
 

 

 
Speed Profile Variation as a Surrogate Measure of  
Road Safety Based on GPS-Equipped Vehicle Data 

 
 
 
 
 
 
 
 
 
 

A Dissertation 
Presented to  

The Academic Faculty 
 
 
 

By 
 
 
 

Saroch Boonsiripant 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in Civil Engineering 
 
 
 
 
 
 

Georgia Institute of Technology 
 

May 2009 
 

Copyright 2009 By Saroch Boonsiripant 



 

 

 

Speed Profile Variation as a Surrogate Measure of  
Road Safety Based on GPS-Equipped Vehicle Data 

 

 

 

 

 

 
Approved by:   

   
Dr. Michael P. Hunter, Advisor 
School of Civil and Environmental 
Engineering 
Georgia Institute of Technology 

 Dr. Kwok-Leung Tsui 
School of Industrial and Systems 
Engineering 
Georgia Institute of Technology 

   
Dr. Randall L. Guensler 
School of Civil and Environmental 
Engineering 
Georgia Institute of Technology 

 Dr. Karen K. Dixon 
School of Civil and Construction 
Engineering 
Oregon State University 

   
Dr. Michael O. Rodgers 
School of Civil and Environmental 
Engineering 
Georgia Institute of Technology 

  

   

  Date Approved:  March 26, 2009 

 

  



 

 

 

 

 

 

 

 

 

Dedicated to my parents 

Pornphun and Surachart Boonsiripant 



iv 

 

ACKNOWLEDGEMENTS 

When looking back to all those years I spent in the Ph.D. program at Georgia Tech, I 

realized that the journey I have been through is much more valuable than the destination I 

have reached. I met many great people along my journey and would like to thank them 

for their supports over the past four years.  

I would like to express my gratitude to all my thesis committee members for their 

guidance on this research work. The first person I would like to thank is Dr. Kwok-Leung 

Tsui. My interest in statistics was inspired by his excellent teaching in a few of his 

statistics courses. My gratitude also goes to Dr. Randall Guensler for his comprehensive 

data and invaluable guidance and suggestions. Moreover, I feel very fortunate to have an 

opportunity to work with Dr. Karen Dixon on a FHWA research project four years ago 

which helped me formed the scope of this research. I also would like to thank Dr. 

Michael Rodgers for his closely involvement during the last phase of my dissertation 

work. Discussing research with him is always a pleasure to me because of his thorough 

understanding and broad knowledge on the related subjects. Most importantly, I would 

like to thank my advisor, Dr. Michael Hunter, who has been an outstanding advisor and 

mentor over the past four years.  I could not remember how many time he had to skip 

lunch or miss dinner with his family when trying to help me go through the research 

problems. I am extremely grateful to have had the opportunity to work with him. 



v 

 

I have special thanks to Dr. John Leonard who gave me the most valuable book I ever 

read, Getting Things Done. It does really help me getting many things done and keeping 

my life in proper balance. 

My gratitude also goes to all my friends around for their true friendship and 

encouragement. To name a few, my thanks go to Dr. Tudor Bodea, Dr. Hsing-Chung 

Chu, Dr. Angshuman Guin, Hoe Kyoung Kim, Piyanut Itarut, Chanin Ruangthaveekoon, 

Wonho Suh, Dr. Chanin Tongchitpakdee, and Seungkook Wu. 

Finally, I would like to thank my wonderful parents for their unconditional endless love 

and continued support throughout my journey.  My dearest girlfriend, Monthisa 

Kortrakul (Peach) deserves my special gratitude. I thank her for the enormous support, 

patience, and faith she has in me over the past four years. Without her, I would never 

have accomplished what I have today. 

 

 

 

 

 

  



vi 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS .............................................................................................. iv 

LIST OF TABLES ........................................................................................................... x 

LIST OF FIGURES ........................................................................................................ xi 

LIST OF ABBREVIATIONS ........................................................................................... xvi 

SUMMARY ............................................................................................................. xviii 

Chapter 1. Introduction .............................................................................................. 1 

1.1 Background ..................................................................................................................... 1 

1.2 Problem definition .......................................................................................................... 3 

1.3 Research Objectives ........................................................................................................ 5 

1.4 Research Contributions ................................................................................................... 5 

1.5 Dissertation Outline ........................................................................................................ 6 

Chapter 2. Literature Review ...................................................................................... 8 

2.1 Chapter Organization ..................................................................................................... 8 

2.2 Relationship between Speed Characteristics and Safety ................................................ 8 

2.2.1 Pre-crash Speed vs. Prevailing Speed....................................................................................... 9 

2.2.2 Speed of Crash-Involved Drivers vs. Speed of Non-Crash-Involved Drivers ............................ 12 

2.2.3 Aggregated Speed Characteristics of Different Roadways .................................................... 13 

2.3 Surrogate Safety Definitions ......................................................................................... 16 

2.3.1 Speed ..................................................................................................................................... 16 

2.3.2 Speed Variance ...................................................................................................................... 17 

2.3.3 Other Forms of Speed Dispersion .......................................................................................... 17 

2.3.4 Speed Reduction .................................................................................................................... 18 

2.3.5 Acceleration Noise ................................................................................................................. 18 

2.4 Existing Crash Prediction Models.................................................................................. 22 

2.5 Statistical Modeling Approach ..................................................................................... 24 

2.5.1 Safety Measurement for Model Development ...................................................................... 24 

2.5.2 Model Forms .......................................................................................................................... 25 

2.5.3 Modeling Approach ............................................................................................................... 26 

2.5.4 Underlying Distribution Assumption ...................................................................................... 27 

2.5.5 Tests of Goodness of Fit ......................................................................................................... 29 



vii 

 

2.6 Summary ....................................................................................................................... 30 

Chapter 3. Data ........................................................................................................ 32 

3.1 Data Collection ............................................................................................................. 32 

3.1.1 Speed Data ............................................................................................................................ 32 

3.1.2 Crash Data ............................................................................................................................. 34 

3.1.3 Traffic Data ............................................................................................................................ 36 

3.1.4 Road Environment Characteristics ......................................................................................... 36 

3.2 Corridor Selection ......................................................................................................... 37 

3.2.1 Methodology ......................................................................................................................... 37 

3.2.2 Corridor Selection Result........................................................................................................ 41 

3.3 Summary ....................................................................................................................... 44 

Chapter 4. Data Processing ....................................................................................... 45 

4.1 Speed Data Processing ................................................................................................. 45 

4.1.1 Trip Identification .................................................................................................................. 47 

4.1.2 Smoothing data using Kalman Filter ..................................................................................... 49 

4.1.3 Trip Continuity ....................................................................................................................... 49 

4.1.4 Direction of Travel ................................................................................................................. 53 

4.1.5 Local Time and Nighttime ...................................................................................................... 54 

4.1.6 Inclement Weather Conditions .............................................................................................. 56 

4.1.7 Identify Potentially Non-Free-Flow Trips ............................................................................... 58 

4.1.8 Removing data points in the acceleration and deceleration zones ....................................... 72 

4.1.9 Remove highly deviated trips ................................................................................................ 80 

4.1.10 Check Quality of GPS signal ................................................................................................... 82 

4.2 Crash Data Processing .................................................................................................. 85 

4.2.1 Crash Location ....................................................................................................................... 88 

4.2.2 Intersection-Related Crashes ................................................................................................. 89 

4.2.3 Weather and Light Condition................................................................................................. 90 

4.2.4 Crash Type ............................................................................................................................. 90 

4.2.5 Results ................................................................................................................................... 91 

4.3 Summary ....................................................................................................................... 92 

Chapter 5. Traffic Attributes ..................................................................................... 93 

5.1 Introduction .................................................................................................................. 93 

5.2 Speed-Related Measures .............................................................................................. 93 

5.2.1 Speed Variation (SD85) .......................................................................................................... 93 



viii 

 

5.2.2 Mean of 85
th

 Percentile Speed (M85) .................................................................................... 98 

5.2.3 Coefficient of variation (CV85) ............................................................................................. 100 

5.2.4 Interquartile Range of 85
th

 Percentile speed (IQ85) ............................................................ 102 

5.2.5 Variation of the 85th speeds Percentile from the speed limit (SVLIM) ................................ 104 

5.2.6 Mean of Speed Band (M_BND) ............................................................................................ 106 

5.2.7 Variation of Speed Band (SD_BND) ..................................................................................... 109 

5.2.8 Acceleration noise (AN) ....................................................................................................... 110 

5.3 Stop-Related Measures ............................................................................................... 120 

5.3.1 Stop Frequency per Trip per Mile (STOPS) ........................................................................... 120 

5.3.2 Coefficient of Variation of stops within 100-ft block (CV_S100) .......................................... 121 

5.3.3 The 90
th

 Percentile Count of Stops within 100-ft Intervals (P90_S100) ............................... 123 

5.3.4 Moran’s Index of Number of Stops within 100-ft Block (MI_S100) ..................................... 123 

5.4 Other Measures .......................................................................................................... 125 

5.4.1 Percent Through-Traffic Trips (P_THRU) .............................................................................. 125 

5.4.2 Percent Free-Flow Trips (P_FF) ............................................................................................ 126 

5.5 Summary ..................................................................................................................... 126 

Chapter 6. Sensitivity of Speed Measures ................................................................ 128 

6.1 Introduction ................................................................................................................ 128 

6.2 Sensitivity to Sequential Filters ................................................................................... 128 

6.2.1 Methodology ....................................................................................................................... 128 

6.2.2 Results and Discussions ....................................................................................................... 131 

6.3 Sensitivity to Individual Factors .................................................................................. 141 

6.3.1 Methodology ....................................................................................................................... 141 

6.3.2 Results and Discussion ......................................................................................................... 144 

6.3.3 Summary .............................................................................................................................. 155 

Chapter 7. Model Development .............................................................................. 159 

7.1 Road Classification for Safety ..................................................................................... 160 

7.1.1 Definitions ............................................................................................................................ 161 

7.1.2 Data Exploration .................................................................................................................. 162 

7.1.3 Technical Approach ............................................................................................................. 166 

7.1.4 Results ................................................................................................................................. 167 

7.1.5 Discussions ........................................................................................................................... 178 

7.2 Distribution of Crash Frequency ................................................................................. 181 

7.3 Crash Frequency and AADT ........................................................................................ 182 



ix 

 

7.4 Analysis of Influential Factors ..................................................................................... 184 

7.4.1 Results ................................................................................................................................. 185 

7.4.2 Discussions ........................................................................................................................... 191 

7.5 Model Development ................................................................................................... 194 

7.6 Summary ..................................................................................................................... 209 

Chapter 8. Conclusions............................................................................................ 212 

8.1 Summary of Findings .................................................................................................. 212 

8.2 Contributions .............................................................................................................. 215 

8.3 Limitations and Future Work ...................................................................................... 216 

Appendix A: Summary of Data Processing Results ................................................... 219 

Appendix B: Sensitivity Analysis Results .................................................................. 237 

REFERENCES ........................................................................................................... 283 

 

 

 



x 

 

LIST OF TABLES 

Table 1: Summary of speed variation definitions from previous studies ....................................... 20 

Table 2: Instrumented Vehicle Record Attribute List ..................................................................... 33 

Table 3: Demographic distribution of participants ........................................................................ 41 

Table 4  Estimated Attributes per Vehicle Record .......................................................................... 46 

Table 5: Layout of the Raw Vehicle Activity Data of Driver Number 1 on Corridor 00 .................. 47 

Table 6: Potential Free-Flow (FF1) Speed patterns ........................................................................ 68 

Table 7: Potential Free-Flow (FF2) Speed patterns ........................................................................ 71 

Table 8: Relevant Crash Attributes from GDOT Crash Database ................................................... 86 

Table 9: Crash Counts and Percentage by First Harmful Event Type ............................................. 91 

Table 10: Summary of Traffic Attributes ...................................................................................... 127 

Table 11: Data Filter Code Description ........................................................................................ 129 

Table 12: Sequence of Filters Applied to the Speed Data ............................................................ 130 

Table 13: Data Structure of GPS Speed Data with Tagged Filtering Information ........................ 130 

Table 14: Planning Matrix to Determine Individual Factor Effects, 11 Runs ............................... 143 

Table 15: Filter Code Description ................................................................................................. 143 

Table 16: Off-Peak Periods ........................................................................................................... 144 

Table 17: Road Characteristics by Functional Classification ........................................................ 161 

Table 18: Typical Characteristics for Urban Road Classifications, Excerpt from (45) .................. 161 

Table 19: Sample Size, AADT, and Corridor Length by New Road Classification ......................... 177 

Table 20: Crash Distribution by Manner of Collision .................................................................... 178 

 



xi 

 

LIST OF FIGURES 

Figure 1: Relationships among speed characteristics, road safety, and influential factors ............ 3 

Figure 2: Crash involvement rate by variation from the average speed on study section, day and 

night (15), Reproduced by (21) .............................................................................................. 10 

Figure 3: Relationship between Traffic Exposure and safety (34) .................................................. 25 

Figure 4: GPS Speed Data of Study Segment 35 Northbound (a) Overlaid on the GIS Map and (b) 

Speed Profile Plot .................................................................................................................. 34 

Figure 5: Projection of GDOT Crash Data onto the Road Network ................................................ 35 

Figure 6: GDOT Crash Data Counts vs. Milelog .............................................................................. 36 

Figure 7: Color-coded RC links ........................................................................................................ 39 

Figure 8: Sub-Area System Map ..................................................................................................... 40 

Figure 9: Sub-area System Map with Number of Selected Corridors in each region ..................... 42 

Figure 10: Locations of the 92 Selected Corridors .......................................................................... 43 

Figure 11: Locations of the Commute Atlanta Project Participating Households (22) .................. 43 

Figure 12:  Example of a Complete Trip on Hammond Drive ......................................................... 51 

Figure 13:  Example of an Incomplete Trip on Hammond Drive .................................................... 52 

Figure 14:  One Entire Trip Separated into Three Sub-Trips ........................................................... 53 

Figure 15:  Locations of the Three Weather Stations (Identified by Blue Indication) .................... 57 

Figure 16:  Example Speed Plot using the Speed Profile Viewer .................................................... 59 

Figure 17:  Trip Speeds (a) Before and (b) After Applying Downstream Queue Filter ................... 61 

Figure 18: Four Speed Patterns Defining Potential Free-Flow Speed Trips (Figure Credit: Karen 

Dixon, Oregon State University) ............................................................................................ 62 

Figure 19:  Four Speed Patterns Defining Potential Non-Free-Flow Speed Trips (Figure Credit: 

Karen Dixon, Oregon State University) .................................................................................. 66 

Figure 20:  Speeds (a) Before and (b) After Applying 10-mph Filter .............................................. 66 

Figure 21:  Speeds (a) Before and (b) After Varied Free-Flow Speed Filter .................................... 71 

Figure 22: Forward Motion to Identify the First Speed Point Dropping below 10 mph ................. 74 

Figure 23: Reverse Motion to Find the Initial Deceleration Location < 1 mph/sec ........................ 74 

Figure 24:  Example Plots of Deceleration Points for a Corridor’s Trips ......................................... 75 

Figure 25:  Reverse Motion to Find First Point below Lower Bound Speed Threshold (Corridor ID 

35 NB, lower bound line = 25 mph) ....................................................................................... 77 

Figure 26:  Forward Motion to Find First Location with Acceleration Rate < 1 mph ..................... 78 



xii 

 

Figure 27:  Speeds (a) Before and (b) After Acceleration/Deceleration Filter ................................ 80 

Figure 28:  Speeds and Quantile-Quantile Plot of Corridor No. 21 Westbound ............................. 81 

Figure 29:  Speeds (a) Before and (b) After Applying Low Speed Filter .......................................... 82 

Figure 30: Speed Profiles on the South Atlanta Road Southbound with the Red Dashed Line 

Indicating the Acceleration and Deceleration Zones ............................................................. 95 

Figure 31: Profile of the 85
th

 Percentile Speed on the Corridor ID 35 Southbound using 100-ft and 

1000-ft Sampling Distances ................................................................................................... 96 

Figure 32: Sensitivity of Speed Variation to the Spacing Distance ................................................. 97 

Figure 33: Variation of the 85
th

 Percentile Speed from Mean on South Atlanta Road Southbound

 ............................................................................................................................................... 99 

Figure 34: Sensitivity of the Average 85
th

 Percentile speed to the Spacing Distance .................. 100 

Figure 35: Sensitivity of the Coefficient of Variation to the Spacing Distance ............................. 101 

Figure 36: The 85
th

 Percentile Speed Profile with the Interquartile Range Marked by Dashed Line

 ............................................................................................................................................. 103 

Figure 37: Sensitivity of the Interquartile Range of 85
th

 Percentile Speed to the Spacing Distance

 ............................................................................................................................................. 103 

Figure 38: Variation of the 85
th

 Percentile Speed from Speed Limit on South Atlanta Road 

Southbound ......................................................................................................................... 105 

Figure 39: Sensitivity of the Coefficient of Variation (SVLIM) to the Spacing Distance ............... 106 

Figure 40: The 95
th

 and 5
th

 Percentile Speed Profile of South Atlanta Road Southbound............ 107 

Figure 41: Sensitivity of the Speed Band (M_BND) to the Sampling Distance Interval................ 108 

Figure 42: Sensitivity of the Variation of Speed Band (SD_BND) to the Spacing Distance .......... 110 

Figure 43: Sensitivity of Acceleration Noise under Free-Flow Condition (AN_FF) to the Sampling 

Interval ................................................................................................................................ 114 

Figure 44: Sensitivity of Acceleration Noise for All Trips under Daylight and Dry Conditions 

(AN_AF) to the Sampling Interval ........................................................................................ 114 

Figure 45: Speed Profile of a Non-Free-Flow Trip Traversing the Corridor South Atlanta Road 

Southbound ......................................................................................................................... 115 

Figure 46: Speed (Left Axis) and Acceleration Rate (Right Axis) vs. Time of a Non-Free-Flow Trip

 ............................................................................................................................................. 116 

Figure 47: Comparison of Acceleration Noises (mph/sec) With and Without Stationary Data 

Points under (a) All Traffic Condition and (b) Free-Flow Condition ..................................... 118 

Figure 48: Relationships between Time-Averaged and Space-Averaged Acceleration Noise 

(mph/sec) under (a) All Traffic Condition and (b) Free-Flow Condition .............................. 119 

Figure 49: Speed Profile of a Non-Free-Flow Trip Traversing the Corridor 30SB ......................... 121 

Figure 50: Speed Profiles and Histogram of Stop Frequency in each 100-ft block along the 

corridor (a) Roberts Drive Southbound and (b) Westside Parkway Westbound ................. 122 



xiii 

 

Figure 51: Spatial Distribution Patterns (50) ............................................................................... 125 

Figure 52: Sensitivity of Sequential Data Filters to the Traffic Attributes on Corridor 03 Eastbound 

(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, D=Deviated 

Trips, S=GPS Signal) ............................................................................................................. 134 

Figure 53: Sensitivity of Sequential Data Filters to the Traffic Attributes on Corridor 26 

Westbound (L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, 

D=Deviated Trips, S=GPS Signal) ......................................................................................... 135 

Figure 54: Sensitivity of Sequential Data Filters to the Traffic Attributes on South Atlanta Road 

Southbound (L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, 

D=Deviated Trips, S=GPS Signal) ......................................................................................... 136 

Figure 55: Sensitivity of Sequential Data Filters to the Traffic Attributes on Corridor 40 Eastbound 

(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, D=Deviated 

Trips, S=GPS Signal) ............................................................................................................. 137 

Figure 56: Sensitivity of Sequential Data Filters to the Traffic Attributes on Corridor 71 

Westbound (L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, 

D=Deviated Trips, S=GPS Signal) ......................................................................................... 138 

Figure 57: Sensitivity of Sequential Data Filters to the Traffic Attributes on Corridor 92 

Southbound (L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, 

D=Deviated Trips, S=GPS Signal) ......................................................................................... 139 

