square of 0.19

HC: Generalized Linear Model

In this section, we try to fit the GLM model. Madtthe crash prediction models were
constructed using the Poisson and Negative Binoenral distribution 18). The

following model form is used:

CPL = eBo+B1X1+B2X>....)

Since the Poisson distribution require the randanneble to be discrete, the variable

corridor length L) is moved to right hand side with its power assditeebe one. That is,
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number of accidents increases proportionally tdehgth of the corridor. To make

parameter estimation simple, the log transformaamsed and the model form becomes
log(ACC/L) = ﬁo + ,31X1 + ﬂzle .., Or
lOg(ACC) = lOg(L) + BO + ,31X1 + BZXZ. s

The log form of length with a fixed coefficient ohe is used because it is expected that

the corridor length has a proportional effect am ¢hash frequency.

HC: Poisson vs. Negative Binomial Distribution

Since we do not know whether the Poisson or negaiivomial error structures should
be used, we first estimate the model paramef#{, B, ...) with the Poisson error
structure and calculate the deviance. The devi@géor the Poisson regression can be

calculated asi(7, 38, 39:
n
D = 22()’1‘ log(yi/ i) — (vi — fy))
i=1

wherey; is the response value of observati@ndy; is the fitted value for the
corresponding;. If the model deviance is significantly greatearthts corresponding
degrees of freedom (n-p), it indicates that tha diave greater dispersion than could be

captured by the Poisson distribution and the negdtinomial distribution is suggested.
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The Poisson regression model is fitted to the H@s# and the results are shown in

Figure 91.

Call:
glm(formula = ACC ~ STOPS + offset(l(log(LEN))), fa mily = poisson,
data = hc)

Deviance Residuals:
Min 1Q Median 3Q Max
-7.4778 -3.1957 -0.3224 2.0051 10.9754

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.95709 0.03630 109.017 <2e-16 ** *
STOPS 0.61062 0.07382 8.272 <2e-16** *
Signif. codes: 0 “***' 0.001 **' 0.01 *' 0.05 . 011
(Dispersion parameter for poisson family taken to b el)

Null deviance: 546.95 on 36 degrees of freedo m
Residual deviance: 489.24 on 35 degrees of freedo m
AIC: 677.98

Number of Fisher Scoring iterations: 5

Figure 91: Results of the Poisson HC Model with th@redictor Variable STOPS

The fitted GLM model shows that the estimated patamforSTOPS is statistically
significant beyond the 0.01 level of significaneegen though we cannot observe an
obvious trend between the crash frequency andfsggpency in the scatter plot of

Figure 88.
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Also included in the results are the null deviaand residual deviance. The null
deviance is the deviance for a model with no prtedicariable and the deviation is
calculated merely from the intercept term. Thedwesl deviance measures how much the

data deviates from the current model.

It can be seen that the residual deviance (48®uish larger than the corresponding
degrees of freedom (35). This is likely to be timptom of overdispersion, i.e., the
residual deviance is much larger than the degregserdom. The Pearson chi-square test
can be used to statistically check the goodne§is @fthe model. The null hypothesis is
that the Poisson regression model has a goodtfietalata. The residual deviance of 489,
to be compared with a chi-square distribution V@hdegrees of freedom. The p-value of

less than 0.001 rejects that the Poisson regressoaiel fits well.

The property of Poisson distribution that mean é&xthe variance is too restrictive for
the empirical variance in this data. Therefore,rtbgative binomial should be considered

to remedy the overdispersion phenomenon of théhnatasa.