Figure 58: The 85
th

 Percentile Speed Profile of South Atlanta Road Southbound Before (Solid Line) 

and After (Dashed Line) Applying All Filters ........................................................................ 140 

Figure 59: The Speed Band (V95-V5) of South Atlanta Road Southbound of Before (Bounded by 

Solid Lines) and After (Bounded by Dashed Lines) Applying All Filters ................................ 140 

Figure 60: Sensitivity of Data Filters to the Traffic Attributes on Corridor 03 Eastbound (L=Light, 

W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) ...... 149 

Figure 61: Sensitivity of Data Filters to the Traffic Attributes on Corridor 26 Westbound (L=Light, 

W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) ...... 150 

Figure 62: Sensitivity of Data Filters to the Traffic Attributes on South Atlanta Road Southbound 

(L=Light, W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS 

Signal) .................................................................................................................................. 151 

Figure 63: Sensitivity of Data Filters to the Traffic Attributes on Corridor 40 Eastbound (L=Light, 

W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) ...... 152 

Figure 64: Sensitivity of Data Filters to the Traffic Attributes on Corridor 71 Westbound (L=Light, 

W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) ...... 153 

Figure 65: Sensitivity of Data Filters to the Traffic Attributes on Corridor 92 Southbound (L=Light, 

W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) ...... 154 

Figure 66: Distribution of Number of Crashes per Mile for All Corridors (a) Histogram, (b) Kernel 

Density Estimate, and (c) Index Plot of the Sorted Values. ................................................. 163 

Figure 67: Boxplots of Number of Crashes (Left) and Number of Crashes per Mile across Different 

Road Classifications (Right) ................................................................................................. 164 



xiv 

 

Figure 68: Boxplots of Traffic Volume (Left) and Corridor Length (Right) ................................... 165 

Figure 69: Regression Tree Results of All Corridors ...................................................................... 170 

Figure 70: Regression Tree with Functional Classification (The Left Branch “bc” is the Collector 

and Local Street Group and the Right Branch is the Minor Arterial Group)........................ 171 

Figure 71: Plots of the R-Squared (Left) and the Relative Error from Cross-Validation (Right) for 

the Different Splits of All Corridors ...................................................................................... 172 

Figure 72: Regression Tree Results of Collector Corridors ........................................................... 174 

Figure 73: Regression Tree for Collector Corridors using All Traffic Characteristic Variables ...... 175 

Figure 74: Plots of the R-Squared (Left) and the Relative Error from Cross-Validation (Right) for 

the Different Splits of Collector Corridors ............................................................................ 175 

Figure 75: Scatter plot of Crashes/Mile vs. AADT on Collector Corridors with Regression Fit (R-

Squared = 0.157), and the dotted line separating data at AADT = 11,500 vehicles/day .... 176 

Figure 76: Box Plots of Roadway Parameters for Higher and Lower Road Classification Corridors

 ............................................................................................................................................. 180 

Figure 77: Distribution of Number of Crashes per Mile for Higher Classification Corridors (a) 

Histogram, (b) Kernel Density Estimate, and (c) Index Plot of the Sorted Values. .............. 181 

Figure 78: Distribution of Number of Crashes per Mile for Lower Classification Corridors (a) 

Histogram, (b) Kernel Density Estimate, and (c) Index Plot of the Sorted Values ............... 181 

Figure 79: Scatter Plot of Crashes per Mile vs. AADT with Regression Fit (R
2
 = 0.292) of All 

Classifications ...................................................................................................................... 182 

Figure 80: Scatter Plot of Number of Crashes per Mile vs. AADT with Regression Fit of (a) Higher 

Road Classification and (b) Lower Road Classification ........................................................ 183 

Figure 81: Final Model Development Structure ........................................................................... 184 

Figure 82: Regression Tree Results for the Model HC .................................................................. 186 

Figure 83: Regression Tree Diagram and its Corresponding Box Plot for Model HC ................... 187 

Figure 84: Plots of the R-Squared (Left) and the Relative Error from Cross-Validation (Right) for 

the Different Splits for Model HC ........................................................................................ 187 

Figure 85: Regression Tree Results for the Model LC ................................................................... 189 

Figure 86: Regression Tree Diagram and its Corresponding Box Plot for Model LC .................... 190 

Figure 87: Plots of the R-Squared (Left) and the Relative Error from Cross-Validation (Right) for 

the Different Splits for Model LC ......................................................................................... 190 

Figure 88: Scatter Plot between Stop Frequency and Number of Crashes per Mile. The Vertical 

line shows the data separation at STOPS=0.36 Stops/Trip/Mile......................................... 192 

Figure 89: Scatter Plot between Stop Frequency and Number of Crashes per Mile for the LC 

Group. The Vertical line shows the data separation at STOPS=0.59 Stops/Trip/Mile......... 193 

Figure 90: Regression Tree Diagram for Model HC with R-square of 0.19 .................................. 195 

Figure 91: Results of the Poisson HC Model with the Predictor Variable STOPS ......................... 197 



xv 

 

Figure 92: Scatter Plot between Acceleration Noise under All Traffic Condition and Number of 

Crashes per Mile for HC dataset. The dotted line represents the fitted model with R-square 

of 0.33. ................................................................................................................................ 200 

Figure 93: Results of the Negative Binomial HC Model with the AN_AF Variable with R-square of 

0.33 ...................................................................................................................................... 201 

Figure 94: Results of the Negative Binomial HC Model with the Predictor Variables STOPS and 

LEN with the R-square of 0.31 ............................................................................................. 203 

Figure 95: Regression Tree Diagram for Model LC with R-square of 0.64 ................................... 204 

Figure 96: Scatter Plot between Stop Frequency and Number of Crashes per Mile for LC Dataset. 

The dotted line represents the fitted model (R-square = 0.20). .......................................... 205 

Figure 97: Scatter Plot between Acceleration Noise under All Traffic Condition and Number of 

Crashes per Mile for LC Dataset. The dotted line represents the fitted model (R-square= 

0.40). ................................................................................................................................... 206 

Figure 98: Scatter Plot between Acceleration Noise under All Traffic Condition and Number of 

Crashes per Mile for LC[STOP<0.59] Dataset. The dotted line represents the fitted model (R-

square= 0.09). ...................................................................................................................... 208 

Figure 99: Results of the Negative Binomial Model with the AN_AF Variable for the LC with 

STOPS Less Than 0.59. The R-Square is 0.09 ....................................................................... 209 

Figure 100: Final Model Structure R-square = 0.48 (LC=Lower Functional Classification, 

HC=Higher Functional Classification, STOPS= Stops Frequency, AN_AF= Acceleration Noise 

under All Traffic Condition) ................................................................................................. 211 

 



xvi 

 

LIST OF ABBREVIATIONS 

AADT Average Annual Daily Traffic 

ANOVA Analysis of Variance 

CV Coefficient of Variation 

FHWA Federal Highway Administration 

GDOT Georgia Department of Transportation 

GIS Geographic Information System 

GLM Generalized Linear Model 

GPS Global Positioning System 

GT Georgia Institute of Technology 

HPMS Highway Performance Monitoring System 

HSIP Highway Safety Improvement Program 

ML Maximum Likelihood 

NCHRP National Cooperative Highway Research Program 

pdf Probability Density Function 

PDOP Positional Dilution of Precision 

RC Roadway Characteristics 

RCLINK Roadway Characteristics Link 

RMS Root Mean Square 

RSS Residual Sum of Squares 

SAFETEA-LU Safety, Accountable, Flexible, Efficient Transportation 
Equity Act: A Legacy for Users 

SAT Number of Satellites 

SD Standard Deviation 



xvii 

 

SHSP State Strategic Highway Safety Plan 

STARS State Traffic and Report Statistics 

TWLTL Two Way Left Turn Lane 

QQ plot Quantile-Quantile plot 

VII Vehicle Infrastructure Integration 

 



xviii 

 

SUMMARY 

Road network screening for potentially high incident locations is the first step in a road 

safety improvement program. During the screening process, road network crash data are 

required for the identification of high crash locations, a.k.a., black spots.  In situations 

where historical crash data are limited or not available, surrogate safety measures, such 

as traffic and roadway characteristics are often considered.  A surrogate safety measure is 

an indirect measure of safety, which attempts to assess the safety of a road facility 

through means other than crash data.  Among speed characteristics measurements speed 

variation is often used as a surrogate measure of safety.  There are a number of studies 

that attempt to establish a relationship between speed variation and crash risk but the 

existence form of such a relationship is still hotly debated in the literature. The increasing 

use of Global Positioning System (GPS) devices for collecting traffic operations data, 

such as vehicle speed and travel time, was led to interest in using GPS data derived 

measures as potential indices for roadway safety. As the deployment of GPS-

instrumented vehicles becomes more prevalent, we may be able to use this new data 

streams to better evaluate roadway safety. Our hypothesis is that vehicle speed 

characteristics may be used to reveal roadways with safety issues such as poorly-designed 

road geometries, limited sight distance, and high conflict movements from/to side streets. 

The primary objective of this research is to explore the use of speed variation over a 

roadway segment as an indirect means to estimate crash frequency of the facility. This 

estimated crash frequency can be used as a substitute when historical crash data are 

unavailable or a proactive means to identify sites that need further engineering studies. 
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To accomplish this objective, sample operating speed and incident data were collected for 

corridors in the Metro Atlanta area.  To measure operating speeds, second-by-second 

speed data were obtained from more than 460 GPS-equipped vehicles participating in the 

Commute Atlanta Study over the 2004 calendar year.  Incident data was provided by the 

Georgia Department of Transportation Office of Traffic Safety and Design. Based on the 

speed and incident data, several definitions of speed variation are considered as potential 

surrogate safety measures.  The quantified relationships between surrogate measures and 

crash frequency are developed using Binary Recursive Partitioning methods and a 

Generalized Linear Modeling (GLM) approach. 

This research effort is expected to result in several contributions. First, this study will 

develop a methodology to determine speed profile under various conditions using vehicle 

activity data. Second, a speed variation definition suitable for GPS data that can be used 

as a surrogate safety measure will be recommended. Lastly, the process will provide 

safety prediction models for identifying high crash locations in the network screening 

process for urban streets.  
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Chapter 1.  INTRODUCTION  

1.1 BACKGROUND 

Despite the gradual reduction in fatality and injury rates over the past several years, more 

than 43,000 people were killed and 2.7 million were injured on the highways in 2005 (1).  

With these high numbers of fatalities and injuries, there is an urgent need for the public 

agencies to more effectively allocate their limited budget for safety improvement 

projects. This need was highlighted when the “Safe, Accountable, Flexible, Efficient 

Transportation Equity Act: A Legacy for Users (SAFETEA-LU)” legislation passed in 

2005 and $5.1 billion in funding was allocated to the Highway Safety Improvement 

Program (HSIP) to achieve significant reductions in fatalities and serious injuries due to 

motor vehicle crashes (2).  As part of this program, each state is required to submit State 

Strategic Highway Safety Plans (SHSP) to identify highway safety problems, develop an 

evaluation process to assess safety improvements, and use these criteria to prioritize 

safety improvement projects.  

For any road safety improvement program, the process usually involves three steps: 

screening the road network for high crash locations, conducting detailed engineering 

studies, and prioritizing/implementing safety improvement projects (3). The first step, 

road network screening, requires historical crash data. However, the data are often 

limited or not available or engineers are required to evaluate safety on a particular 

corridor in a short timeframe.  
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When sufficient crash data are not readily available, another approach to identifying 

safety problems is to use indirect safety measures, i.e., a surrogate safety measures. A 

surrogate safety measure is an indirect measure of safety, which attempts to assess the 

safety of a facility through means other than crash data (4). Road accidents are influenced 

by many factors such as excessive speed, road geometric design, traffic volume, weather, 

reasons for travelling, driver’s physical and mental conditions, and safety campaigns (5). 

Speed characteristics are influenced by three major components, i.e., drivers/vehicles, 

roadway, and roadside environment (6). Figure 1 summarizes the relationship between 

speed characteristics, safety, and the main influential factors. Since the driver, roadway, 

and vehicle components influence both speed characteristics and road safety, there might 

be a possibility of using some speed characteristics measures as a surrogate safety 

measures. A number of studies (7-16) suggest that there is a relationship between speed 

characteristics and road safety. 

Most of the previous studies in the literature drew conclusions based on speed data 

collected at one or a few spots along the studied corridors. Even though speed data along 

a corridor may provide a better understanding of design speed vs. operating speed 

consistency, few of these studies (17, 18) investigated the relationship between speed 

characteristics along a corridor and road safety due to limitations in their data collection 

methods. 
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Figure 1: Relationships among speed characteristics, road safety, and influential factors 

With the emergence of the Vehicle Infrastructure Integration (VII) initiative (19, 20), 

significant amounts of traffic data, such as vehicular speed, travel time, and other data, 

will likely be widely available in the future. This has led to interest in using several 

measures derived from such extensive traffic data as potential roadway safety indices. 

The hypothesis is that speed characteristics derived from one-dimension speed data 

would reveal roadways with design issues such as sharp curves, limited sight distance, 

mountainous terrain, driveway deficiencies, etc., that could result in higher crash risks.  

1.2 PROBLEM DEFINITION 

When the historical crash data are not available, the expected crash frequency may 

potentially be estimated using surrogate measures based on road geometries and speed 

Speed Characteristics Safety 

Road Geometries 

Drivers/
Vehicles 

Street 
Environment 
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characteristics. For the road network screening purpose, collecting road geometric and 

roadside environmental information of all the road segments is often not feasible.  

Most of the previous studies that measure speed have employed automated traffic 

counters or laser/radar speed measurements at specific points along the roadway, 

assuming that the monitored spot speeds or speed profiles collected along a tangent or a 

horizontal curve are representative of the speeds of the entire corridor. However, this 

assumption may not hold when the road has geometric elements such as horizontal or 

vertical curves, limited sight distance, high driveway density  as these factors affect 

vehicle speed (6). 

This research uses GPS-equipped vehicle data to quantify the relationship between 

observed roadway speed characteristics, as revealed by the instrumented vehicle data, and 

observed crash frequency on these roadways, as revealed in the regional crash database. 

With the use of GPS technology, vehicles are tracked at second-by-second resolution 

over an entire trip, any time of the day, under any weather condition. Therefore, this 

study does not need to assume that a vehicle speed measured at one location is a 

representative of speeds over the entire road section.  

The hypothesis of this research is that the speed variance can be used as a surrogate 

measure of safety to evaluate urban streets. This research aims to provide a simple 

screening tool to assist transportation safety engineers and practitioners in identifying 

roadway segments with safety issues during the evaluation process of safety 
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improvement programs. The developed model would require only the speed profile data 

to identify potential corridors with a crash risk significantly above expectation. 

1.3 RESEARCH OBJECTIVES 

The objectives of this research effort are as follows:  

• To determine the speed profile, including operating, average, and various 

percentiles, of a roadway using GPS-instrumented vehicle data. 

• To develop profile-based traffic attributes using the instrumented vehicle 

data for potential use as surrogate safety measures. 

• To investigate the relationships of road safety to the proposed surrogate 

safety measures. 

1.4 RESEARCH CONTRIBUTIONS 

This research effort is expected to provide the following contributions: 

• Demonstrate methodology to determine free-flow speed, average speed, 

and speed percentiles using vehicle activity data.  

• Review speed variation definitions found in the literature and propose new 

measures that can be used as surrogate safety measures.  

• Develop a safety prediction model that requires only speed profile data for 

identifying potential high crash locations in the network screening process 

for urban streets. 
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1.5 DISSERTATION OUTLINE 

This study proposes to use several traffic attributes derived from instrumented vehicles to 

predict the crash frequency of the urban streets.  Chapter 2 discusses the previous studies 

that relate speed characteristics to road safety. Most of the previous research efforts were 

seen to measure the variation of speed at a specific location. However, these point-

specific measures do not always show a strong relationship with road safety. 

Chapter 3 describes the data used in this study. The corridor selection methodology is 

also included in this chapter. 

In practice, the operating speed is measured during the free-flow condition. However, 

there is no direct information from the vehicle activity data to determine whether a trip 

was made under free-flow conditions. Therefore, data filtering processes were developed 

in Chapter 4 to detect trips that are not likely to be under free-flow condition. Also 

included this chapter is the crash data processing to obtain crash data in the scope of 

interest. 

Chapter 5 proposes several new traffic attributes based on speed profile data obtained 

from the previous chapter. The proposed attributes include speed-related and stop-related 

measures. Most of these measures quantify variation of speed along the corridor, rather 

than variation of speed at one point.  

Since multiple filters were used to obtain likely free-flow speed data, it is vital to 

understand the effect of each filter on the proposed speed measures. Chapter 6 provides 

sensitivity analyses of data filters to the speed measure. 
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Chapter 7 presents the development of crash prediction models for different facility 

classes. The summary of findings, research contributions, and future recommended work 

is described in Chapter 8. 

The remainder of this dissertation includes Appendix A – the summary of data processing 

results in Chapter 4 and Appendix B – the sensitivity analysis results of spacing distance 

in Chapter 5.  
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Chapter 2.  LITERATURE REVIEW 

The objective of this research is to develop crash prediction models based on speed 

characteristics. Since this study utilizes GPS second-by-second speed data along 

corridors, several speed characteristics can be defined based on this one-dimensional 

speed data. The first step in the realization of this objective is to assess previous studies 

that used speed characteristics to quantify road safety. 

2.1 CHAPTER ORGANIZATION 

This chapter begins with an overview of previous research regarding the speed-safety 

relationship in Section 2.2. This is followed in Section 2.3 by speed variation definitions 

from previous research efforts. The chapter concludes with a presentation of statistical 

models that were used in the past to predict crash occurrences on roadways with the use 

of speed characteristics as the predictor variable in Section 2.4. 

2.2 RELATIONSHIP BETWEEN SPEED CHARACTERISTICS AND SAFETY 

Previous research regarding the relationship between speed characteristics and crashes 

can be divided into three primary groups according to the experimental designs: 

comparison of pre-crash speed and prevailing speed; comparison of crash-involved 

driver’s speed and prevailing speed; and lastly, comparison of aggregated speeds among 

different roadways (11).  
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2.2.1 Pre-crash Speed vs. Prevailing Speed 

The first type of research design involves measuring pre-crash and prevailing speeds and 

relating the difference between these speeds to safety. This type of research takes an 

event-based approach, i.e., comparing the speed from a crash event with the prevailing 

facility speed during non-crash period (11). Pre-crash speed is usually obtained from 

multiple sources such as police reports and crash construction techniques. 

One of the first attempts to examine the relationship between vehicle speeds and crash 

risk was undertaken by Solomon (15).  Solomon estimated pre-crash traveling speeds on 

selected rural highway segments, including 35 sites in 11 States. The author compared 

pre-crash traveling speeds with speed measurements during normal conditions, and found 

that many vehicles involved in rural highway crashes were traveling well above or well 

below the average speed under normal conditions. This variation is characterized by the 

U-shape form in Figure 2. Even though this early research demonstrated a promising 

opportunity for using speed variation as a surrogate safety measure, its methodology, 

namely, pre-speed measurement presents several challenges. The pre-crash speed data 

were collected from police reports or estimated from a similar event, both sources with 

potential accuracy issues. The author did not describe how he estimated pre-crash speeds 

when they were not available from the previous sources. The methodology also assumes 

a uniform speed throughout the segment length, despite changes in terrain and geometry. 
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Figure 2: Crash involvement rate by variation from the average speed on study section, day and 
night (15), Reproduced by (21) 

Kockelman and Murray (12) used a more aggregated approach to measure pre-crash 

speed. The authors collected speed data using loop detectors installed on six Southern 

California freeways. The traffic counter device provided a data stream at a 30-second 

aggregation level that includes average speed and traffic density. The authors investigated 

744 crashes that occurred during a 1-month period on the study freeway segments and 

compared their accompanied pre-crash speed variations with the speed variation during 

normal conditions. The study concluded there is no evidence that speed or speed variation 

has a relationship with crash occurrence.  However, the authors noted several data 

limitations to their study.  For instance, the crash times from the police reports were 
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rarely precise. In addition, speeds are based on using 30-second aggregated data; thus, 

speed variation had to be inferred from the variation in average speeds over a series of 

intervals and over a series of lanes. 

Kloeden et al. (11) determined the relationship between free-flow speed and crash 

involvement using a case study design, i.e., comparing the speed of a vehicle involved in 

a crash with speeds of other vehicles travelling at the same time and location but not 

involved in the crash. The methodology was generally similar to Solomon’s study except 

that pre-crash speeds were determined using computer-aided crash reconstruction 

techniques developed by the authors, rather than solely based on police reports. The 

authors concluded that crash-involved vehicles were generally traveling faster than those 

not involved in crashes. Contrary to Solomon’s findings, the study showed that slow-

speed vehicles were not associated with high crash risk.  

In summary, this type of research design can show the first moment relationship between 

speed difference and crash involvement. That is, traveling speed of the crash-involved 

vehicle was directly compared with the prevailing speed of the facility. However, pre-

crash travelling speed in the police reports usually was an estimate from the witnesses, 

drivers, or police (11), and therefore, as stated by Ogle (22), reduced the soundness of 

their findings and conclusions. Pre-crash speed can also be expensive to obtain with the 

current technology available. 
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2.2.2 Speed of Crash-Involved Drivers vs. Speed of Non-Crash-Involved Drivers 

This type of study compares the speed characteristics of drivers with and without crash 

involvement during the period of interest. This approach is considered a driver-based 

approach to study the relationship between different speed characteristics and crash 

involvement (11). The hypothesis of this type of research is that drivers with crash 

involvement histories operate their vehicles differently from the drivers without crash 

involvement history, e.g., individuals that drive faster or accelerate/decelerate more 

abruptly are more prone to accidents. This type of research is useful for classifying the 

safety of drivers by their driving behaviors. 

One of these driver-based studies was conducted by Fildes et al. (8). The authors 

examined the relationship between driver attributes and speed characteristics in Victoria, 

Australia. As part of this study, the authors measured vehicle speeds on two urban 

arterials and two rural undivided highways. After recording their speeds, drivers were 

stopped at the downstream location and were interviewed to determine if they were 

involved in any accidents during the past five years and also other related details about 

the incident(s). The study found that drivers with speeds above the 85th percentile had a 

higher crash risk than any other drivers. They also found that drivers with a measured 

speed less than 15th percentile were the least likely to be involved in a crash. 

West et al. (16) studied relationships between driving behaviors and crash involvement 

over a three year period. Forty-eight drivers were asked to drive on a predefine route, a 

mix between urban and motorway routes, and then report their driving behaviors. 
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Additionally, each driver was accompanied by an observer to validate the reliability of 

the driver’s self-report. The authors carried out a multiple logistic regression analysis 

with crash involvement as the dependent variable. They found that the observed speed on 

motorway has a positive relationship with self-reported crash involvement. In other 

words, drivers with high driving speeds were associated with at least one crash during the 

past three years. 

Jun (23) utilized GPS-measured activity data to compare the driving behavior of two 

driver groups, those with and without crash-involved experiences over a 14-month 

period. The author found that driving behaviors such as speeding pattern and hard 

acceleration/deceleration activity are among the most important factors for determining 

potential crash involvement rate of an individual. 

In summary, driver-based study designs investigate the difference between the driving 

behaviors of drivers with and without past crash involvement. One assumption of this 

approach is that driving behaviors do not change after the drivers have accidents. In 

reality, drivers might be more cautious with their driving after they experience accidents 

(11). 

2.2.3 Aggregated Speed Characteristics of Different Roadways 

The last category of studies investigates the relationship between aggregated speed 

characteristics and crash frequency/rate. This study design is considered a facility-based 

approach, i.e., comparing speed characteristics and safety associated with different road 

segments (11). A number of studies have been conducted using this research design 
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because facility speed data tend to be easier to obtain than the data required in the first 

two described research approaches. The hypothesis is that poorly designed roads that 

results in high crash risk have different speed characteristics from lower crash risk roads.  

Garber and Gadiraju (9) investigated whether a discrepancy between design speed and 

speed limit influences operating speed variability, which in turn influences crash 

occurrences. Traffic data and crash data were collected over 36 sites in Virginia including 

urban freeways, rural freeways, urban arterials, rural arterials, and rural major collectors. 

Individual vehicle speeds and traffic volume were collected for 24-hour periods using 

automated traffic data recorders. Design speed data was obtained from the highway log 

sheets. The authors performed an ANOVA test and found that average speed, speed 

variance, design speed, and highway type have a significant effect on crash rate. A 

regression model was developed to quantify the relationship between crash rate and speed 

variance.  It was concluded that the crash rates increased with increasing speed variance 

for all facility types. In addition, the difference between posted and design speeds has a 

significant effect on speed variance.  

Lave (13) proposed a concept of coordination between drivers on the road. In this study, 

the author used speed variance as a measure of the coordination. For example, high speed 

variation among drivers on a road segment of interest would refer to low driver 

coordination and vice versa. The author hypothesized that low driver coordination led to 

higher fatality rates. In the study, fatal crash data and driving speed data were collected 

for the period 1981-1982 from 50 states for six classifications of roadways (i.e., rural 

interstates, arterials, and collectors; and urban freeways, highways, and arterials). Speed 



 

15 

 

variance was calculated as the 85th percentile speed minus the average speed. Several 

regression analyses were performed with fatality rate as a dependent variable. The author 

found that mean speed was not statistically significant in his crash prediction models; 

however, variation from the mean was significant.  

Anderson et al. (17) studied the relationship of safety to several geometric design 

consistency measures for rural two-lane highways. One of these measures was the speed 

reduction on a horizontal curve relative to the preceding tangent or curve. The speed 

reduction values for 5,287 horizontal curves were estimated from speed prediction 

equations. The authors found a positive relationship between the crash frequency and 

speed reduction on a horizontal curve. In other words, the greater the speed reduction 

experienced by drivers on a horizontal curve, the greater the crash involvement of that 

curve.  

In summary, the facility-based study examines the relationships of the aggregated speed 

characteristics and safety at multiple road facilities. The use of aggregated speeds of the 

roadway can avoid the problem of estimating the pre-crash speeds of vehicles as seen in 

Section 2.2.1. Nevertheless, one criticism to the facility-based approach is that the speed-

safety relationship established from this approach is rather weak because the aggregated 

speed measured over the study period might not reflect the actual speed distribution at the 

time of the crash occurrences  (11, 24). 
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2.3 SURROGATE SAFETY DEFINITIONS 

Numerous studies have considered speed-related measures as a potential parameter in the 

investigation of roadway safety. These measures are often defined differently based on 

the purpose of the study and the available data collection method. This section 

summarizes the speed-related measures found in previous research. 

2.3.1 Speed 

It is clear that higher pre-crashed speed generates a higher impact and therefore increases 

in likely crash severity. Additionally, at a higher speed, the driver has less time to 

respond to the incident and is less likely to successfully avoid the crash. 

Aljanahi (5) investigated the effect of the following speed measures on the expected 

number of crashes: 

• The 85th percentile speed 

• The 93th percentile speed 

• Root mean square of measured speeds, ��� � ���∑ 	
��
�� , where 	
 is the 

i th individual speed point and i = 1,…,n. 

Mean speed is also used by several studies to establish the relationship between speed 

and road safety (5, 9, 13).  
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2.3.2 Speed Variance 

Standard deviation and variance of speeds measured at a specific location were used in 

several studies (5, 9).  The formula follows the conventional variance calculation: 


�� � ∑ �	
 � 	����
��� � 1 , 
where 
�� is the speed variance and 	� is the mean of the n speed measurements 	�…	� 

at a specific location.  

2.3.3 Other Forms of Speed Dispersion 

Lave (13) used speed variance as a measure of the dispersion of speeds among drivers. 

Since the actual variance or standard deviation of speeds was not available in the dataset, 

the author approximated the speed variance using the difference between the 85th 

percentile speed and the mean speed at a given location. The difference was assumed to 

be one standard deviation of observed speeds and was written as: 

�� � V�� � �� 

where �� is the speed variance, V�� is the 85th percentile speed, and ��  is the average 

speed at a given point. 

Aljanahi et al. (5) estimated the expected crash frequency using the following measures, 

Coefficient of Upper Speed (CUSS) and Skewness Index (SI), as the surrogates for 

variance of speeds:  
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���� � ��� � ������  

where ��� and ��� are the 85th and the 50th percentile speeds, respectively, and 

�� � 2! �"# � ����"# � �$  

 where �"#, ��� and �$ are the 93th, 50th , and 7th percentile speeds, respectively. 

2.3.4 Speed Reduction 

Speed reduction from tangent to horizontal curve sections has been proposed as a 

measure of design consistency (17, 25). It is defined as: 

∆�85 � �85( � �85) 
where �85( is the 85th percentile speed on a tangent section and �85) is the 85th 

percentile speed on the following curvature. The final model showed that the higher the 

speed reduction at a curvature, the greater the expected number of accidents at that 

location. 

2.3.5 Acceleration Noise 

Acceleration noise was first proposed by Herman et al (26) in 1959 as a means to 

measure traffic conditions and driving behavior. This measure is different from the 

previous speed measures in that acceleration noise is derived from speed data of an 

individual vehicle recorded along the corridor, rather than speed data of multiple vehicles 

at a single measurement point. 
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Acceleration noise (σ) is defined to be the root-mean-square of the acceleration, which 

can be formulated as follows: 


� � �* + �,�-� � ,.���/-*� , and 

,.� � 112 ,�-�/- � 11 �	�1� � 	�0��*
�  

where  v(t) and a(t) are the speed and acceleration of a car at time t and aav is the average 

acceleration of the car for a trip taking time T.  

The value of acceleration noise varies by drivers and traffic conditions. Herman et al. 

found that a driver driving 5-10 mph faster than average traffic speed resulted in higher 

acceleration noise.  

A few year later, Jones and Potts (27)  tried to use this parameter to quantify road, driver, 

and traffic condition in Adelaide, Australia. The authors examined the effect of different 

roads, drivers, and traffic conditions on acceleration noise. Eight runs were made by two 

drivers on three road sections (with two road sections containing significant horizontal 

curvature) during daylight traffic conditions.  

The results showed that the acceleration noise was significantly greater on roads with 

more horizontal curvatures. In addition, on the same section, a down grade tends to result 

in greater acceleration noise than an up grade. The authors explained that on a down 

grade it is more difficult to maintain a constant speed when negotiating a sharp curve 

compared with an up grade. This suggests that the interaction effect between two 



 

20 

 

geometric features, e.g., sharp curve on a downhill section, can be captured using the 

acceleration noise parameter. 

Even though the authors did not directly determine the relationship between the 

acceleration noise and number of accidents on different road sections, the authors 

concluded that a road with multiple curves, which is more likely to cause a crash, also 

tends to yield a greater acceleration noise. Table 1 summarizes the studies in the past with 

their research focus and definitions of speed variation. Few studies attempted to capture 

speed along corridor segments primarily due to equipment limitations. Knowledge gained 

from this section will be used to develop a new definition of speed variation based on 

GPS data. 

Table 1: Summary of speed variation definitions from previous studies 

Year Authors Research Topic Facility 
Type 

Location Speed Data 
Collection 

Speed 
variation 
Definition 

1962 Jones and 
Potts (27) 

Effects of roads, 
drivers, and 
traffic on 
acceleration noise 

Urban/ 
Suburban 
Roads 

Adelaid 
Hills, 
Australia 

Tachograph Root-mean-
square of 
acceleration 

1964 Solomon(15) Measuring pre-
crash speed 

Rural 
highways 

11 States in 
the U.S. 

Estimated 
from crash 
report, spot 
speed study 

Difference 
between pre-
crash and 
mean speeds 

1985 Lave(13) Aggregate speed 
and fatality rate 

Interstates, 
arterials, 
and 
collectors 

50 States in 
the U.S. 

NA Difference 
between mean 
speed and 85th 
percentile 
speed 

 

 

 



 

21 

 

Table 1: Summary of speed variation definitions from previous studies(Continued) 

Year Authors Research Topic Facility 
Type 

Location Speed Data 
Collection 

Speed 
variation 
Definition 

1989 Garber and 
Gadiraju (9) 

Aggregated speed 
and crash 
involvement 

Interstates 
and arterials 
in  rural and 
urban areas; 

Collectors 
in rural area 

Multiple 
locations in 
Virginia 

Traffic data 
recorder 

Variance of 
speed from the 
mean 

1999 Anderson 
(17) 

Design 
consistency 
measures and 
crash frequency 

Two-lane 
rural 
highways 

State of 
Washington 

Estimated 
from speed 
prediction 
models 

The 85th 
percentile 
speed 
difference 
between two 
successive 
segments 

1999 Aljananhi(5) Aggregated speed 
and crash 
involvement 

Highways UK and 
Bahrain 

Pneumatic 
sensors 

Std Deviation, 
CUSSa, SIb 

2002 Yuan and 
Garber (28) 

Aggregated speed 
and crash 
involvement 

Rural 
interstates 

10 States in 
the U.S. 

NA Speed variance 

2006 Jun (23) Driver’s Speed 
Characteristics 
and Crash History 

Freeways, 
arterials, 
and local 
roads 

Atlanta, GA GPS- 
observed 
travel data 

Difference 
between 
driving and 
posted speeds, 
acceleration 
noise, cruise 
duration, etc 

2006 Abdel-
Aty(29) 

Aggregated speed 
and crash 
involvement 

Urban 
freeways 

Orlando, FL Loop 
detector 

Coefficient of 
variation of 
speed 

2007 Kockelman 
and Murray 
(12) 

Aggregated speed 
and crash 
involvement 

Urban 
freeways 

Orange 
County, CA 

Loop 
detector 

Standard 
deviation of 
aggregated 
speeds 

Note: 

a Coefficient of Upper Speed, ���� � 4567468468  

b Skewness Index, �� � 2! 49:746849:74;  
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2.4 EXISTING CRASH PREDICTION MODELS 

This section describes statistical models and model assumptions that have been used by 

previous researchers. Until the last decade, most road safety research assumed that crash 

frequency and traffic volume have a linear relationship. 

A crash prediction model was developed to evaluate the effect of median treatments on 

urban arterials in Phoenix, AZ and City of Omaha, NE (30). The authors assumed 

negative binomial distribution of the residuals and used maximum-likelihood techniques 

to estimate model parameters. The crash frequency was also assumed to have non-linear 

relationships with traffic volume and segment length. The 189 selected segments were at 

least 0.75 mile in length and at least 350 ft away from signalized intersections. The three-

year crash data associated with the study segments included 7,125 midblock accidents. 

The researchers determined whether a crash was associated with the signalized 

intersections from the crash report by using the “intersection-related” field found in the 

reports. The researchers computed the crash rate for raised-curb, TWLTL, and undivided 

median treatment groups. Based on this preliminary analysis, the raised-curb median has 

the lowest crash rate, followed by the TWLTL, and undivided treatment. With regard to 

land uses, business and office type land uses were found to have a higher crash rate than 

residential or industrial land uses. The statistical analysis involved two stages: 1) use of 

analysis of variance (ANOVA) to determine factors that had a significant effect on crash 

frequency and 2) calibration of the crash prediction model using the Generalized Linear 

Model (GLM) approach. The ANOVA results suggested that land uses could be grouped 

as business/ office and residential/ industrial as land uses within the same group have 
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similar crash trends. In addition, driveway density and unsignalized side street were 

found to be significant factors for crash frequency on segments with a business/ office 

land use group, but not on segments with a residential/ industrial land use group. 

Alijanahi et al. (5) investigated the relationship between several measures of speed and 

crash rate on highways, 9 sites in the U.K. and 10 sites in Bahrain. Speed and traffic flow 

data were collected at a selected spot on each site using pneumatic sensors. The 

researchers used 5-year crash data in the U.K. and 4-year crash data in Bahrain. The 

multiplicative form was used to construct the crash model: 

< � =>?.@A�) 
where µ is the expected number of accidents per four years (in Bahrain) and five years (in 

the U.K.), L is the length of road segment in kilometers, F is the traffic flow (105 vehicles 

per year), H is the percent truck; and S is a measure of speed characteristics. The model 

response, µ, was assumed to have a Poisson distribution and the model parameters, a, b, 

and c were estimated by maximum likelihood. The variable L has an exponent of 1, 

therefore, the authors assumed that number of crashes is proportional to the length of 

road segment. The results showed positive relationships between speed characteristics 

(e.g., mean speed and speed variability) and crashes per mile. However, these 

relationships were not statistically significant and the authors suggested further studies. 

Design consistency and safety relationship were modeled in (18) using the GLM 

approach. The following model form was used: 
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B�C� � ,�>.D�.EF∑ GHIHJHKD  

where B�C� is the expected crash frequency; > is the section length; � is the AADT; !L is 

any of the M variables in addition to > and V; and , and N are model parameters. 

2.5 STATISTICAL MODELING APPROACH 

The proposed statistical analysis tasks for development of the crash prediction models, 

i.e., Safety Performance Functions (SPFs), will include selecting the safety measurement 

for the models, model assumption, and model form. The following sections discuss 

details of each proposed task. 

2.5.1 Safety Measurement for Model Development 

One of the objectives of this research is to develop a crash prediction model using speed 

characteristics as predictor variables, allowing transportation safety engineers and 

practitioners to identify black spots in the road network.  Two safety measurements are 

widely used for ranking sites for safety investigation, namely, crash count and crash rate. 

However, it is known that the expected crash frequency does not have a linear 

relationship with traffic flow and, as a result, the crash rate should not be used to compare 

the safety of two entities (31-33).  Figure 3 illustrates the relationship between AADT 

and crash frequency. The slope of this graph represents crash rate, which changes when 

AADT reaches a certain threshold of each facility type. In other words, different road 

functional classifications (e.g., minor arterials, collectors, and local streets) have different 

crash characteristics. This research therefore proposes the use of crash frequency as a 

dependent variable in the crash model.  
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Figure 3: Relationship between Traffic Exposure and safety (34) 

 

2.5.2 Model Forms 

Hauer (35) summarized that there are three forms of statistical models commonly used 

for road safety research: 

Additive model: C � > O �P�Q� R P�Q� RS� 
Multiplicative model: C � L O �P�Q�UDQ�UE …� 
Multiplicative model (exponential base): C � > O �FU8FUDVDFUEVE …� 
where Y is the expected crash frequency (crashes per segment length-unit time or crashes 

per unit time) and L is the segment length. 

An Additive model is appropriate for point variables such as driveways and the presence 

of traffic signs while a multiplicative model is appropriate for segment variables such as 
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lane width or shoulder type, which influence crash risk along the segment. The 

relationship between the predictor variables and dependent variable is usually determined 

by exploring the data through graphs and other visualizations. A suggested generic model 

form by Hauer (35) is: 

C � W�> O �XY-Z[YZ\,-Z	F ]^_-Z^� R `//Z-Z	F ]^_-Z^�� 
where �XY-Z[YZ\,-Z	F ]^_-Z^� �  a��``b1� O a��Q�� O a��Q�� O …  and 

`//Z-Z	F ]^_-Z^� � c��``b1, Q�d� R c��``b1, Q�d� R c#�``b1, Q#d� R S 

In the equation above, C indicates the expected number of accidents occurring on a road 

segment during a time period. In addition, W is a scale parameter which takes into account 

traits that are not included in this model such as weather and driver demographics and L 

is the length of segment. The notations a��·�, a��·�, and a��·� represent functions of the 

variables ̀ `b1, Q�, and Q� which have multiplicative influence to the expected crash 

frequency while c��·�, c��·�, and c#�·� denote the functions of the variables Q�d , Q�d , and 

Q#d  which have additive influence to the expected crash frequency. 