HC: Negative Binomial Regression with Stop Frequency

The Negative Binomial family is used to fit the shgprediction model with STOPS as a
predictor. The detailed results are not reportadestheSTOPS variable is not significant
at 0.05 level of confidence. However, the residiealiance (41) for the negative binomial
model is closer to its corresponding degrees @doen (35) indicating a better fit than

using the Poisson model.
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HC: Negative Binomial Model with Acceleration Noise, All Traffic Condition

To select other important predictor variables, tecatlots of the crash frequency per mile
and the predictor variables were investigated. @the 15 predictor variables, only
acceleration noise under all traffic conditioAN(A) seems to have a relationship with
the response (Figure 92). The GLM approach is tsednstruct the model shown in
Figure 93.ThedN_A is significant at 0.05 confidence level with thesguare of 1-
(19,392/28,992) = 33 percent, which is greater tharR-square from the regression tree
with theSTOPS variable. The residual deviance for this modélds8 to be compared

with the chi-square distribution with 35 degreed$reédom. The p-value for the chi-
square test is 0.23, therefore we do not havejéotrthe null hypothesis that the negative

binomial model has a good fit with the data.

The mathematical equation for this negative bindm@gression model is as follows:

9= =Lt = ¢ (2626+1862(AN_4)) o

C’ﬁLHC = ?i/L — o(2626+1.862(AN_4)))

wherey; is expected number of accidents in four yearsHemroad sectionwith length
L (mi); CPLy is the expected number of accidents per mile touaryears for the same

road section; andN_A is the acceleration noise under all traffic coieditfmph/sec).
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HC Model: Acceleration Noise vs. Crashes/Mile
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Figure 92: Scatter Plot between Acceleration Noisender All Traffic Condition and Number of
Crashes per Mile for HC dataset. The dotted line rpresents the fitted model with R-square of 0.33.

Call:
glm.nb(formula = ACC ~ ANT_A + offset(l(log(LEN))), data = tempdat,
init.theta = 2.45167823371255, link = log)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.22218 -0.77174 -0.04393 0.40073 1.50348

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.626  0.638 4.116 3.86e-05 ** *
ANT_A 1.862 0.796 2.339 0.0193*
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Signif. codes: 0 “***' 0.001 **' 0.01 *’ 0.05 *. 0171

(Dispersion parameter for Negative Binomial(2.4517) family taken to
be 1)
Null deviance: 46.013 on 36 degrees of freedo m
Residual deviance: 40.800 on 35 degrees of freedo m
AIC: 322.85

Number of Fisher Scoring iterations: 1

Theta: 2.452
Std. Err.: 0.623

2 x log-likelihood: -316.853

Figure 93: Results of the Negative Binomial HC Modawith the AN_AF Variable with R-square of
0.33

HC: Negative Binomial Model with Acceleration Noise and Multiplicative Form of

Length

The assumption of proportional relationship betweegment length and crash frequency
is tested by relaxing the fixed coefficient of teagth variable. When the coefficient of
the log of corridor length is not fixed to 1.0, ttedationship becomes multiplicative form

and the results are shown in Figure 94.

In this model, the power of the corridor lengtheiss than one (0.706). This means that if
there are N accidents on 1 mile section, it is etgueto have 1.6*N accidents on the 2
mile section with the same traits. The proportibd@viance explained by this model, 1-

20,076/28,992= 31 percent, indicates a similaofthe previous model.
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To test the goodness of fit of this model, the Bearchi-square test is used. The residual

deviance for this model is 40.819, to be comparghl e chi-square distribution with

34 degrees of freedom. The p-value of 0.20 indgcHtat the model appears to be

adequate.

The mathematical equation for this negative bindm@igression model is as follows:

y

Ai = = L.706 * 3(2-2923+2-0295(AN-AL'))

wherey; is expected number of accidents in four yearsHemroad sectionwith length

L (mi); andAN_4; is the acceleration noise under all traffic coiditmph/sec).

Call:
glm.nb(formula = ACC ~ ANT_A + (I(log(LEN))), data
init.theta = 2.51080164865263, link = log)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.23781 -0.76959 -0.06308 0.46183 1.69620

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 2.2923 0.7299 3.141 0.00169 **
ANT_A 2.0295 0.8079 2.512 0.01200 *
I(log(LEN)) 0.7060 0.3349 2.108 0.03506 *

Signif. codes: 0 *** 0.001 **' 0.01 **’ 0.05 ".