 

2.5.3 Modeling Approach 

The quantified relationships between surrogate measures and crash frequency are 

developed using a Generalized Linear Modeling (GLM) approach. The three components 

of the GLMs are (36): 

An Error Distribution – the distribution of the dependent variable. 
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A Link Function – the function that shows how the linear function of the explanatory 

variables are related to the expected value of the response. The general form is as 

follows: 

c�<� �  P�!� R P�!�R. . . RP�!� 

where g(µ) is the link function of the expected value of the response. 

The Variance Function – the function presents the relationship between variance of the 

dependent variable and its mean. The general form of the variance function of the 

response y is as follows: 

�,_�g� � h��<� 
where φ is the dispersion parameter and V(µ) shows that the variance is a function of the 

mean. When the error is normally distributed, V(µ) is 1 and φ is σ2. And when the error 

has Poisson distribution, V(µ) is µ and φ is 1. 

2.5.4 Underlying Distribution Assumption 

It is generally accepted that crash count occurrences follow the Poisson process (17, 33, 

34, 37) for the following reasons: 

• Crash frequencies are non-negative integers. 

• A high number of crash events at a single location is rare. 

The Poisson probability mass function follows the form: 
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]�Q � g
� � <
ijF7kjg
!  

In the equation above, P(X = yi) is the probability that the observed number of accidents 

is y during period i when X is Poisson distributed. Also, µi = the expected number of 

accidents that occur during the period of interest i. 

One basic assumption when a random variable x follows Poisson distribution is that its 

variance is equal to its expected value, or 

X~ Poisson, Var(X) = µ. 

However, Kononov (34) indicated that this property does not hold for crash data in some 

cases. For instance, some crash data set are better represented by a long tail distribution, 

which usually indicates high variation. The author proposed to use a negative binomial 

distribution assumption when the crash data are overdispersed, i.e., the variance of the 

data are greater than the mean. The negative binomial probability mass function follows 

the form: 

]�Q � g
� � Γ�W7� R g
�g
!Γ�W7�� m W<
1 R <
nij m 11 R W<
no
pD

 

with the variance, �,_�!� � < R W<� 

In the equation above, α is the overdispersion parameter estimated by the maximum log-

likelihood of the negative binomial function. )!1()( −=Γ rr , r is a positive integer. 
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2.5.5 Tests of Goodness of Fit 

The goodness of fit of a Poisson or negative binomial models can be assessed using the 

following statistical measures (17, 38, 39): 

• Ordinary multiple correlation coefficient (R2):  

�� � 1 � ∑�g
 � gq
��∑�g
 � g���  

where g
 is the observation (crash frequency on corridor Z) with gq
 as the 

fitted value from the model and g� as the sample average. The R-square 

measures how much variation can be explained by the fitted model 

compared with the model with only an intercept term (g�). Therefore, an R-

square closer to one indicates the fitted model is able to explain most of 

the variation in the data. 

• Deviance test: the Poisson deviance, i.e., G-statistics, is of the form:  

b �  2rsg
 log�g
 <̂
⁄ � � �g
 � <̂
�y�

��  

The deviance follows the Q�distribution with n-p degrees of freedom 

where there are n observations and p parameters in the model. 

• Dispersion parameter (
z): A measure of degree of dispersion of the data 

is of the form: 
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z � ]F,_{^� Q�� � [  

and, 

]F,_{^� Q� � ∑ sij7|�k}j�yE4.~�k}j�
 . 

Values greater than 1 indicate under-dispersion while the values less than 

1 indicate over-dispersion. The ideal condition, where the true variance 

equals mean, represents the dispersion value of one. 

2.6 SUMMARY 

This chapter reviewed the previous research regarding speed and safety relationships. 

Previous research works can be generally classified into three groups: event-based, 

driver-based, and facility-based studies. This dissertation uses the facility-based 

approach, i.e., comparing speed characteristics and safety associated with different road 

segments.  

Several safety surrogate measures including speed, speed variation, speed reduction, and 

acceleration noise, were also discussed. Among these measures, only speed reduction and 

acceleration noise capture speed variability along a corridor. As a result, there is a need to 

develop profile-based traffic attributes using the instrumented vehicle data for potential 

use as safety surrogate measures. 

The last section reviewed the statistical modeling methods used in the road safety 

analysis. Crash frequency was proposed as the dependent variable in this study as the 
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crash frequency is not proportional to traffic volume. The GLM approach with the 

assumption of Poisson or negative binomial distribution of the error term is commonly 

applied in the crash prediction model development. 
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Chapter 3.  DATA 

This chapter describes the data collection methodology for speed, crash data, traffic data, 

and the road characteristics data. Additionally, since the speed data were obtained from 

the instrumented vehicles of a random selection of drivers in the Atlanta region, speed 

data might not available on all links. Therefore, a corridor selection methodology is also 

developed. 

3.1 DATA COLLECTION 

The following subsections describe data collection methodologies and data related issues. 

Further detail may be found in the FHWA project report (6). Data are classified into four 

primary groups including speed data, crash data, traffic data, and road characteristics 

data. The original speed data collection and corridor selection plan and procedure were 

developed as part of the FHWA project. The project was primarily conceived with 

determining the effect of roadway features on operating speed. The data collected for the 

FHWA project was then subsequently used for this effort. 

3.1.1 Speed Data 

Unlike previous studies that have measured speeds and speed distributions at spot 

locations the FHWA study and this research focuses on the variability of speeds along 

stretches of pre-selected corridors using GPS-equipped vehicle speed data.  The 

Commute Atlanta data employed in the studies includes second-by-second vehicle 

trajectory data collected from January 2004 to December 2004.  Each second of 

Commute Atlanta GPS data contain the trip ID, date, time, vehicle speed, position 



 

33 

 

(latitude-longitude), travel direction, road ID with mile post, and satellite data quality 

information (used in automated data processing and quality assurance routines).  Table 2 

summarizes the instrumented vehicle record attributes and their descriptions. 

Table 2: Instrumented Vehicle Record Attribute List 

Attribute Description 

TRIPID A combination of Driver ID, Date, Time information 

DATE Date (yyyymmdd) 

TIME Time (hhmmss) 

LAT Latitude 

LON Longitude 

SPEED Speed (mph) 

HEAD Azimuth, angle between north and heading directions (degree) 

SAT Number of satellites 

PDOP Position dilution of precision 

RCLINK Road classification link number (i.e. unique identifier assigned by the state department of 
transportation to all roadways.) 

BEG_MP Beginning mile point 

 

Using Geographic Information System (GIS) routines, the second-by-second vehicle 

position data are overlaid on a GIS map and linked to the roadway design and operating 

parameters (such as speed limit, lane width, curvature, etc.).  Figure 4 (a) illustrates a plot 

of GPS vehicle location, study segment 35, on a second by second basis. Each line in 

Figure 4 (b) represents the speed trace of an individual trip, from the starting point to the 

ending point of a corridor.   
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(a) 

 

(b) 

Figure 4: GPS Speed Data of Study Segment 35 Northbound (a) Overlaid on the GIS Map and (b) 
Speed Profile Plot 

3.1.2 Crash Data 

By analyzing crash history data provided by the Georgia Department of Transportation 

(GDOT) within a GIS analytical framework, crashes that occurred in the proximity of the 

selected corridors can be identified.  The four-year (2002-2005) average of crash counts 

for each roadway link is used to minimize potential year-to-year anomalies.   
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Figure 5: Projection of GDOT Crash Data onto the Road Network 

Figure 5 shows the crash data locations along one corridor for the 2002-2005 time period.  

Hence, crash histories can be linked with spatial speed data, to the extent that crash 

position data in the database are accurate. Figure 6 shows aggregated crash data by 

plotting crash counts against the milelog (located at a .01 mile increment, numbered 

along the corridor) of South Atlanta Street from Azalea Drive to Marietta Highway. 

Figure 6 illustrates that the number of crashes significantly increases at the signalized 

intersections at the corridor end points. Since only segmental crashes are of interest in 

this research effort, crashes that occurred in the intersection vicinity, i.e., within 250-ft 

radius of the intersection, will be removed from the analysis. 
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3.1.3 Traffic Data 

Traffic count data will be included in the safety prediction model to incorporate the effect 

of traffic volume on crash involvement.  Average Annual Daily Traffic (AADT) data 

were obtained from the GDOT’s State Traffic and Report Statistics (STARS).  GDOT 

conducts annual traffic counts throughout the state roadway system as part of the 

Highway Performance Monitoring System (HPMS) program.  For this study the average 

of AADT values from 2002 to 2004 were used. 

3.1.4 Road Environment Characteristics 

Pertinent road characteristics data such as roadway geometry, functional classification, 

speed limit, land uses, and driveway density were collected from multiple sources such as 

GDOT’s Road Characteristic (RC) file, site visit, aerial maps, etc. 

 

Figure 6: GDOT Crash Data Counts vs. Milelog  
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3.2 CORRIDOR SELECTION 

Since the activity data used in this study were obtained from 460 instrumented-vehicles 

operating freely, some road link might not have speed data available. This section 

develops a methodology to collect speed data from the corridors with relative high 

number of drivers and trips. 

3.2.1 Methodology 

In designing the FHWA project data analysis plan, two primary aspects were considered 

when selecting corridors for analysis:  1) maximizing sample size, i.e. the number of 

drivers and the number of trips, and 2) ensuring that sufficient explanatory variable 

control would be available in the analysis.  That is, sites were selected to ensure a balance 

in terms of number of road feature types as well as number of trips across different 

drivers.   

To achieve these goals, all corridors within the study area, for which instrumented 

vehicle data were available, were ranked based on the number of trips being made on 

each link. Then the top 100 segments in the minor arterial, collector, and local street 

functional classes were selected.  As the focus of the FHWA study was on low- to mid-

speed urban facilities, higher functional classes were not included in the final corridor 

selection.  Among top 100 links selected for each functional class, candidate segments 

were re-ranked by the coefficient of variation (\�) of the number of trips per driver, i.e., 

ratio of standard deviation (
) to the mean (<):   

\� � 
 <  
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A roadway link with a low coefficient of variation implies that the majority of drivers on 

this link have similar trip totals, while a high coefficient of variation implies a few drivers 

accounted for the majority of trips.  The object of this ranking was to select those 

corridors with trip distributed among a higher percentage of drivers. 

 The RC links were prioritized such that the lower the coefficient of variation, the higher 

the priority.  The corridor prioritization may be inspected visually using GIS software, 

color-coding the top one-hundred RC links in each road classification based on their 

coefficient values, i.e., corridors with lower coefficient have a darker color than the ones 

with higher coefficient.  Figure 7 shows a selection of RC links that are included in the 

top one-hundred lists for the minor arterial (blue), collector street (green), and local street 

(orange) classifications.  In addition, dark color links have higher (i.e., lower \�) priority 

than light color links. 

To help to ensure that the developed crash prediction model is representative of roadways 

throughout the Metro Atlanta region the selected corridors were distributed throughout 11 

sub-regions of the Metro Atlanta area defined for the FHWA effort.  The 11 sub-regions 

(N1, NE1, SE1, SW1, NW1, N2, NE2, SE2, S, SW2, and NW2) utilize the freeway 

structure as boundaries (see Figure 8). 
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Figure 7: Color-coded RC links 

Other corridor selection criteria included:  1) uniform cross-section along the stretch, 2) 

no mainline traffic control between corridor end points, 3) corridor length greater than 

2,000 feet, and 4) speed limit not exceeding 45 mph.  

Through visual inspection of the corridors, candidate corridors were selected according to 

their priority and distribution among the 11 sub regions outlined in corridor section 

criterion 2.  Corridors were also eliminated that did not meet the initial minimum length 

requirement between traffic control devices. For each selected corridor, design and 

operations characteristics such as number of driveways, number of side streets, type of 

end point traffic controls, speed limit, number of lanes, and road functional classification 

were obtained from field observation. 
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Figure 8: Sub-Area System Map 

A total of ninety-three corridors were selected for analysis based upon these criteria.  

Over the entire 12-month period, a total of 6,661,991 second-by-second data points 

(roughly equivalent to 1,838 hours of travel time) were collected from 408 drivers.  

Across the 93 corridors, the average number of drivers per corridor is 56, ranging from 

10 to 216 drivers.  A total of 77,455 trips were observed across all of the corridors, with 

each corridor traversed by between 33 and 7,900 trips.   

Table 3 shows the demographic information of the participants. It should be noted that 

there is higher distribution of female drivers in this subset of data than in the Commute 
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Atlanta database. Distribution of younger drivers also appears to be less than those in the 

full dataset. 

Table 3: Demographic distribution of participants 

Age Group 

Female 

  

Male 

 

All 

  

15-24 13 (62%) 8 (38%) 21 (5%) 

25-34 33 (62%) 20 (38%) 53 (13%) 

35-44 51 (54%) 43 (46%) 94 (23%) 

45-54 48 (48%) 51 (52%) 99 (24%) 

55-64 52 (58%) 38 (42%) 90 (22%) 

65+ 22 (43%) 29 (57%) 51 (13%) 

Total 219 (54%) 189 (46%) 408 (100%) 

 

3.2.2 Corridor Selection Result 

Ninety-two corridors were initially selected for data analysis and modeling. Out of these 

initial 92 corridors, 33 are Minor Arterials (36%), 32 are Collector Streets (35%), and 27 

are Local Streets (29%).  Figure 9 and Figure 10 illustrate the distribution of selected 

corridors.  The quantity in the box found in each sub region in Figure 9 indicates the 

number of selected corridors in that sub region.  It is noted that sub-regions SW1 and SE1 

are under-represented due to low availability of GPS data in these two sub-regions.  This 

lower availability of GPS data is primarily explained by the sparser density of households 

in these regions participating in the Commute Atlanta Project (22, 40). The distribution of 

households (Figure 11) depicts a higher density of the participants in the northern regions 

that those in the southern region.   
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Figure 9: Sub-area System Map with Number of Selected Corridors in each region 
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Figure 10: Locations of the 92 Selected Corridors 

 

Figure 11: Locations of the Commute Atlanta Project Participating Households (22) 
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3.3 SUMMARY 

The data collection and corridor selection methodologies described in this chapter were 

originally developed for the FHWA project, which concerned the effect of road 

environment features on operating speed. This study utilized the same GPS dataset, with 

additional crash data and traffic volume data, to construct a road safety screening tool. 

Therefore, the data collection and corridor selection methodologies from the FHWA 

could be adopted for use in this study. 

To develop a road safety screening tool, the speed, crash, traffic volume, and road 

characteristics data are required. The speed data were obtained during the one-year period 

(2004) from the GPS-instrumented vehicles. The four year period (2002-2005) of crash 

data were obtained to account for the regression to the mean (RTM) phenomenon 

characterized by crash data (31). The traffic volume of the selected corridors during the 

same period as crash data were also obtained. Road characteristics data such as speed 

limit, signalized intersection locations, and road geometric features were obtained during 

the site visit.  
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Chapter 4.  DATA PROCESSING 

With the total of 6,661,991 records of second-by-second GPS data and 1,285,424 crash 

data records, much of the efforts in this dissertation were spent on processing the data. 

This chapter described the two key tasks: speed data processing (Section 4.1) and crash 

data processing (Section 4.2). 

4.1 SPEED DATA PROCESSING 

The original data processing algorithms were developed as part of the FHWA project 

“Effects of Urban Street Environment on Operating Speeds” (6) and further refined as 

part of this research effort. Utilizing the FHWA algorithms and refinements in this effort, 

it is possible to sort the speed data by numerous attributes (i.e., likely free-flow vs. non-

free-flow, day vs. night, continuity across the corridor, weather conditions, etc.) to 

explore potential relationships with safety as will be seen in the following chapters. 

A complete list of estimated attributes may be found in Table 2, followed by a discussion 

of the estimation of each attribute in the data processing section.   
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Table 4  Estimated Attributes per Vehicle Record 

Attribute Description 

GAP Gap time between the current and previous points (sec) 

DIST1 Distance from the current data point to the starting point of the corridor 

DIST2 Distance from the current data point to the ending point of the corridor 

COMP Indicator variable, 1 for complete trip, and 0 otherwise 

DIR Direction of travel 

LTIME Local time 

NIGHT Indicator variable, 1 for a trip made during night time, and 0 otherwise 

RAIN Indicator variable, 1 for a trip with raining condition and 0 otherwise 

QUEUE Indicator variable, 1 for a trip with downstream queue longer than 400 ft, 
and 0 otherwise. 

SIGN Sign of the difference between the current speed and speed filter threshold. 

FF1 Indicator variable, a,b,c, or d for free-flow speed type 1 and 0 otherwise. 

FF2 Indicator variable, a,b,c, or d for free-flow speed type 2 and 0 otherwise. 

ACC Acceleration value (mph/sec) 

CTL Indicator variable, 1 for a speed point under influence of downstream 
traffic signal control and 0 otherwise. 

DEV Indicator variable, 1 for a trip with high deviation in speeds and 0 
otherwise. 

SIGNAL Indicator variable, 1 for a data point with poor signal quality 

PCT80 Indicator variable, 1 when a trip contains at least 80% of good quality data 
in a trip and 0 otherwise. 

 

Each of the 10 algorithms in this section estimates some trip characteristic for each data 

record (i.e. every second of instrumented vehicle data is a data record) and appends an 

associated attribute value to the record. Prior to executing the algorithms, the raw data 

processed in the Drive Atlanta Lab is sorted into a separate file for each corridor, with the 

records in each corridor file grouped by driver and sorted by timestamp. The data 

processing algorithms which are described in the following, are then applied to each 

corridor data file. 
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 Table 5 illustrates example raw vehicle activity data of driver number one on corridor 

00. It is seen that the same driver may traverse the same corridor more than one time 

during the one-year study period. The different traversals may be distinguished using the 

time gaps in the data sequence, i.e., one trip was made on January 16th, 2004 and another 

trip was made on the 19th of the same month. 

Table 5: Layout of the Raw Vehicle Activity Data of Driver Number 1 on Corridor 00 

DRIVER ID DATE TIME LAT LON SPEED HEAD SAT PDOP 

DVR_01 20040116 214924 34.030493 -84.248155 41.16 61.65 8 2 

DVR_01 20040116 214925 34.030565 -84.24801 41.56 64 8 1.7 

DVR_01 20040116 214926 34.030636 -84.247858 42.14 65.83 9 1.5 

DVR_01 20040116 214927 34.030704 -84.2477 42.73 67.72 8 1.6 

DVR_01 20040116 214928 34.030775 -84.247539 42.95 70.13 8 1.6 

DVR_01 20040116 214929 34.030841 -84.247376 43.04 71.79 9 1.5 

DVR_01 20040116 214930 34.030911 -84.247211 43.15 72.65 7 2 

DVR_01 20040116 214931 34.03098 -84.247048 43.22 73.34 7 2.9 

DVR_01 20040119 214958 34.031048 -84.246883 32.88 56.55 6 3.09 

DVR_01 20040119 214959 34.031116 -84.24672 34.07 58.16 6 3 

DVR_01 20040119 215000 34.031186 -84.246558 35.01 59.53 6 5.19 

DVR_01 20040119 215001 34.031258 -84.246395 36.1 61.31 7 2.29 

 

4.1.1 Trip Identification 

We define b�
z as the Z(� record for driver d,  1��L  as the =(� record in trip j, and a trip as 

a period of continuous travel.  The objective of the first algorithm is to assign each b�
z 

to a trip, allowing for the identification of each record by trip  1��L , in addition to driver 
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b�
z.  Each trip over a corridor utilizes a unique trip number, i.e. multiple drivers do not 

reuse trip IDs.   

In the initial portion of the algorithm, a new record attribute GAP is created and 

appended to each b�
z.  �`]�b�
z� is defined as the time interval between the Z �
1(�and Z(� record of driver d.   If �`]�b�
z� is greater than ten seconds then record i is 

assigned as the beginning of a new trip.  The Trip Identification algorithm is executed as 

follows: 

Determine Set � 
initialize � �  1. = �  1. 
for / �  1 to b { 

for Z � 1 to �z  

 �`]�b�
z� � 1��Bsb�
zy � 1��B�b�
7�z � 

if �`]�b�
z� > 10 seconds { 
 update = �  � and � �  � R 1. 
} 

Set 1��L � b�
z. 
} 

} 
 
where, b  = the set of all drivers on a corridor �  = the set of all trips on a corridor  � = the set of all records in a trip �z   = the set of all records for driver / b�
z  = the Z(� record for driver /, 1��L   = the =(� record in trip � 1��B�b�
z� = timestamp of b�
z �`]�b�
z� = time interval between �Z � 1�(� and Z(� record of driver / 

 



 

49 

 

4.1.2 Smoothing data using Kalman Filter 

While most of GPS receivers, including the SiRF Star II receiver deployed in this study, 

have an integrated data filtering and smoothing processes to partially mitigate errors in 

the data stream, some random errors still remain in this dataset (41, 42).  Quality of speed 

and location data is critical to the determination of likely free-flow trips.  Therefore, to 

reduce the impact of random errors a modified Kalman filter is utilized.  A detailed 

description of the utilized Kalman filter may be found (41). 

4.1.3 Trip Continuity 

In measuring many of the speed characteristics, it is desirable that a vehicle traverse the 

entire corridor with no intermediary activity stops.  As the data set is a collection of daily 

trips representative of the many activities individuals undertake uninterrupted traversals 

are not guaranteed.  Vehicles may enter or depart the corridor at internal points, such as a 

driveway, gas station, etc. For this effort, trips that pass through both corridor boundary 

intersections are considered complete trips, otherwise the trip is considered incomplete.  

Recall in the Trip Identification algorithm a trip is defined as a continuous second-by-

second stream of data (allowing at most a 10 sec gap between records).  The impact of 

this trip definition is that a trip chain, i.e. a driver stopping or diverting along the corridor, 

would be identified as separate trips in the Trip Identification algorithm.  Thus, for the 

Trip Continuity algorithm it is only necessary to determine if an individual trip, 1��L , 
passes through both corridor endpoints.  For this analysis, a trip is deemed to have passed 
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through an intersection at a corridor end point if the vehicle passes within 100ft of the 

intersection center.          

The algorithm consists of two primary steps: determine the distance from the GPS 

location of each record to the corridor boundary intersections and check that at least one 

record location within each trip is within 100ft of the corridor boundary intersections.  

We manually determined the default orientation of each corridor as south-to-north or 

west-to-east.  

The algorithm is implemented as follows: 

Determine distance to corridor boundary intersections. 

 
for � �  1 to � { 

for = � 1 to �L{ 
Calculate b��11�1��L� 
Calculate b��12�1��L� 

} 
} 
 

Check for passing boundary intersections. 

 
for � �  1 to �  ���]�1��L�� �0  Za m�min� b��11s1��Ly � 100 a-�  ^_ �min� b��12s1��Ly � 100 a-�n1 ^-�F_�Z{F � 
 for all =’s in trip �. 
} 
 
where, b��11�1��L� = Euclidean distance from point = of trip � to corridor south (east) boundary 
intersection 
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b��12�1��L� = Euclidean distance from point = of trip � to corridor north (west) 
boundary intersection ���]�1��L�  = Complete trip attribute of trip �: 1 if complete trip, 0 otherwise 
 

Figure 12 shows an example of a complete trip on a study corridor, with a continuous trip 

that passes through both boundary intersections.  Figure 13 illustrates an incomplete trip.  

This trip (west to east) passed through one boundary corridor but departs the corridor 

prior to reaching the second boundary intersection.   

 

Figure 12:  Example of a Complete Trip on Hammond Drive 

 

N 
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Figure 13:  Example of an Incomplete Trip on Hammond Drive 

Figure 14 shows the combined effective of the trip identification and trip continuity 

algorithms.  Shown in Figure 14 is the travel activity of a single vehicle as it crosses the 

corridor in the westbound direction, leaves the corridor bounds for 385 seconds and then 

traverses the corridor eastbound.   The trip identification initially divides this activity into 

three trips, two in the westbound direction and one in the east bound direction.  The 

westbound travel is divided into two trips as a result of the 29 second gap between two 

records.  The trip continuity algorithm evaluates the three trips, with only the eastbound 

trip being identified as complete.  It is unknown if the westbound vehicle left the 

corridor, there was an equipment malfunction, or some other reason for the 29 second 

data gap.  Regardless, the data are incomplete and not suitable for the determination of 

continuous speed characteristics, thus it is desirable that the westbound activity be 

identified as incomplete.  As seen in Figure 13 and Figure 14, the combination of the two 

algorithms successfully removes vehicle activity that does not represent complete trips or 

contains incomplete data. 

N 
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Figure 14:  One Entire Trip Separated into Three Sub-Trips 

 

4.1.4 Direction of Travel 

In subsequent algorithms, such as the determination of acceleration and decelerations 

zones (Section 4.1.8), the direction of travel for a trip is required.  The Direction of 

Travel algorithm determines the trip heading, and appends an attribute to each trip record 

with this data.  The Direction of Travel algorithm compares the distance from the 

location of the first record of a trip to the south (west) and north (east) boundary 

intersections.  If the starting location is closer to the corridor’s south (west) intersection, 

the direction of travel is northbound (eastbound), otherwise the direction of travel is 

southbound (westbound).   

The algorithm is implemented as follows: 

Compare distance to boundary intersections to set heading 

for � �  1 to � { 
if b��11�1��L� < b��12�1��L� { 

N 
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assign b���1��L� = NB (or EB) for all =’s
 
in trip � 

} 
else{ 
 assign b���1��L� = SB (or WB) for all =’s

 
in trip j 

} 
} 
 
where: b���1��L� = the direction of travel of trip � 
 
 

4.1.5 Local Time and Nighttime   

Lighting conditions may influence a driver’s speed.  Therefore, each trip is assigned an 

attribute identifying whether it occurs during the day or night, allowing for a sorting of 

trips by lighting conditions prior to the development of speed models, if desired.  A trip is 

considered a nighttime trip if it starts before sunrise or after sunset.  Since the sunrise and 

sunset time varies significantly throughout the year, sunrise and sunset times specific to 

each trip were calculated.  A Sun altitude of -0.833 degrees is chosen in the determination 

of sunrise/sunset as it is the position where the upper edge of the disk of the Sun touches 

the earth’s horizon, accounting for atmospheric refraction.  We also adjusted the 

calculated sunrise and sunset times by adding a 30-minute buffer to the sunrise time and 

subtracting a 30-minute buffer from the sunset time.  For this dataset, approximately 23 

percent of the complete trips were identified as occurring during nighttime.  

The algorithm for identifying whether a trip occurred during nighttime or daytime 

contains two primary steps. First, it is necessary to create a trip attribute with the local 

time (Eastern Standard Time for this study), as the GPS timestamps are recorded in 
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Greenwich Mean Time (GMT).  The calculated sunrise/set time are then compared to the 

trip start time. 

The algorithm is a follows: 

Calculate local time  

for � �  1 to � { 
for = �  1 to � 
 >1��B�1��L� = local time (EST) of 1��B�1��L� 
} 

} 

Daytime or nighttime determination 

for � �  1 to � { 
 ���B = sunrise time of b`1B�1��L� �B1 = sunset time of b`1B�1��L� 
 
for all =’s in trip �: 
 

  ���@1�1��L� = 


 −<<+

otherwise

SETTRLTIMERISEif j

1

min30)(min300 1  

 } 
} 
 
where: >1��B�1��L� = Local time (EST) for record = of trip � b`1B�1��L� = Date for record = of trip � ���B = Local sunrise time for b`1B�1��L� �B1 = Local sunset time for b`1B�1��L� ���@1�1��L�= attribute of record = of trip � indicating daytime or nighttime at time of 
record 

 



 

56 

 

4.1.6 Inclement Weather Conditions  

Inclement weather may influence a driver’s speed.  This step detects trips that likely 

occurred during rain conditions (snow/ice conditions were not observed during the study 

period).  The determination of potential inclement weather during a trip is based on the 

hourly precipitation data from several weather stations in Metro Atlanta.  These weather 

stations are located at the Fulton County Airport, DeKalb-Peachtree Airport, and 

Hartsfield-Jackson Atlanta Airport (see Figure 15).  A trip is considered to have likely 

occurred under inclement weather conditions if measurable rainfall is recorded at the two 

closest stations during the 2-hour time window before the trip.  This rule identified 

approximately 20 percent of the daytime complete trips as occurring during potential 

inclement weather conditions.  While a portion of the trips identified as inclement 

weather trips likely did not experience inclement weather, it was decided to implement a 

conservative rule for trips utilized in the speed model development.  However, given this 

rule it should be noted that it would be inappropriate to create a set of “inclement 

weather” speed models using trips identified as inclement weather trips, as many of these 

trips may have occurred under clear weather conditions.   
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Figure 15:  Locations of the Three Weather Stations (Identified by Blue Indication)  

The algorithm is implemented as follows: 

Determine the two closest weather stations to the first point of trip j. Let w be weather 
station ID’s from 1 to 3. 
for j = 1 to J { 

for w = 1 to 3{ 
  DIST(w) = distance from the station w to the first point in trip j, 

jTR1  
} 
 
initialize sum = 0. 
for w’ = 1’ to 2’{  

for t = (>1��B�1��L) – 2 hours) to >1��B�1��L�{ 
  ]�B��]��’, -� = hourly precipitation amount at station �’, 
time -. 
 {XM �  {XM R  ]�B��]��’, -� 

 } 
} 
 

DeKalb-Peachtree 

Fulton County Airport 

Hartsfield-Jackson Atlanta 
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�`���1��L� = 


 >

otherwise

sumif

0

01
 

for all =’s in trip � 
} 
 
Note that 1’ and 2’ are the ID’s of the two closest stations to trip j. It follows that b��1�1’�  �  b��1�2’�  �  b��1�3’�. 
 
where: � = Local time (EST) for record k of trip j b`1B�1��L� = Date for record k of trip j ���B = Local sunrise time for b`1B�1��L� �B1 = Local sunset time for b`1B�1��L� ���@1�1��L� = attribute of record k of trip j indicating daytime or nighttime at time of 
record 
 
 

4.1.7 Identify Potentially Non-Free-Flow Trips 

In the next algorithm, we apply a series of developed filters is applied that utilize the 

characteristics of a trips GPS trajectory data to help identify complete trips that were 

likely non-free-flow trips.  As a first step in developing these filters, a Graphic User 

Interface (GUI) application, called the GPS Speed Profile Viewer, was constructed.  This 

application plots the speed profiles – distance (feet) from the corridor starting point (X-

axis) versus vehicle speed in mph (Y-axis) – for all trips, or trips during a user selectable 

time period, that occurred on a corridor.   For example, Figure 16 depicts the speed 

profile of westbound trips on Corridor No. 20, Hammond Drive, between Perimeter 

Center Parkway and Peachtree Dunwoody Road. 
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Figure 16:  Example Speed Plot using the Speed Profile Viewer 

Figure 16 illustrates that a number of vehicles may have stopped or significantly slowed 

in the corridor mid-section during their trips.  From the graph, it is clearly seen that these 

stopped and slowed vehicle trips are not in free-flow operation.  Each of the filters 

developed to identify these trips is summarized in the following sections. 

Initially, a time-of-day filter was considered, defining peak period traffic as non-free-

flow and non-peak period traffic as free-flow.  However, upon inspection of the candidate 

corridors several irregular peak hour periods in commercial and warehouse districts were 

identified as well as and commonly accepted non-peak hours clearly exhibiting non-free-

flow trip characteristics.  Thus, time-of-travel based filters did not adequately identify 

likely non-free-flow or likely free-flow trips.  To overcome the peak time based filter 

drawbacks, a combination of filters based on trip characteristics was developed. These 
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are 1) downstream queue filter; 2) fixed speed filter with free-flow pattern recognition, 

and; 3) variable speed filter with free-flow pattern recognition.  The combination of these 

filters successfully identified the peak and non-peak hour trips that did not exhibit free-

flow behavior, in essence enabling the use of variable peak hours with respect to the 

individual corridors. 

A) Downstream Queue Filter.   

As shown in Figure 16, vehicles are often captured in a queue at the downstream end of a 

trip.  When the stopping location of the vehicle indicates a significant queue length the 

vehicle should not be assumed as free-flowing on the upstream portion of the corridor, as 

a lengthy queue characterizes likely congested conditions.  A vehicle stopping more than 

400-feet upstream of the center of the trip end intersection was selected as the queue 

length at which free-flow travel was no longer likely.  The downstream queue filter 

identifies trips that have a speed lower than 5 mph in the range from the mid-point of the 

corridor to 400 feet from the downstream location.  The 400-feet value was selected 

following a pattern recognition and sensitivity analysis on the corridors.  Initially, a 

separate set back value for each functional classification was investigated, however, the 

400-ft value conservatively identifies queued vehicles for all locations and subsequent 

filters capture other irregular trips. 

Figure 17 illustrates the effect of removing trips identified by the Downstream Queue 

filter.  For our data set approximately 6 percent of the daytime, non-inclement weather, 

complete trips were identified using this filter. 
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The algorithm is implemented as follows: 

Check the distance from record k in trip j to the ending point 
for � �  1 to � { 

for = �  1 to �L{ 
 ��B�B�1��L� = 



 <≥

otherwise

mphTRSPEEDANDftTRDISTif j
k

j
k

,0

5)()400)(2(,1
 

 
} 

} 
 

 

 

(a) 

 

 

(b) 

Figure 17:  Trip Speeds (a) Before and (b) After Applying Downstream Queue Filter 
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Figure 18: Four Speed Patterns Defining Potential Free-Flow Speed Trips (Figure Credit: Karen 
Dixon, Oregon State University) 

B) Fixed Speed Filter with Free-Flow Pattern Recognition:  

Figure 18 represents potential simplified free-flow speed profile trip patterns across a 

corridor.  Occasionally a vehicle may encounter a “non-free-flow” pattern as depicted in 

Figure 19.  Patterns similar to those seem in Figure 19 may occur, for example, when a 

study vehicle is trailing a vehicle that reduces speed to execute a turn mid-block.  To 

identify trips that are clearly not free-flow due to this phenomenon, it is necessary to 

identify trips that experienced speeds less than a fixed cutoff value, 10 mph in this step, 

not located in the corridor boundary acceleration or deceleration zones.   
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Through visual inspection identifying a trip that violates this rule is a relatively simple 

matter.  However, due to the large number of trips and the desire to test the sensitivity of 

overall trip loss to the cutoff value an efficient automated implementation of the rule was 

desired.  This was accomplished through the use of a pattern recognition approach where 

a negative sign represents speeds less than the designated cutoff speed and a positive sign 

speeds greater than the designated cutoff speed. 

The first step in the pattern recognition checks the pattern sign at the mid-point.  For a 

trip to be considered likely free-flow through the corridor, it is assumed that the vehicle 

must be traveling at free-flow speed by the corridor mid-point.  Any trip with a negative 

pattern sign (i.e., speed less than a pre-determined cutoff value) at the mid-point may 

safely be assumed to not be traveling at free-flow speed. 

Next, the pattern recognition algorithm considers speed data in the area starting from the 

upstream intersection to 400 feet before the end of the corridor.  The 400-foot area 

defined as a queuing zone is excluded from the pattern recognition since stop locations of 

vehicles in the downstream queue can be varied.  All possible free-flow patterns are 

depicted in Figure 18 .  The pattern recognition algorithm compares an individual trip 

with each of the four pre-defined free-flow patterns.  If the trip does not match with any 

of the free-flow pattern, it will then be determined as a likely non-free-flow trip.  More 

particularly, the algorithm starts with splitting a trip into two halves at the midpoint and 

considering speed pattern of each half at a time.  The algorithm then finds the matching 

pattern from the pre-defined patterns below: 
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• If the first half consists of exactly one sign change from minus to plus and 

the second half consists of exactly one sign change from plus to minus, the 

trip matches the free-flow pattern in Figure 18a.  The notation for pattern 

(a) is (–+, +–). 

• If a trip does not have any sign change in both halves and has a speed 

above the cutoff, it matches the free-flow pattern in Figure 18b.  The 

notation for pattern (b) is (++, ++). 

• If the first half does not have any sign change and has a speed above the 

cutoff, and the second half consists of one sign change from plus to minus, 

the trip matches the free-flow pattern in Figure 18c.  The notation for 

pattern (c) is (++, +-). 

• If the first half consists of one sign change from minus to plus and the 

second half does not have any sign change, the trip matches the free-flow 

pattern in Figure 18d.  The notation for pattern (d) is (-+, ++). 

• If a trip does not match any of the above, it is identified as a likely non-

free-flow trip.   

Examples of non-free-flow trips are depicted in Figure 19. For instance, if a vehicle 

enters the corridor after being stopped (i.e., the vehicle was stopped at a signal light or 

stop sign) and accelerates to a speed greater than 10 mph by the time it reaches the 

midpoint of the corridor, the algorithm would recognize the sign change in the first half 
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of this trip as one sign change from minus to plus.  Furthermore, if the same vehicle 

decelerates and stops due to a signal light or stop sign at the downstream intersection, the 

algorithm would recognize the speed pattern in the second half as a one sign change from 

plus to minus.  Finally, the algorithm combines the information from the first and second 

halves and determines this trip as a free-flow trip pattern (a).  Now, if the same trip has an 

additional change from positive to negative to positive - representing vehicle deceleration 

to a speed below 10 mph and then acceleration to a speed above 10 mph - the trip is 

identified as a non-free-flow trip and is removed from the free-flow data set.   

At the conclusion of the fixed speed filter, approximately eight percent of the trips not 

identified as likely non-free-flow by the downstream queue filter were identified as likely 

non-free-flow trips by this filter. 
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Figure 19:  Four Speed Patterns Defining Potential Non-Free-Flow Speed Trips (Figure Credit: 
Karen Dixon, Oregon State University) 

 

(a) 

 

(b) 

Figure 20:  Speeds (a) Before and (b) After Applying 10-mph Filter 
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The algorithm is executed as follows: 
 
Compare GPS speeds with 10 mph threshold 
for � �  1 to � { 

for = �  1 to �L{ 
  �����1��L� = 





−
≥+

otherwise

TRSPEEDif j
k

1

10)(1
 

} 
} 
 
Determine pattern parameters 
for � �  1 to � { 

initialize changes_front = 0 and changes_back = 0 
for = �  1 to �L � 1{ 

 if b��11�1��L� ≤  L/2{ 

  if �����1��L�≠ �����1����L �{ 
   from_front = �����1��L� 
   to_front = �����1����L � 
   changes_front = changes_front + 1 
  } 
 } 
 else{ 
  if �����1��L�≠ �����1����L �� 
   from_back = �����1��L� 
   to_back = �����1����L � 
   changes_back = changes_back + 1 
  } 
 } 
 if  b��11�1��L�  �  >/2{ 

  midSpeed = �]BBb�1��L� 
}  

 } 
} 
 
Assign trip pattern (FF1) as defined in Table 6. Trip patterns that are not defined by this 
table will be marked as non-free-flow trips. 
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Table 6: Potential Free-Flow (FF1) Speed patterns 

midSpeed changes_front from_front to_front changes_back from_back to_back FF1 

>10 

0 1 1 
0 1 1 c 

1 -1 1 d 

1 -1 1 
0 1 1 b 

1 1 -1 a 

Else       0 

 
Note that  L  = corridor length 

changes_front  = number of sign changes within the upstream half of the 
corridor 

changes_back = number of sign changes within the downstream half of 
the corridor 

from_front = sign notation before sign change in the upstream half of 
the corridor 

to_front      = sign notation after sign change in the upstream half of the 
corridor 

from_back      = sign notation before sign change in the downstream half 
of the corridor 

to_back      = sign notation after sign change in the downstream half of 
the corridor 

 

C) Variable speed filter with Free-Flow Pattern Recognition   

The previous step removed trips that contain speeds less than 10 mph not located in the 

acceleration and deceleration zones.  However, from Figure 20b, it is noticeable that 

some remaining trips are still under likely non-free-flow conditions.  The ten-mph speed 

filter line works well on low speed roadways, e.g., 25 mph posted speed limit, but 

frequently fails to catch non-free-flow trips on a higher speed facilities, e.g., 40 or 45 

mph posted speed limit.  As a result, a variable speed filter is developed to identify the 

non-free-flow trips remaining not identified by the ten-mph filter.  The variable free-flow 

speed cutoff on each corridor is dependent on each corridor’s speed limit and driver’s 
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mean speed, as will be seen in the following section.  A sensitivity analysis was 

performed to determine an approximate minimum value for free-flow speed conditions.  