(Dispersion parameter for Negative Binomial(2.5108)
be 1)

Null deviance: 55.361 on 36 degrees of freedo

= tempdat,

011

family taken to
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Residual deviance: 40.819 on 34 degrees of freedo m
AIC: 324.05

Number of Fisher Scoring iterations: 1

Theta: 2.511
Std. Err.: 0.641

2 x log-likelihood: -316.049

Figure 94: Results of the Negative Binomial HC Modewith the Predictor Variables STOPS and
LEN with the R-square of 0.31

Model LC: Crash Frequency for Lower ClassificatiBpadways

LC: Tree Model with Stop Frequency Variable

From the analysis in Section 7.4, the measS@@PS is the most important variable for
the lower functional classification. The splittipgint is atSTOPS = 0.59 stops per trip
per mile. The mean responses are 12 and 63 acsitteftyears per mile for the left and
right nodes, respectively. There are 21 corridorshe low crash frequency group and

only 3 corridors on the high crash frequency graipe R-square of the first split is 0.64.
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Figure 95: Regression Tree Diagram for Model LC wih R-square of 0.64

LC: Negative Binomial Model with Stop Frequency Variable

Next, we check if the GLM model could have a béiitehan the regression tree model.
The two variables that are significant in the negabinomial model includ6TOPS and
AN_A. TheSTOPS model reports the R-square of 1-2346/2927= 20guerand its scatter
plot is shown in Figure 96. The residual deviantc26537 is compared with the chi-
square distribution with 22 degrees of freedom. piwalue of 0.23 is large enough to

conclude that the negative binomial model has adibo
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LC Model: Stop Frequency vs. Crashes/Mile
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Figure 96: Scatter Plot between Stop Frequency andumber of Crashes per Mile for LC Dataset.
The dotted line represents the fitted model (R-squa = 0.20).

LC: Negative Binomial Model with Acceleration Noise, All Traffic Condition

Furthermore, the acceleration noigé/( A) model indicates the R-square of 1-
1755/2927=0.4 and its scatter plot is shown in FE@¥. The residual deviance of 25.8 is
to compared with the chi-square distribution withdegrees of freedom. The p-value of

0.26 is large enough to conclude that the negaiivemial model has a good fit.
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LC Model: Acceleration Noise vs. Crashes/Mile
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Figure 97: Scatter Plot between Acceleration Noisender All Traffic Condition and Number of
Crashes per Mile for LC Dataset. The dotted line rpresents the fitted model (R-square= 0.40).

Since the regression tree model is superior ttvloeGLM models, we classify the LC
dataset using the STOPS criterion. The mean respafr®3 accidents per mile is used as
a predicted value for the right node since theeeoaly three observations. The left node
has 21 observations and we might be able to impitevy@rediction power by adding
splitting nodes or constructing a GLM model. Acdogdto the regression tree results in
Figure 85, the next split would improve the R-sguay 7 percent, which is not a

sufficient improvement to justify the additional ded complexity.
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LC[STOPS<0.59]: Negative Binomial Model with Acceleration Noise, All Traffic

Condition

For the STOPS< 0.59 dataset, the measure AN_A$§ed to construct the negative
binomial regression model. The parameter estinsabaiely significant with the p-value
of 0.04 and the R-square for this model is 1-628#809. The Pearson chi-square test

shows a p-value of 0.25 indicating that the negaltimomial model has a good fit.

The mathematical equation for this negative bindmegression model is as follows:

9= =Lt o (0.4677+2.4581(AN_4))) oy

CPLyci = yi/L _ (0.4677+2.4581(AN_A)))

wherey; is expected number of accidents in four yearsHemroad sectionwith length
L (mi), CPL is the expected number of accidents in four yparsnile for the same road
section, andiN_A is the acceleration noise under daylight and dnddions (mph/sec).
Note that the coefficient for the corridor lengshniot restricted to one, the parameter
estimate is not statically significant and thereftite model with multiplicative effect of

corridor length is not considered in the final miode
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LC[STOP<0.59] Model: Acceleration Noise vs. Crashes /Mile

o _
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Figure 98: Scatter Plot between Acceleration Noisender All Traffic Condition and Number of
Crashes per Mile for LC[STOP<0.59] Dataset. The daed line represents the fitted model (R-

square= 0.09).

Call:

glm.nb(formula = ACC ~ ANT_A + offset(I(log(LEN))), data = tempdat,

init.theta = 1.94540428001504, link = log)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.2223 -0.7984 -0.2272 0.2825 1.7236

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 0.4677 0.9836 0.475 0.6344
ANT_A 24581 1.1875 2.070 0.0385*
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Signif. codes: 0 *** 0.001 **' 0.01 **’ 0.05 ". 011

(Dispersion parameter for Negative Binomial(1.9454) family taken to
be 1)
Null deviance: 26.057 on 20 degrees of freedo m
Residual deviance: 22.611 on 19 degrees of freedo m
AIC: 123.10

Number of Fisher Scoring iterations: 1

Theta: 1.945
Std. Err.: 0.816

2 x log-likelihood: -117.103

Figure 99: Results of the Negative Binomial Model ith the AN_AF Variable for the LC with STOPS
Less Than 0.59. The R-Square is 0.09

7.6 SUMMARY

The final crash prediction model is a combinatibthe regression tree and the
generalized linear models. First, the proposedtfanal classification system is used as a
splitting variable to separate lower and higherctional classifications. The higher
classification is a combination of the minor adésiand high traffic volume (greater than
11,500 vehicles per day) collectors while the lofuerctional classification includes the
lower volume (less than 11,500 vehicles per daifctors and local streets. This

classification improved the R-square by 28 percent.
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For the lower functional classification, the vat@BT OPS is used to separate high stop
frequency (> 0.59 stops/trip/mile) and low stomfrency (<0.59 stops/trip/mile)
segments. The R-square is improved by 64 percetitibgplit. For the low crash
frequency corridors, the crash frequency is preditty the GLM model (R-square =

0.09):

ACCLCl =1« e(0.4677+2.4581(AN_AL'))

The high stop frequency LC segments will have greeted crash frequency of 63

accidents per mile in four years and can be fortedlas:
ACCLCZ = L * 63

For the HC corridors, the crash frequency is ptedidy the GLM models (R-squares =

0.33 and 0.31 for the' andL®7 models, respectively):
ACCye = L* % ¢(2:626+1.862(AN_41)
or

ACCye = L76 « o (2:2923+2.0295(AN_4;))

The overall R-square of the final model is 0.48jahhndicates that almost half of the
variation in the crash data can be explained uingtional classification, stop frequency
and acceleration noise variables. The model isnpiadéy be used as a screening tool for

road safety improvement program. The final modeicstire is illustrated in Figure 100.
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LC+HC

FC=LC FC=HC

! !

STOPS<0.59 STOPS>0.59| | acc,, = L « eBo+BraN_a)

ACCicq = 11 « ¢ (Bo+B1AN_A) ACCrc, = L*63

Figure 100: Final Model Structure R-square = 0.48L{C=Lower Functional Classification,
HC=Higher Functional Classification, STOPS= Stops Fequency, AN_AF= Acceleration Noise
under All Traffic Condition)
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Chapter 8. CONCLUSIONS

This chapter summarized the research tasks anm@sdrom this dissertation in Section
8.1. Major contributions are listed in 8.2. Limitats and future works are suggested in

Section 8.3.

8.1 SUMMARY OF FINDINGS

This dissertation is the first study developingast prediction model for low speed
urban streets using continuous speed data fror@Bt&-equipped vehicle data. The
developed model is intended to be used as a sag&ol in which traffic engineers can
use GPS traces from vehicles in concert with basidway information such as road
classification to identify the sections on the urlséreet network that might be expected

to exhibit a higher than normal number of crashes.

While the previous researchers constructed simiadels using point-specific speed
measures, this study proposed several measurasthsispeed profile data. The profile-
based measures are expected to reveal the varadtgpeed along the spatial dimension

of the roadway, which might indicate safety issues.