It is again assumed that by the corridor mid-point a vehicle should be able to achieve 

free-flow speed.   

Mid-Point Free-Flow Speed Determination 

This analysis investigated several potential variable cutoff speeds to identify trips not at 

free-flow speed at the corridor mid point: 

• Speed limit-10 mph 

• Seventy percent of the drivers’ mean speed at the corridor midpoint 

• Seventy percent of the speed limit 

• Seventy percent of minimum(driver’s mean speed, speed limit) 

Though all trips are depicted in the speed profile plots, at several sites many of the trips 

were unique to one driver.  As a result, the analysis used the average speed per driver to 

estimate the mean speed for Options 2 and 4. The following algorithm utilizes the forth 

condition – seventy percent of minimum between driver’s mean speed and speed limit. 

However, each of the given cutoffs was investigated by changing the threshold value in 

the following algorithm. The forth condition was ultimately chosen as it seemed to 

provide the best results for the given dataset. 
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The algorithm is implemented as follows: 

Calculate mean speed among drivers at midpoint of the corridor 
 

MF,��[ �  1Dr1J rSPEEDsTR� ¡¢ y£¤
¢��

¥
¡��  

 
 

where: �]BBb� j
midTR � = speed at midpoint of trip �. 

 �z = number of trips made by driver / 
 b = total number of drivers in the corridor 
 
Determine the variable speed threshold, trshld. 
trshld = 0.7*min(meanSp, speed limit) 
 
Compare GPS speeds with the variable speed threshold 
for j = 1 to J { 

for k = 1 to Kj{ 

  �����1��L� = 




−
≥+

otherwise

trshldTRSPEEDif j
k

1

)(1
 

} 
}  
 
Determine pattern parameters (similar to fixed speed filter) 
for j = 1 to J { 

initialize changes_front = 0 and changes_back = 0 
for k = 1 to Kj-1{ 
 if DIST1( j

kTR ) ≤  L/2{  

  if SIGN (1��L) ≠ SIGN(1����L ){ 

   from_front = SIGN(1��L) 
   to_front = SIGN(1����L ) 
   changes_front = changes_front + 1 
  } 
 } 
 else{  
  if SIGN(1��L) ≠ SIGN(1����L ){ 

   from_back = SIGN(1��L) 
   to_back = SIGN(1����L ) 
   changes_back = changes_back + 1 
  } 
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 } 
 if DIST1(1��L) = L/2{ # check speed at mid point 

  midSpeed = SPEED(1��L) 
 } 
} 

} 
 

Assign trip pattern (FF2) as defined in Table 7. Trips patterns that are not defined in this 

table will be marked as likely non-free-flow trips. 

Table 7: Potential Free-Flow (FF2) Speed patterns 

midSpeed changes_front from_front to_front changes_back from_back to_back FF2 

>trshld 

0 NA NA 
0 NA NA c 

1 -1 1 d 

1 -1 1 
0 NA NA b 

1 1 -1 a 

Else       0 

 

 

(a) 

 

(b) 

 

Figure 21:  Speeds (a) Before and (b) After Varied Free-Flow Speed Filter 
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4.1.8 Removing data points in the acceleration and deceleration zones 

To obtain free-flow speed conditions, the zones containing acceleration or deceleration 

effects from the traffic control at the two ends of corridors is determined.  This step trims 

the instrumented vehicle trajectories, removing the data points within the acceleration and 

deceleration zones.  To implement this filter it is necessary to determine the deceleration 

and acceleration zone distances. A combination of speed and acceleration values was 

used to detect acceleration and deceleration motions of vehicles due to traffic control. 

The acceleration value of data point k, ACC( j
kTR ) was calculated using the central 

difference formula, 

)()(

)()(
)(

11

11
j

k
j

k

j
k

j
kj

k TRTIMETRTIME

TRSPEEDTRSPEED
TRACC

−+

−+

−
−=

 

The central difference formula is widely used to calculate acceleration and it provides 

higher accuracy than those derived from forward or backward difference formulas (43). 

Deceleration and acceleration lengths were determined separately as follows: 

A) Deceleration zone determination:  

In this study, the deceleration zone is defined as the zone in which at least 90 percent of 

the individual trips begin to decelerate due to traffic control (e.g., stop sign, traffic signal) 

at the corridor end point.  In addition, we defined the start of a vehicle’s deceleration 

process as the location at which its deceleration is greater than 1 mph/sec. The 1 mph/sec 

deceleration rate accounts for the normal fluctuation in driving behavior during free-flow 
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conditions and GPS receiver error. Finally, the deceleration zone is taken to end at the 

downstream intersection of the corridor.  

The algorithm for the deceleration filter is below: 

• Determine midpoint of the corridor, midpoint = L/2. 

• For each trip, start from the midpoint moving toward the end of corridor to 

find the first instance that the trip’s speed is less than 10 mph (See Figure 

22). 

• Starting from the location in the previous step, move upstream and 

identify the first instance that that the vehicle’s deceleration becomes less 

than 1 mph/sec (Figure 23).  This point is the starting location of 

deceleration due to traffic control for the trip. 

• Repeat these steps for every trip in the corridor to obtain a list of 

deceleration starting locations.  After obtaining starting locations for every 

trip, the locations (distance from downstream intersection) are sorted from 

high to low. 

• Find the 90th percentile location from the list.  This is defined as the start 

of the deceleration zone for the corridor (See Figure 24).   
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Figure 22: Forward Motion to Identify the First Speed Point Dropping below 10 mph 

 

Figure 23: Reverse Motion to Find the Initial Deceleration Location < 1 mph/sec 
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Figure 24:  Example Plots of Deceleration Points for a Corridor’s Trips 

The algorithm is implemented as follows: 

Calculate acceleration rate for each data point 
for � �  1 to � { 

for = �  2 to � � 1 

 `���1��L� = 
)()(

)()(

11

11
j

k
j

k

j
k

j
k

TRTIMETRTIME

TRSPEEDTRSPEED

−+

−+

−
−

 

} 
} 
 
find the starting point of deceleration of each trip 
lower bound speed, lowSp = 10 mph 
for � �  1 to � { 

for = �  1 to � { 
find min =’ where ��]BBb�1��dL �  �  Y^��[� `�b �b��12�1��dL �  �  >/2� 
 for k = k’ to 1 { 
  find =” where ACC(1��ddL ) ≤ -1 

  store b��12�1��ddL � into /F\`__,g 
 } 
} 

} 
 /F\bZ{- =  the 90th percentile of distance in the /F\`__,g 
 
Determine whether a data point is located within the deceleration zone. 

90 Percent of the trips 

initiated deceleration within 
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for � �  1 to � { 
for = �  1 to �L{ 

  CTL(1��L) = 


 ≤

otherwise

decDistTRDISTif j
k

,0

)(2,1
 

} 
} 

B) Acceleration zone determination:  

The acceleration zone is defined as the zone starting at the upstream intersection to the 

location where 90 percent of the trips begin to operate at cruising speed.  As with the 

deceleration, a trip is assumed to begin operating at cruising speed when acceleration rate 

drops to less than 1 mph/sec.  

Algorithms: 

• Determine midpoint of the corridor, midpoint = L/2. 

• Based on speed and distance data for a vehicle trip, start from the midpoint 

moving toward the starting point of corridor to find the first location that a 

vehicle’s speed is less than the cutoff speed line, which is defined as the 

minimum between speed limit minus 10 mph and 25 mph.  For example, if 

speed limit is 30 mph, the lower bound speed line will be 20 mph and if 

speed limit is 45 mph, the cutoff speed line will be 25 mph (Figure 25). 

• Based on acceleration and distance data, move toward the end of the 

corridor and search for the first location at which the vehicle’s 

acceleration rate drops below 1 mph (Figure 26). 
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• Repeat these steps for every trip traversing the same corridor to obtain a 

list of the trip acceleration ending locations.  After obtaining acceleration 

ending locations for every trip, the locations (distance from upstream 

intersection) are sorted from low to high. 

• Find the 90th percentile location from the list and assign this as the 

acceleration zone end point location.  

 

Figure 25:  Reverse Motion to Find First Point below Lower Bound Speed Threshold (Corridor ID 
35 NB, lower bound line = 25 mph) 
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Figure 26:  Forward Motion to Find First Location with Acceleration Rate < 1 mph 

Note that the lower bound speed lines between acceleration zone and deceleration zone 

are based on different criteria because these two cases have different traffic 

characteristics.  For deceleration zone case, it is likely to see vehicles slow down to 

speeds below 10 mph within the corridor boundary.  On the other hand , in the 

acceleration zone, it is likely that vehicles starting their acceleration process from a 

location upstream of the corridor boundary, e.g.,  starting from the middle of the 

upstream traffic queue or starting from the stop bar where the cross street is four-lane 

road with a median.  Therefore, these vehicles may well have a speed greater than 10 

mph prior to entering to corridor however still be undergoing the acceleration process.  
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The algorithm is implemented as follows: 

find the starting point of stable speed of each trip 
lower bound speed, lowSp = min(speed limit-10,25) 
for � �  1 to � { 

for = �  � to 1 { 
find max =’ where ��]BBb�1��dL �  �  Y^��[� `�b �b��11�1��dL �  �  >/2� 
 for = �  =’ to � { 
  find min =” where ACC(1��ddL ) > 1 

  store b��11�1��L� into accArray 
 } 
} 

} 
 
accDist =  the 90th percentile of distance in the accArray 
 
Determine whether a data point is located within the acceleration zone. 
for � �  1 to � { 

for = �  1 to �L{ 
  �1>�1��L� = 



 ≤

otherwise

accDistTRDISTif j
k

,0

)(2,1
 

} 
} 

 

By implementing the acceleration and deceleration search algorithms on the corridors in 

this study, it is found that the acceleration zones mostly range from 400-1000 ft (with an 

exception of 1240 ft on one corridor) with an average of 500 ft. The deceleration 

distances range from 500-1000 ft with an average of 600 ft. Figure 27 compares speed 

profiles before and after removing the acceleration and deceleration data points. 
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(a) 

 

(b) 

Figure 27:  Speeds (a) Before and (b) After Acceleration/Deceleration Filter 

 

4.1.9 Remove highly deviated trips 

This filter is a final filter to add in the identification of likely free-flow trips. After 

excluding speed data in the acceleration and deceleration zones from the dataset, there are 

still some trips with high speed variation. This type of trips implies non-free-flow 

conditions and should not be included in the analysis.  Therefore, a lower bound speed 

criteria to remove trips with high speed deviation was developed.  Quantile-Quantile plot 

(QQ-plot) was used to visualize the characteristic of speed data.  Based on the QQ-plots, 

majority of the corridors demonstrated a similar pattern of the speed data in which speeds 

began to deviate approximately minus two standard deviations from the mean.  The QQ 

plot in Figure 28 (b) shows that speed data deviate from normality when data are beyond 

two standard deviations from the mean. This filter removes trips with speed data 
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exceeding two standard deviations from the mean. Figure 29 depicts the result from the 

low speed trip filter.  Note that approximately 11 percent of the trips from the previous 

step were detected as highly deviated trips by this filter.  

The algorithm is implemented as follows: 

find the mean and standard deviation of all data points on the same corridor 
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for � �  1 to � { 

 bB�s1��Ly � §1 a^_ ¨� Za min �]BBbs1��Ly © �� � 2
0 a^_ ¨� ^-�F_�Z{F � 
}   

  

 

(a) Speed profile 

 

(b) QQ Plot 

Figure 28:  Speeds and Quantile-Quantile Plot of Corridor No. 21 Westbound 
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(a) 

 

(b) 

Figure 29:  Speeds (a) Before and (b) After Applying Low Speed Filter 

 

4.1.10 Check Quality of GPS signal 

Criteria on Number of Satellite (SAT) and Position Dilution of Precision (PDOP) should 

be established based on the acceptable data accuracy, data availability, and other 

characteristics of GPS data collected for this study.  PDOP is an indicator of the 

reliability of the GPS data and is geometrically equivalent to the inverse of the volume of 

the pyramid formed by the satellites in view and the GPS receiver (44).  In this study, 

acceptable quality GPS data are defined as data with minimum number of satellites 

(SAT) of 4 and range of PDOP value between 1 and 8 (22, 42).  Additionally, the 

minimum percentage of acceptable quality data for each trip has been set to 80%, 

meaning that if more than 80 percent of data points from one trip pass the GPS signal 
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criteria, this trip will be included. As a result, 22 percent of the trips from the previous 

step were detected as trips with more than 20 percent low quality GPS data by this filter.   

It is important to note that the GPS signal quality filter is applied after the acceleration/ 

deceleration filter because the 20-percent criteria is based on number of data points 

(generally equivalent to travel time in seconds).  If the low quality signal condition 

occurs when the vehicle is stopped in the queue waiting for the green light, it is likely that 

the trip will a significant percentage of low quality data points, however these exist 

outside the midblock areas of interest. Therefore, data points in the acceleration and 

deceleration zones should be detected and excluded before checking the GPS signal 

quality to maximize the number of usable trips. 

The algorithm is implemented as follows: 

Determine quality of GPS data points 
for � �  1 to � { 

for = �  1 to �L { 
 ����`>�1��L� = 



 ≤≥

otherwise

PDOPANDSATif

,0

)8()4(,1
 

} 
} 
Determine percentage of good quality data for each trip 
for � �  1 to � { 
 ]�180�1��L� = 








≥∑

=

otherwise

TRSIGNAL
K

if
jK

k

j
k

j

,0

80.0)(
1

,1
1  

} 
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Once GPS data had gone through the data processing, we use the following attribute 

values to determine free-flow condition trips: 

  ���]s1�·Ly � 1,���@1s1�·Ly � 0, �`��s1�·Ly � 0, ��B�Bs1�·Ly � 0,
??1s1�·Ly ª 0, ??2s1�·Ly ª 0, �1>s1�·Ly � 0, bB�s1�·Ly � 1, ]�1s1�·Ly � 1. 
After the data processing, the number of corridors was reduced to 61 due to data 

availability criteria chosen to ensure sufficient data for later modeling efforts. These 

criteria were 1) the effective corridor length is greater than 1000 ft and 2) the number of 

drivers during the free-flow condition is at least ten.  Approximately 66 percent of total 

trips on the remaining 61 corridors were identified as potentially non-free-flow patterns 

or low quality of data. There are total of 15,158 trips made by 408 drivers within the 

selected corridors during year 2004 and the 406,398 second-by-second GPS data points, 

equivalent to 113 hours of travel.  
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4.2 CRASH DATA PROCESSING 

The four-year crash data from January 2002 to December 2005 are obtained from 

GDOT’s crash database system. These data are stored in Microsoft Office Access (mdb) 

format. More than 1,200,000 accidents occurred within the State of Georgia during this 

four-year period. Multiple tools were utilized to query and manipulate crash data 

including Microsoft Office Access 2003, Perl programming language, and ArcMap GIS 

software. 

The GDOT Crash database contains more than 100 data attributes for each crash record.  

Table 8 excerpts data attributes that are relevant to the purpose of this study. The 14 

fields that are considered in this study include crash ID, date and time, road characteristic 

(RC) link number, milepoint, latitude and longitude, annual average daily traffic 

(AADT), first harmful event, weather condition, light condition, pavement surface 

condition, manner of collision among vehicles involved in the crash, contributing factor, 

and traffic control type. Note that first harmful event is defined as the first event in a 

traffic collision to result in injury or property damage. 

Several steps of data manipulations were developed to prepare and filter data before 

application to the model development, including determining crash location, identifying 

nighttime and inclement weather incidents, and incidents related to pedestrian, bicycle, 

and animal. 
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Table 8: Relevant Crash Attributes from GDOT Crash Database  

Field Name Description Coded Values  

ACC_ID Accident ID   

ACC_JULDT Accident Date mm/dd/yyyy  

ACC_ATIME Accident Time   

ACC_HE1_TYPE First Harmful Event 01-Overturn 
02-Fire/Explosion 
03-Immersion 
04-Jackknife 
05-Other Non-Collision 
06-Pedestrian 
07-Pedalcycle 
08-Railway Train 
09-Animal 
10-Parked Motor Vehicle 
11-Motor Vehicle in 
Motion 
12-Motor Vehicle in 
Motion - In Other Roadway 
13-Other Object (Not 
Fixed) 
14-Deer 
15-Impact Attenuator 
16-Bridge Pier/Abutment 
17-Bridge Parapet End 

18-Bridge Rail 
19-Guardrail Face 
20-Guardrail End 
21-Median Barrier 
22-Highway Traffic 
Sign Post 
23-Overhead Sign 
Support 
24-Luminaire/Light 
Support 
25-Utility Pole 
26-Other Post 
27-Culvert 
28-Curb 
29-Ditch 
30-Embankment 
31-Fence 
32-Mailbox 
33-Tree 
34-Other Fixed Object 

ACC_WEAT_TYPE 

 

Weather 

 

1-Clear 
2-Cloudy 
3-Rain 
4-Snow 

5-Sleet 
6-Fog 
7-Other 

ACC_LITE_TYPE 

 

Light Condition 

 

1-Daylight 
2-Dusk 
3-Dawn 

4-Dark-Lighted 
5-Dark-Not Lighted 

ACC_SURF_TYPE 

 

Surface Condition 

 

1-Dry 
2-Wet 
3-Snowy 

4-Icy 
5-Other 

ACC_MNRC_TYPE 

 

Manner of Collision 1-Angle 
2-Head On 
3-Rear End 
4-Sideswipe - Same 
Direction 

 

5-Sideswipe - Opposite 
Direction 
6-Not A Collision With 
A Motor Vehicle 
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Table 8: Relevant Crash Attributes from GDOT Crash Database (Continued) 

Field Name Description Coded Values  

VEH_CONF1_TYPE 

 

Contributing Factor 1 01-No Contributing Factors 
02-D.U.I 
03-Following too Close 
04-Failed to Yield 
05-Exceeding Speed Limit 
06-Disregard Stop 
Sign/Signal 
07-Wrong Side of Road 
08-Weather Conditions 
09-Improper Passing 
10-Driver Lost Control 
11-Changed Lanes 
Improperly 
12-Object or Animal 
13-Improper Turn 
14-Parked Improperly 
15-Mechanical or Vehicle 
Failure 

16-Surface Defects 
17-Misjudged 
Clearance 
18-Improper Backing 
19-No Signal/Improper 
Signal 
20-Driver Condition 
21-Driverless Vehicle 
22-Too Fast for 
Conditions 
23-Improper Passing of 
School Bus 
24-Disregard Police 
Officer 
25-Distracted 
26-Other 

VEH_TRCNTL_TYPE 

 

Traffic Control 1-No Stop Present 
2-Traffic Signal 
3-RR Signal/Sign 
4-Warning Sign 

5-Stop or Yield Sign 
6-No Passing Zone 
7-Lanes 
8-Other 

LOC_RCLINK_IDEN
TIFIER 

RC Link Number 
 

 

LOC_ACC_MILELOG Milelog   

LOC_X Longitude   

LOC_Y Latitude   

LOC_SIGNAL_TYPE Road Signal Type 

 

S-Traffic Control Device  
(Red,Amber,Green) 
P-Traffic Control 
w/Pedestrian Signalization 
A-Stop Sign 
F-Flasher-Other than 
Overhead Beacon 
L-Traffic Control Device 
with Turn Arrow 
B-Beacon-Overhead 
Flashing Amber 
 

R-Beacon-Overhead 
Flashing Red 
C-Stop All Direction 
Y-Yield Sign 
W-Yield Sign Opposite 
Direction of Inventory 
O-Stop Sign Opposite 
Direction of Inventory 
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4.2.1 Crash Location 

Crash records can be overlaid on the GIS street layer using latitude (LOC_Y) and 

longitude (LOC_X) information. However, the latitude and longitude information is not 

available for every record in the GDOT’s crash database – almost 40 percent of the 

records (505,410 out of 1,285,424 records) do not have latitude and longitude 

information.  

Another way to locate accidents is the linear referencing system. In this system, the 

location of an event is determined by a linear measure along a reference element. GDOT 

initially stores crash data using the linear referencing system and then converting the 

locations to the Cartesian coordinate because the milelog are constantly changing but the 

Cartesian coordinate is more absolute. The GDOT’s crash database uses the fields “RC 

link Number” and “milelog” to locate an event.    

The “Linear Referencing Tools” in the ArcToolbox package was used to locate crash 

records with missing latitude and longitude coordinate. First, the tool “Create Routes” 

was used to create a referencing route. The GIS road network obtained from the Georgia 

Institute of Technology DRIVE lab was input as a base map to create a referencing route. 

Next, the crash records were located on the referencing road network using the “Make 

Route Event Layer” tool. This tool located crash locations based on the associated RC 

Link ID and milepoint information. 
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Note that 47,659 of crash records (approximately four percent of the total crashes) do not 

contain either Cartesian or linear referencing coordinate informations; and therefore, are 

disregarded from the study.  

4.2.2 Intersection-Related Crashes 

Since this study focuses on road segments rather than intersections, accidents located 

within the 250-ft distance from the traffic-controlled intersections were identified as 

intersection-related crashes and removed from the further analysis. The information about 

the signal type at the intersection was obtained from field visits.  

After removing the accidents located in the 250-ft radius from the intersection, the 

records were further verified using the field “LOC_SIGNAL_TYPE” available in the 

GDOT crash database. Even though, crashes located at least 250 feet away from the 

intersection are unlikely to be intersection-related crashes, there is approximately 10 

percent of the records are coded as one of the followings: 

LOC_SIGNAL_TYPE = “S” (Traffic Control Device) 

   = “P” (Traffic Control w/Pedestrian Signalization) 

   = “C” (Stop All Direction) 

   = “L” (Traffic Control Device with Turn Arrow) 

The crashes with the codes above were removed from the analysis as the crash was likely 

intersection related. 
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4.2.3 Weather and Light Condition 

In this step, crashes that occurred during night and/or inclement weather conditions were 

removed as the study was aimed at investigating normal operating conditions. The crash 

records with the following attributes were removed: 

ACC_WEAT_TYPE = 3(Rain) and 4(Snow) 

ACC_SURF_TYPE = 2(Wet), 3(Snowy), 4(Icy), and 5(Other) 

ACC_LITE_TYPE = 2(Dusk), 3(Dawn), 4 and 5 (Dark) 

4.2.4 Crash Type 

Crashes associated with non-motor vehicle factors such as animals, pedestrians and 

bicycles were removed.  The crash records with the following attributes were removed: 

ACC_HE1_TYPE = 6 (Pedestrian), 7 (Pedalcycle), 9 (Animal), and 14 (Deer). Table 9 

depicts the crash counts and percentage by the first harmful event type. Eighty-seven 

percent of the crashes were associated with the motor vehicle in motion and less than two 

percent of the total crashes were associated with pedestrians, pedalcycles, and animals. 

Approximately two percent of the crashes during the four-year period were associated 

with the roadside utility poles. 
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Table 9: Crash Counts and Percentage by First Harmful Event Type 

First Harmful Event Counts Percent 

Motor vehicle in motion 3024 87.20% 

Non collision 22 0.63% 

Pedestrian 16 0.46% 

Pedalcycle 13 0.37% 

Animal 2 0.06% 

Deer 34 0.98% 

Utility pole 72 2.08% 

Others 357 10.29% 

Total 3468 100.00% 

 

4.2.5 Results 

Of the 1,285,424 accidents in the State of Georgia, there are 3,120 accidents located on 

the 86 study corridors (excluding intersection-related accidents) during the four-year 

period.  

Of the 3,120 segment crashes, 25 percent occurred during inclement weather. 

Approximately two percent of the segment crashes involved a pedestrian or bicycle. In 

addition, 22 percent of the segment crashes occurred during nighttime. After applying the 

filters in sections 4.2.2, 4.2.3, and 4.2.4, 60 percent of the accidents records remained and 

were used in the model development. 
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4.3 SUMMARY 

This chapter described the data processing algorithms developed for speed and crash 

data. The speed data processing algorithms from the FHWA project were used in this 

study to identify speed profiles during various conditions. Trip attributes that can be 

determined using the developed data processing algorithms include trip continuity, 

direction of travel, daylight condition, weather condition, likely free-flow trip pattern, 

traffic-controlled influence zone, and GPS signal quality. 

Several steps of data manipulations were developed to prepare and filter data so that they 

can be associated with the processed speed data. First, crash locations were determined 

using the linear referencing method. Next, crash events located within the 250-ft radius of 

an intersection were removed. Light and weather conditions were determined from the 

crash record attributes. Finally, crashes related to pedestrians, pedalcycles, and animals 

were removed from the dataset. 
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Chapter 5.  TRAFFIC ATTRIBUTES 

5.1 INTRODUCTION 

As seen in the literature review, many speed-related traffic parameters have been defined 

in previous studies. Most of these parameters are point-based, i.e., measurements at a 

specific location. In this chapter, we propose several traffic parameters derived from one-

dimensional spatial data to capture different traffic characteristics along the corridor. The 

proposed traffic attributes can be grouped into three main categories: speed-related 

measures, stop pattern measures, and other measures. The speed-related measures attempt 

to indicate the consistency of vehicle speeds on the roadway while the stop pattern 

measures attempt to capture the movement conflicts along the corridor. 

5.2 SPEED-RELATED MEASURES 

In this section, speed variations and other speed-related measures based on previous 

studies (22, 23) are examined for use as potential surrogate measures of road safety. All 

speed measures in this section exclude data from the acceleration and deceleration zones 

as this study is focused on midblock performance. 

5.2.1 Speed Variation (SD85) 

The 85th percentile speed is selected as it is widely used by roadway designers and 

practitioners to represent the normal operating condition of the roadway (45).  The speed 

variation parameter (SD85) captures the variation of the 85th percentile speed at pre-

specified intervals along the corridor and is calculated using the following formula: 
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�b85 � « 1� � 1rs	��,
 � 	���y�¬

�� . 

In the equation above, 	��,i indicates the 85th percentile speed at the ith location, where 

there are � equally-spaced locations along the corridor, and 	��� is the mean of the 85th 

percentile speeds along the corridor. As SD85 is a variability measure of operating speed, 

only likely free-flow trips are included in the measure calculation. 

The South Atlanta Road corridor (Southbound) was selected to demonstrate the 

calculation of speed measures. This corridor is a two-lane road with a reversible lane is 

classified by GDOT as a minor arterial. In addition, the primary land use of this corridor 

is dense residential (apartment complexes) and commercial. The corridor is bounded by 

traffic signals.  Approximately 680 trips were recorded` during the one-year study period 

with 45% of the total trips made under the likely free-flow condition, based on the 

algorithm presented in the previous chapter.  Seven percent of the trips entered or exited 

the corridor at a midblock location. The speed profile of all trips made on this corridor is 

illustrated in Figure 30. 
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Figure 30: Speed Profiles on the South Atlanta Road Southbound with the Red Dashed Line 
Indicating the Acceleration and Deceleration Zones 

 

Sensitivity Analysis of Sampling Distance 

Since spacing distance between two measured points may influence the calculated speed 

variation, this subsection investigates the sensitivity of the speed measures to the spacing 

distance.  

The purpose of this effort is to determine the most appropriate sampling distance for the 

speed variation calculation, for this dataset. An unduly short sampling distance will 

increase the computational time without gaining additional information while an overly 

long sampling distance will not yield the true variability of speed along the corridor. For 

example, Figure 31 depicts the 85th percentile speed profiles of the South Atlanta Road 

Southbound based on two sampling distances, 100 ft and 1000 ft. It is seen that the speed 
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variation of the 100-ft sampling distance follows the natural frequency of the 85th 

percentile speed along the corridor. The 1000-ft sampling distance, on the other hand, 

does not adequately capture the 85th percentile speed variation. For example, the speed 

variation between 2000 ft and 3000 ft is entirely missed.  

 

 

Figure 31: Profile of the 85th Percentile Speed on the Corridor ID 35 Southbound using 100-ft and 
1000-ft Sampling Distances 

To investigate the impact of spacing, the �b85 values were calculated by varying the 

spacing distance from 50 to 1000 feet, using a 25-ft increment. Figure 32 illustrates the 

sensitivity of the speed variation due to sampling distance for 12 corridors in the study. 

Each line in the plot represents �b85 of the specific corridor at the respective sampling 

distance. In general, it can be seen that the speed variation value is relatively constant in 
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the narrow spacing region, i.e., between 50 to 200 ft while the calculated values tend to 

vary at higher sampling distances. Therefore, the spacing distance of 200 ft is 

recommended for the speed variation parameter. Results for other corridors are 

summarized in Appendix B. Note that the �b85 has an increasing trend with greater 

spacing distance in general. This is because standard deviation is inversely proportional 

with number of sampling points (N). Therefore, �b85 tends to increase as number of 

sampling points decreases. 

 

Figure 32: Sensitivity of Speed Variation to the Spacing Distance 
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5.2.2 Mean of 85th Percentile Speed (M85) 

Several studies concluded that higher speed roadways results in a higher crash risk. The 

mean of the 85th percentile speed (�85) along the corridor is included in this study in an 

attempt to investigate this hypothesis. As with �b85, �85 measure is based on likely 

free-flow trip data. The �85 is formulated as: 

�85 � ∑ 	��,
¬
���  

Figure 33 illustrates the relationship between �b85 and �85. The measure M85 

represents the average 85th percentile speed of the corridor while variation of the 85th 

percentile speed profile around the mean is represented by �b85. For South Atlanta Road 

Southbound, the �b85 is 2.324 mph and the �85 is 40.5 mph. 
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Figure 33: Variation of the 85th Percentile Speed from Mean on South Atlanta Road Southbound 

 

Sensitivity Analysis of Sampling Distance 

Figure 34 shows that, unlike �b85, the speed parameter �85 is relatively insensitive to 

the spacing distance. In addition, the M85 value does not increase as sampling distance 

increase. Therefore, the 200-ft sampling distance recommended for �b85 is also 

reasonable to calculate the �85. 
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Figure 34: Sensitivity of the Average 85th Percentile speed to the Spacing Distance 

 

5.2.3 Coefficient of variation (CV85) 

Similar to �b85, this measure, ��85, also attempt to represents 85th percentile speed 

variation. In ��85, the �b85 is divided by the mean speed to reduce the effect of speed 

magnitude. The coefficient of variation (��85) is calculated as follows: 

��85 � �b85�85  
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Sensitivity Analysis of Sampling Distance 

Figure 35 shows that the fluctuation of ��85 has a similar pattern as that of �b85. This 

is expected as ��85 is �b85 scaled by �85, which is relatively constant at any sampling 

distance. From Figure 35, it is seen that CV85 is stable from 50 to 200 feet and is 

increasingly variable at larger spacing distance. As a result, the spacing of 200-ft was 

selected for CV85 calculation. 

 

Figure 35: Sensitivity of the Coefficient of Variation to the Spacing Distance 
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5.2.4 Interquartile Range of 85th Percentile speed (IQ85) 

The Interquartile Range of 85th Percentile speed (��85) is defined as the difference 

between the third and the first quartile of the 85th percentile speed based on likely free-

flow trip data along the corridor. It is formulated as: 

��85 � �3�	��� � �1�	��� 
where �3�	��� and �1�	��� are the third and the first quartiles of the 85th percentile 

speed sample (	��,�, 	��,�, … , 	��,¬) of the N locations along the corridor. 

As with �b85 and ��85, this parameter measures the fluctuation of the 85th percentile 

speed along the corridor. However, ��85 does not depend on the number of samples (�) 

as does �b85 and ��85. That is, ��85 does not increase as � decreases. 

The interquartile range of the 85th percentile speed profile on South Atlanta Road 

Southbound is illustrated in Figure 36 where the upper line is the third quartile and the 

lower line is the first quartile. The interquartile for this profile is 2.5 mph. 

Sensitivity Analysis of Sampling Distance 

Figure 37 shows that the fluctuation of ��85 due to sampling distance. Unlike �b85, 

��85 does not have an increasing trend when the sampling distance is larger. From the 

figure, it is seen that ��85 is stable from 50 to 200 feet and increasingly variable at larger 

spacing distance. As a result, the spacing of 200-ft was selected for ��85 calculation. 
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Figure 36: The 85th Percentile Speed Profile with the Interquartile Range Marked by Dashed Line 

 

Figure 37: Sensitivity of the Interquartile Range of 85th Percentile Speed to the Spacing Distance 
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5.2.5 Variation of the 85th speeds Percentile from the speed limit (SVLIM) 

The difference between the operating speed and design speed at a particular location can 

be used to measure the design consistency of a single road element (46). However, the 

design speed is not readily known for most of the corridors. Thus, speed limit was 

utilized, which is typically related to the design speed (45). In this study, since we have 

speed measurements along the corridor, a new measure (��>��) is proposed to quantify 

the design consistency along the roadway: 

��>�� � « 1� � 1rs	��,
 � �­®¯y�¬

��  

where  	��,i indicates the 85th percentile speed at the ith location where there are � 

equally-spaced locations along the corridor, and �­®¯ is the speed limit of the corridor. 

Note that the 85th percentile speed is assumed to represent of the operating speed of the 

roadway. The calculation is similar to the speed measure in Section 5.2.1. The only 

difference is that the variation is calculated by comparing the observations with the 

corresponding speed limit. 

The variation of the 85th percentile speed from the speed limit is illustrated in Figure 38. 

The variation from speed limit is almost 6 mph on this corridor. 
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Figure 38: Variation of the 85th Percentile Speed from Speed Limit on South Atlanta Road 
Southbound 

 

Sensitivity Analysis of Sampling Distance 

Figure 39 shows the sensitivity of ��>�� to the sampling distance. It is seen that ��>�� 

is stable from 50 to 200 feet and increasingly variable at larger spacing distance. As a 

result, the spacing of 200-ft was selected for ��>�� calculation. 
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Figure 39: Sensitivity of the Coefficient of Variation (SVLIM) to the Spacing Distance 

 

5.2.6 Mean of Speed Band (M_BND) 

Speed band (∆G) is defined as the difference between the 95th percentile and the 5th 

percentile (	"� � 	�) speed during likely free-flow condition at a specific point. This 

point-specific measure is intended to capture the variation of multiple trips’ speeds at a 

single location. The speed band profile of South Atlanta Road Southbound is shown in 

Figure 40. It is seen that this variation measure is not constant throughout the corridor.  

Therefore, the proposed measure is the average of the variability of the speed throughout 

the corridor and is of the form: 
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�_±�b �  1�r∆G,
¬

��  

where ∆G,
 is the speed band at location i of the N sampling locations on the corridor. The 

mean of speed band of the South Atlanta Road Southbound corridor is approximately 9 

mph. 

 

Figure 40: The 95th and 5th Percentile Speed Profile of South Atlanta Road Southbound 
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Sensitivity Analysis of Sampling Distance 

Figure 41 shows the sensitivity of M_BND to the sampling distance. It is seen that 

M_BND  is stable from 50 to 400 feet and with increasing variability at larger intervals.  

To be consistent with other measures, the spacing of 200-ft was selected for M_BND  

calculation. 

 

Figure 41: Sensitivity of the Speed Band (M_BND) to the Sampling Distance Interval 
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5.2.7 Variation of Speed Band (SD_BND) 

The variation of the speed band is closely related to the mean of the speed band. This 

measure is designed to capture the variation in the variability of the speed (i.e., ∆G) along 

the corridor and is formulated as: 

�b_±�b � « 1� � 1rs∆G,
 ��_±�by�¬

��  

Note that  ∆G,
 indicates the speed band (	"�,
 � 	�,
) at the ith location, where there are � 

equally-spaced locations along the corridor, and �_±�b is as previously defined. The 

variation of speed band South Atlanta Road Southbound is seen in Figure 40. The 

�b_±�b for this corridor is around 1.5 mph. 

Sensitivity Analysis of Sampling Distance 

Figure 42 shows the sensitivity of �b_±�b to the sampling distance. It is seen that 

�b_±�b is stable from 50 to 200 feet with increasing variability at larger sampling 

intervals. As a result, the spacing of 200-ft was selected for �b_±�b calculation. 

 



 

110 

 

 

Figure 42: Sensitivity of the Variation of Speed Band (SD_BND) to the Spacing Distance 

 

5.2.8  Acceleration noise (AN) 

Acceleration noise is defined as the root mean squared of the acceleration (27): 


� � 112 �,�-� � ,.���/-*
�  

or  


� � 112 ,�-��/- � �,.���*
�  
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where  v(t) and a(t) are the speed and acceleration of a car at time t and aav is the average 

acceleration of the car for a trip taken during time T. This time-averaged calculation gives 

more weight to the low speed data points; therefore, when the vehicle is stationary during 

the trip, the authors suggested omitting the stopped time from the calculation to avoid 

bias from the low speed data points. Alternatively, the acceleration noise could be 

defined in terms of space averages, i.e., averaging acceleration values at every certain 

distance (27). 

In this study, the acceleration noises were calculated using both likely free-flow trips only 

and all vehicle trips during daylight and dry road surface condition. The datasets are 

generated using the algorithm developed in the previous chapter. It is hypothesized that 

the acceleration noise during free-flow condition is a function of the noise caused by road 

geometries and drivers. The dataset of all trips during daylight and dry conditions 

includes free-flow trips as well as non-free-flow trips. Therefore, the acceleration noise 

should include that resulting from traffic conditions, road geometries, and drivers. 

Under the free-flow condition, acceleration noise calculated using the time-averaged and 

space-averaged methods are expected to be similar. However, when including non-free-

flow trips, the presence of stopped data points may reduce the calculated acceleration 

noise when using the time-averaged method.  
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Space-Averaged Acceleration Noise 

The value of the space-averaged acceleration noise (
(�) of a trip is approximated by: 


(� � 1Nr³,
 � ,�´�¬

��  

Note that ,
 is the acceleration rate at location i where there are � equally-spaced 

locations along the corridor, and ,� is the mean of the � acceleration samples. To evaluate 

the sensitivity of the spacing interval, intervals were tested from 50 ft to 200 ft. It is 

further noted that the acceleration noise, 
(� is the acceleration noise of a single trip. 

However, the subject of interest in this study is the corridor rather than the trip. That is, 

acceleration noise in this study is considered as a property or characteristic of the 

corridor. Therefore, acceleration noise from multiple trips should be aggregated to one 

single value to represent the corridor.  

To accomplish this, first, acceleration noise of multiple trips made by the same driver are 

averaged to represent the driver’s acceleration noise. We obtain the driver’s acceleration 

noise (
z�) by aggregating the acceleration noises (
(�) of T trips made by the same 

driver: 


z� � 11r
(�*
(��  

where 
z� is the average acceleration noise of driver /. 
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Next, acceleration noise from multiple drivers are averaged to represent the corridor’s 

acceleration noise. We obtain the corridor’s acceleration noise (
)�) by aggregating 

acceleration noises (
z�) of D drivers on the same corridor: 


)� � 1br
z�µ
z��  

where 
)� is the acceleration noise of corridor \ 

As aforementioned, 
)� is calculated for both free-flow condition and all trips during 

daylight and dry conditions. These are denoted as `�_?? for the acceleration noise of the 

free-flow trips and ̀�_`? for the acceleration noise of the all trips during daylight and 

dry conditions. 