Some of the proposed measures are designed taeapieed consistency. This requires
the speed data to be under free-flow conditionsvéler, the original GPS-based
trajectory data did not include a direct informatiaf the flow regime. As a result, a

series of speed data processing filters were dpedlto identify likely free-flow speed

data. The sensitivity of the data filters to theegh-related measures was analyzed and the

findings are as follows:
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The speed measures derived from th& Bé&rcentile speed profile
includingSD85, M85, CV85, andIQ85 are not sensitive to the data filters.
This is because the filters are designed to rerpotentially non-free-

flow trips, which usually contain low speed datanp® and thereby the
filter effect on the high percentile speeds is miai. As a result, the speed
measures derived from the high percentile speeaidaght not require the

free-flow filtering process.

The speed measures utilizing the low speed dath, &, mean and
variation of the speed band and the acceleratitserare affected by the
free-flow filters on many corridors. Therefore, tinee-flow condition is
an important factor to determine the values oféhmgasures when they

are desired for operating speed analysis.

It is observed that the off-peak period cannotfiecgvely used as a
surrogate of the free-flow filters because difféngrban streets have
different peak period. Therefore, the speed prefdtern filters provide
more reliable information about the traffic conditithan a time-of-day

filter.

In the model development effort, the study corrgdeere divided into two classes,
namely, higher and lower functional classificationBe crash prediction model was
constructed using the regression tree and geneddiizear modeling approaches.

Findings from the models are summarized as follows:
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The safety characteristics of roadways are likefiyrection of the roadway
classification. Separation of corridors by funcabolassification allows for the
identification of high crash LC corridors (relatiteother LC corridors) that

might not be otherwise identified.

For the higher classification roadways, the mogtartant explanatory variable
used to construct the regression model is the aaten noise under all traffic
condition AN_A) which includes all continuous trips made durimy tight and

no rain conditions. The model explains 27 percémh® total variation in the
crash data. ThaN_A has a positive relationship with the crash freqyesn the
HC corridors, i.e., the higher the acceleratiorsapthe higher the expected crash

frequency.

For the lower classification roadways, the varialdtop frequencys{OPS) and
acceleration noised(NV_A) were used to construct the crash prediction model
Both variables have positive relationships with ¢hesh frequency on the LC

corridors, as expected.

Several measures derived from likely free-flow spdata such asD85, M85,
SD_BND, M_BND, andAN_F do not have significant relationship with the tras
frequency. This might be because accidents onrbenustreets are mainly a
function of a combination of traffic congestiondathe roadway design, and
roadside characteristics while the mentioned véesbre designed to measure the

speed consistency along the corridor without carsid the level of traffic
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congestion. The traffic condition of the roadwan & partially explained by the

variablesSTOPS andAN_A.

* While most of the crash prediction models includdfic volume as their traffic
exposure measure, the model in this study doesenoire the comprehensive
traffic volume information because this can be espnted by the road functional

classification, the acceleration noise, and thp ft&quency variables.

8.2 CONTRIBUTIONS

Existing crash prediction models require data agphysical road geometries, traffic

volume, and speed characteristics. These dataecargensive and time consuming to
collect. Most of the speed-safety models also wsetyspecific speed measures, which
do not capture speed consistency along the corridos study explores the use of the
speed profile data from GPS instrumented vehidles.major contributions of this

research are summarized as follows:

» The research developed a methodology to obtaisghed profile data under

various conditions.

» The research provides an understanding of the ihgdatata filtering processes

on the speed measures.

» The crash prediction model provides a foundatiorafepeed profile based

screening tool in a road safety improvement progiarparticular, traffic
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engineers can use this model to identify potemtiablem corridors using only the

speed data collected from the instrumented vehicles

8.3 LIMITATIONS AND FUTURE WORK

Additional research work that can be conducteduites the followings:

» Since the GDOT crash database includes informaégarding the manner of
collision and level of severity (e.g., number gtinnes and fatalities) , the model
should be extended to examine the relationshipe¢a profile characteristics

with different crash types and different degreesenferity.

* The geometric elements and roadside features émabe readily obtained could
be incorporated in the crash prediction model @n@re the improvement in

predictive power.

* The design consistency indicat6¥,LIM, measures the variation of operating
speed from the speed limit. However, this variatde not found to be significant
in the final model. It might be interesting to $e®v this measure is improved

when only the over speed data, i.e., speed dateeahe speed limit, are included.

Additionally, the following is suggested as theulg research when the required data are

available:

* The study corridors were selected mainly basedvaitability of GPS data and
the need of FHWA study, Effects of Urban StreetiEonment on Operating

Speeds. Therefore, the selected sites do not regdggsrtray an unbiased
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distribution of crash data. A future study shouldlude a large sample of

randomly selected corridors.

It is also possible that additional variables po#dly influencing road safety have
not been included in this study. For example,aa Im driver demographics
across the corridors may introduce a bias in thiglent statistics. Future research
should investigate the impact of driver and vehatlaracteristics on the surrogate

measures.

The speed measures, stop frequency, and acceteratige are partially
influenced by the traffic congestion on the corridthe trip data distribution used
to calculate these measures may potentially bedibg time of day drivers of the
instrumented vehicles tended to traverse the aarrigor example, if most of the
instrumented vehicles travel on a particular carriduring the peak time and only
a few trips are made during off-peak, the stopuesgty and the acceleration
noise determined are likely to be overestimatedHercorridor. Future research

into the impact of the trip sampling on measuresikhbe conducted.

When more speed data are available during thermesié weather and nighttime
period, speed and safety characteristics durinignment weather and low
visibility condition should be inspected as thesghhexpose additional

geometric design or other roadway characterissigds.

Regarding the modeling approach, each directicdhefoad should be model

separately as each direction potentially has difiespeed and safety
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characteristics. In this study, accidents were dgoetbfrom the two directions of
travel as the impact direction of travel could hetaccurately identified from the
given crash database. Additional explanatory pawéne model is expected

when the model incorporates direction of travel.
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APPENDIX A: SUMMARY OF DATA PROCESSING
RESULTS

The following bar charts are the summary of datlucéon from data processing steps
performed in Chapter 4. Each figure representsgmeitcips that passed the filtering
criteria of one directional corridor. Number ofosiof the initial data set is placed at the

top right corner of the chart. The notations offiliers are described below:

L=Light

W=Weekday

* R=No Rain

* F=Free-Flow

«  O=0Off-Peak

» D=Deviated Trips

* S=GPS Signal
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APPENDIX B: SENSITIVITY ANALYSIS RESULTS

The charts in this appendix are the results ok#resitivity analyses of the speed
measures to the spacing distance discussed in &@Hapthe sensitivity plots are grouped
by the effective corridor length, i.e., the cornidength subtracted by the traffic control

influential zones.

The speed measures exhibited in this section ieclud

Speed variation (SD85)

« Mean of 8% percentile speed (M85)

« Coefficient of Variation of 88 percentile speed (CV85)

« Interquartile Range of 85percentile speed (1Q85)

« Variation of 8%" percentile speed from the speed limit (SVLIM)
* Mean of speed bands (M_BND)

» Variation of speed bands (SD_BND)

» Acceleration noise under free-flow condition (AN )FF

» Acceleration noise under all-flow condition (AN_AF)
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Sensitivity of Speed Variation (SD85) Plots
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Sensitivity of Mean of 85Percentile Speed (M85) Plots
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Sensitivity of Coefficient of Variation of 8Percentile Speed (CV85) Plots
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Sensitivity of Interquartile Range of'8Rercentile Speed (1085) Plots
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Sensitivity of Variation of 85Percentile Speed from the Speed Limit (SVLIM)sPlot
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Sensitivity of Mean of Speed Bands (M BND) Plots
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Sensitivity of Variation of Speed Bands (SD BND}PI
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Sensitivity of Acceleration Noise under Free-Floon@ition (AN FF) Plots
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Sensitivity of Acceleration Noise under All-Flowrddion (AN AF) Plots
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