Sensitivity Analysis of Sampling Distance 

Figure 43 shows the sensitivity of `�_?? to the sampling distance and Figure 44 shows 

the sensitivity of ̀�_`? to the sampling distance. It is seen that, in general, ̀ �_`? is 

higher and more variable than `�_??. This is because `�_`? includes trips under likely 

non-free-flow condition. In addition, both `�_`? and ̀ �_?? are relatively stable from 

50 to 200 feet and becomes more variable at larger sampling distances. As a result, the 

spacing of 200-ft was selected for the acceleration noise calculation. 
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Figure 43: Sensitivity of Acceleration Noise under Free-Flow Condition (AN_FF) to the Sampling 
Interval 

 

Figure 44: Sensitivity of Acceleration Noise for All Trips under Daylight and Dry Conditions 
(AN_AF) to the Sampling Interval 
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Time-Averaged Acceleration Noise 

Figure 45 represents a non-free-flow trip traversing South Atlanta Road Southbound 

corridor during the weekday PM peak. The total travel time through the corridor was 198 

seconds. The stopped time – defined as speed lower than 5 mph – of this trip was 99 

seconds, equivalent to 50% of the total travel time. Stationary data points associated with 

the zero acceleration rates as shown in Figure 46. As a result, including the stationary 

data points in the calculation reduces the magnitude of the acceleration noise. 

 

Figure 45: Speed Profile of a Non-Free-Flow Trip Traversing the Corridor South Atlanta Road 
Southbound 
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Figure 46: Speed (Left Axis) and Acceleration Rate (Right Axis) vs. Time of a Non-Free-Flow Trip 

In this study, the time-averaged acceleration noise (
(�) of a single trip is approximated 

by:  


(� � 1Nr³,
 � ,�´�¬

��  

where ,
 is the acceleration at time Z and is measured at every one second throughout the 

N seconds of the trip’s travel time, and ,� is the average acceleration of the trip. The time-

averaged acceleration noise for driver (
z�) and corridor (
)�) were obtained in the same 

manner as in the space-averaged case. 
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Comparison of With and Without Stopped Time Acceleration Noises 

The corridor’s acceleration noise values for every study segments were calculated and 

plotted in Figure 47. The left hand side figure (a) depicts AN values under all traffic 

condition while the right hand side figure (b) depicts AN values under free-flow 

condition (i.e., all trips during daylight and dry condtions). The x-axis represents the 

acceleration noise calculated from all data points and the y-axis represents the 

acceleration noise calculated from the same dataset but without stopped time – defined as 

data points having measured speed less than 5 mph. Figure 47(a) shows that all the points 

are located at or above the x=y diagonal line. This means that, after removing stationary 

data points, AN tends to increase for all traffic condition. Note, the stopped time does not 

appear to have a significant impact on the acceleration noise in this study because the 

corridor’s acceleration noise was averaged from multiple trips and multiple drivers.  

Figure 47 (b) shows that acceleration noise under likely free-flow condition are not 

significantly affected by the calculation method, i.e., with or without stopped time in the 

dataset. This is as expected as the free-flow condition does not include any trips with a 

low or zero speed. 

In summary, the stopped time causes the underestimation of the acceleration noise under 

all traffic condition; therefore, it is suggested to remove the stopped time before 

calculating the time-averaged acceleration noise. 
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                 (a)                  (b) 

Figure 47: Comparison of Acceleration Noises (mph/sec) With and Without Stationary Data Points 
under (a) All Traffic Condition and (b) Free-Flow Condition 

 

Comparison of Time-Averaged and Spaced Average Acceleration Noises 

Since there are two possible methods to calculate the acceleration noise, this sub-section 

determines which calculation method is appropriate to the dataset in this study. It is noted 

that the 200-ft sampling distance was used to calculate the space-averaged acceleration 

noise under free-flow and all traffic conditions.  

Figure 48 illustrates the acceleration noise computed by the time-averaged and the space-

averaged methods. Figure 48 (a) shows the acceleration noise given all trips under 

daylight and dry conditions. When the acceleration noise is high, the time-averaged 

method tends to give a higher value. This is because the time-averaged method tends to 

0.4 0.6 0.8 1.0 1.2

0.
4

0.
6

0.
8

1.
0

1.
2

All Traffic Condition

AN with zero speed

A
N

 w
/o

 z
er

o 
sp

ee
d

0.4 0.6 0.8 1.0 1.2

0.
4

0.
6

0.
8

1.
0

1.
2

Free-Flow Condition

AN with zero speed

A
N

 w
/o

 z
er

o 
sp

ee
d



 

119 

 

oversample at lower speed which also tend to have higher acceleration/deceleration rates. 

Figure 48 (b) shows the acceleration noise under potentially free-flow condition. It is 

seen that under this condition, the acceleration noise from both methods yield similar 

results.  

 

(a) (b) 

Figure 48: Relationships between Time-Averaged and Space-Averaged Acceleration Noise (mph/sec) 
under (a) All Traffic Condition and (b) Free-Flow Condition 

As a result, this study selects the time-averaged acceleration noise calculation method as 

it is reflective of the variation due to traffic interference when considering all trips and 

provides a similar result to the space-averaged during the free-flow condition. 
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5.3 STOP-RELATED MEASURES 

Crash frequency is highly correlated with roadside features such as driveway density, 

side street density, median type, and adjacent land use (30, 32, 47, 48). Several measures 

related to stopping maneuvers are proposed to represent traffic characteristics influenced 

by roadside features mentioned previously. Unless otherwise stated, all stop-related 

measures utilize all trip data during daytime and dry conditions. 

5.3.1 Stop Frequency per Trip per Mile (STOPS) 

The stop frequency per trip per mile is essentially the ratio of number of stops while the 

instrumented vehicles traverse the midblock section of the corridor to number of trips that 

traversed the corridor per unit length. As stated, only trips made during the daylight and 

dry road surface condition are considered. A single stop is defined as the moment when 

the vehicle reduces its speed under 5 mph until the speed again exceeds 5 mph. There can 

be more than one stop along the corridor in a single trip. For example, the speed profile 

plotted in Figure 49 experienced five stops which the vehicle traversed South Atlanta 

Road Southbound. The parameter �1�]� can be formulated as: 

�1�]� � �^. ^a �-^[{�^. ^a 1_Z[{ O >F�c-� 
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Figure 49: Speed Profile of a Non-Free-Flow Trip Traversing the Corridor 30SB 

 

5.3.2 Coefficient of Variation of stops within 100-ft block (CV_S100) 

While �1�]� measures the stop frequency per trip per length of the corridor, another 

measure was desired to indicate the dispersion of stop locations. Figure 50 compares 

speed profiles and stop location distributions of two corridors, namely Roberts Drive 

Southbound and Westside Parkway Westbound. The �1�]� values for the corridors 

Roberts Drive Southbound and Westside Parkway Westbound are 0.33 and 0.35 

stops/trip-mile, respectively. Even though the �1�]� values are similar, the speed 

profiles and histograms show that the distributions of the stop locations are quite different 

for the two corridors. That is, stop locations on Roberts Drive Southbound are more 
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evenly distributed compared with those on Westside Parkway Westbound. The difference 

in stop location distribution might result in different crash distribution.  

  

  

(a) STOPS=0.33/trip-mile, CV_S100=0.73 (b) STOP=0.35/trip-mile, CV_S100=1.19 

Figure 50: Speed Profiles and Histogram of Stop Frequency in each 100-ft block along the corridor 
(a) Roberts Drive Southbound and (b) Westside Parkway Westbound 

Therefore, the measure ��_�100 or the coefficient of variation of stops within each 100-

ft block is developed to capture the difference in distribution of stop locations. First, the 

road segment is divided into 100-ft intervals. Next, the number of stops within each 

interval is determined. This is similar to creating a histogram of stop location frequency 
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with a 100-ft bin size. Mean and standard deviation of frequency in each bin are 

calculated. Finally, we obtain the parameter, ��_�100, as the ratio of mean to standard 

deviation of the frequency of stop locations. It can be formulated as: 

��_�100 � �b_�100�_�100  

where �_�100 and �b_�100 are the mean and standard deviation of stop frequency in 

the corridor intervals. 

5.3.3 The 90th Percentile Count of Stops within 100-ft Intervals (P90_S100) 

Side streets or driveways with high traffic volumes may create higher numbers of 

conflicts with the main street traffic and, in turn, increase the crash risk. The 90th 

percentile highest stop frequency within 100-ft interval represents degree of conflict 

between the main street and the side street or driveway on the corridor.  

5.3.4 Moran’s Index of Number of Stops within 100-ft Block (MI_S100) 

The Moran’s Index (49) provides a measure of the spatial auto correlation of a variable. 

For this study, it is desired to measure the correlation between the value of stop frequency 

in one location (interval) and values in neighboring interval. When the high stop 

frequency interval are located close to each other in one area and low stop frequency 

intervals are also located close to each other in another area, it indicates that majority of 

vehicles tend to stop in the same location, which could be a major driveway with high 

conflict. These areas have the potential to be high crash locations. The Moran’s Index can 

be calculated as: 
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� � �∑ ∑ �
L�!
 � !��s!L � !�y�L���
��s∑ ∑ �
L�L���
�� y∑ �!
 � !����
��  

where N = Number of intervals along the corridor 

 !
 = Stop frequency of interval Z, Z � 1, … , � 

 !L = Stop frequency of the neighbor interval �, � �  1, … , � 

 �
L = A weight indexing location of Z relative to � 
Moran’s Index varies between -1 and +1. The value close to +1 indicates high clustering 

pattern of stop locations, i.e., high and high frequency intervals or low and low frequency 

intervals are close to each other. On the other hand, the value close to -1 indicates a 

highly dispersed pattern or uniform distribution of stop locations, i.e., high and low 

frequency interval are alternately next to each other. When Moran’s Index is zero, the 

stop locations are distributed randomly. Figure 51 illustrates the example of dispersed, 

random, and clustered spatial patterns. As an example in this study, the Moran’s Index 

for Robert Drive Southbound is -0.03 while the value for Westside Parkway Westbound 

is 0.74. 
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(a) Dispersed       
(Moran’s I →→→→ -1) 

(b) Random       
(Moran’s I →→→→ 0) 

(c) Clustered     
(Moran’s I →→→→ +1) 

Figure 51: Spatial Distribution Patterns (50) 

 

5.4 OTHER MEASURES 

5.4.1 Percent Through-Traffic Trips (P_THRU) 

The ratio of through traffic trips to all trips is used to determine degree of activity of land 

use along the corridor during daytime, dry road surface conditions. The term “all trips” 

include through traffic as well as the entering/exiting trips to/from the side streets or 

driveways along the corridor. A high percentage of through traffic indicates low activity 

land use, which also indicates low traffic on side street/ driveways. The percent through 

traffic trips can be formulated as: 

]_1@�� � �^. ^a 1�_^Xc� 1_,aaZ\ 1_Z[{�^. ^a 1^-,Y 1_Z[{  
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5.4.2 Percent Free-Flow Trips (P_FF) 

The proportion of potentially free-flow trips (determined using the algorithm in Section 

4.1.7) to all trips is used to determine degree of traffic congestion during the daytime and 

on dry road surface condition. The percent free-flow trips can be formulated as: 

]_?? � �^. ^a?_FF � ?Y^� 1_Z[{�^. ^a 1^-,Y 1_Z[{  

 

5.5 SUMMARY 

The traffic attributes can be divided into three categories including speed-related 

measures, stop-related measures, and other measures. The speed-related measures capture 

the speed characteristics of the roadway, including speed variation, mean of the 85th 

percentile speed, coefficient variation of the 85th percentile speed, interquartile range of 

the 85th percentile speed, variation from the speed limit, mean and variation of the speed 

band, and acceleration noise. The stop-related measures capture the conflict movement 

characteristics of the roadway including stop frequency, coefficient of variation of stops 

within each 100-ft long interval, the 90th percentile count of stops within each 100-ft long 

interval, and the Moran’s Index. The other measures capture the intensity of land use 

activities, including percent through trips and percent free-flow trips. The traffic 

attributes to be considered in the model development effort are summarized in Table 10.  
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Table 10: Summary of Traffic Attributes 

Traffic Variable Description 

SD85 Variation of 85th percentile speed along corridor 

M85 Mean of 85th percentile speed along corridor 

CV85 Coefficient of Variation of 85th percentile speed along corridor 

IQ85 Interquartile range (Q3-Q1) of 85th percentile speed along corridor 

SVLIM Deviation of 85th percentile speed from speed limit along corridor 

M_BND Mean of speed band (95th-5th percentile speed) along corridor 

SD_BND Deviation of speed band (95th-5th percentile speed) along corridor 

AN_FF Acceleration noise of free-flow trips 

AN_AF Acceleration noise of non-free-flow trips 

STOPS Stop frequency per trip per mile 

CV_S100 Coefficient of variation of stops within 100-ft interval 

P90_S100 The 90th percentile count of stops within 100-ft interval 

MI_S100 Moran’s Index 

P_THRU Percent through-traffic trips 

P_FF Percent free-flow trips 
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Chapter 6.  SENSITIVITY OF SPEED MEASURES 

6.1 INTRODUCTION 

This chapter explores the effects of data filters, developed in Chapter 4, on the speed 

measures, developed in Section 5.2. The analysis investigates the sensitivity of the 

measures to the application of sequential filters and the effect of individual filters. The 

former analysis, discussed in Section 6.2, determines the changes in speed measures after 

each data filter is applied sequentially. The latter analysis, discussed in Section 6.3, tries 

to answer the “what-if” type of questions. For instance, one might wonder what if we do 

not apply the weather filter because we do not have weather data, how it is going to affect 

our speed measures given other conditions remain the same. 

6.2 SENSITIVITY TO SEQUENTIAL FILTERS 

6.2.1 Methodology 

As stated, the speed measures in Section 5.2 were calculated using likely free-flow data 

during the non-inclement daylight conditions. The identification of a trip as likely free-

flow during non-inclement conditions is based on a series of identified filters. In this 

section, the speed measures are calculated after each filtering step to see how the values 

of speed measures vary as each data filter is sequentially applied.  

 Table 11 lists the seven data filters being used in the analysis. Table 12 identifies the 

eight incremental steps in the application of the filters starting from run number 0, which 

does not have any filter applied, to run number 7, which has all seven filters applied. The 

“plus” symbol in front of the filtering codes in Table 12 indicates that one additional 



 

129 

 

filter is included to the previous filter set. Only the trips that pass all filtering criteria in 

each run will be used to calculate the speed measures for the corridor. Table 13 shows the 

data structure of the data file used to calculate the speed measures for each run. Each line 

represents individual trip’s speed data sampled every 200 ft, tagged by nine filter values. 

The filter values are determined for every trip according to the discussion in Section 4.1. 

The distance sampling interval for the speed measures follows Section 5.2. The first 

record states that trip No. 1 (TRP01) of driver No. 1 (DVR01) occurred during daylight 

(L=1), inclement weather (R=1), free-flow traffic condition (Q=0,F1=4, F2=1, and D=0), 

and had a high GPS signal quality. This trip was made on Friday (W=5) between 9:00 

and 11:00 time period (O=2). 

Table 11: Data Filter Code Description 

Filter Number 
in Section 4.1. 

Description Code 

5 Daylight Filter L 

6 No Rain Filter R 

7A Queue Filter Q 

7B Free-Flow Filter Type I F1 

7C Free-Flow Filter Type II F2 

9 Highly Deviated Trips Filter D 

10 GPS Signal Quality Filter S 

- Weekday/Weekend W 

- Peak/ Off-Peak Period O 
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Table 12: Sequence of Filters Applied to the Speed Data 

Run Filters Applied Code 

0  RAW 

1 L +L 

2 LR +R 

3 LRQ +Q 

4 LRQF1 +F1 

5 LRQF1F2 +F2 

6 LRQF1F2D +D 

7 LRQF1F2DS +S 

 

Table 13: Data Structure of GPS Speed Data with Tagged Filtering Information 

TRIP ID 

Filter Value Speed Data 

L R Q F1 F2 D S W O @0 ft @200ft … 

DVR01_TRP01 1 1 0 4 1 0 1 5 2 34.00 37.09 38.28 

DVR01_TRP02 1 0 0 2 4 0 1 6 2 38.83 38.47 39.43 

DVR01_TRP03 1 0 0 4 4 1 1 4 2 35.04 33.15 34.77 

DVR01_TRP04 1 0 0 2 2 1 1 1 4 36.28 32.28 30.21 

DVR01_TRP05 1 0 0 2 4 1 1 2 5 40.33 39.06 39.49 

DVR02_TRP01 1 0 1 0 0 1 1 5 3 32.06 30.05 28.73 

DVR02_TRP02 1 0 0 4 1 1 1 5 5 41.31 41.53 39.71 

DVR02_TRP03 1 0 1 0 0 1 1 5 4 34.59 34.65 32.82 

DVR02_TRP04 1 0 1 0 0 1 1 1 4 35.68 32.63 35.56 

DVR02_TRP05 1 0 0 2 4 0 1 4 2 38.05 38.99 40.68 

DVR03_TRP01 1 0 0 2 3 1 1 1 3 37.08 32.25 27.59 

DVR03_TRP02 1 1 0 2 2 0 1 1 3 41.70 39.69 40.01 
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6.2.2 Results and Discussions 

Six corridors were selected for sensitivity analysis. Two of the six corridors have 

relatively low variation (26 Eastbound and 71 Westbound), two corridors have relatively 

high variation (40 Eastbound and 71 Westbound), and two corridors have high stop 

frequency (03 Eastbound and 35 Southbound). The degree of variability was determined 

from the calculated SD85 and the frequency of stops were determined from the speed 

profile plots. 

The results are presented in bar chart format (Figure 52 to Figure 57) where each figure 

reports eight traffic attributes (�b85, �85, ��85, ��85, ��>��, ̀ �, �_±�b, and 

�b_±�b) and two data availability attributes (No. of drivers and No. of trips) for the 

individual corridor. An individual bar chart represents the sensitivity of one measure, 

where each bar shows the value of the speed measure of a single scenario. The denotation 

of filter code is listed in Figure 9. Filters are sequentially added from left to right, i.e., the 

left most bar does not incorporate any data filters while the right most bar has seven 

filters applied. 

In general, the speed measures derived from the 85th percentile speed (���) profile such as 

�b85, �85, ��85, and ���85 are minimally affected by the filter set. For example, the 

��� profiles before appending any filters and after applying all seven data filters on South 

Atlanta Road Southbound is illustrated in Figure 58. The before and after speed profiles 

show that the profile pattern remains relatively the same except a slightly offset 

(approximately 1 mph higher) after the filtering process. The small change in speed 
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profile is due to the fact that the filters Q, F1, F2, and D are designed to remove 

potentially non-free-flow trips, which normally impact trips with lower speeds. 

Therefore, ��� tends to increase slightly after removing potentially non-free-flow trips. 

This results in a stable �b85 and a small increase of �85.  

The variation from speed limit of ��� (��>��) is more sensitive to the data filters than 

the measures �b85, �85, ��85, and ���85 . That is, the design consistency parameter 

shows a gradually increasing trend with the sequence of filters. The likely reason is that 

the measure ��>�� squares the difference between ��� and the speed limit. Therefore, 

even a small increase in mean speed along the corridor would noticeably increase the sum 

of squares of the difference between ��� and speed limit. 

Acceleration noise (̀�) decreases as more data filters are applied. This result is 

reasonable as the data filters increasingly removed additional potentially non-free-flow, 

which are the trips that that tend to have higher acceleration noise than the free-flow trips.  

The speed band (�"� � ��) indicates the difference between the high and low speeds at a 

point location, which represents speed variation at a specific point on the road. The two 

speed band measures, namely, �_±�b and �b_±�b determine the magnitude and 

variation of the speed band along the corridor, respectively. The data filters seem to have 

the highest influence on these two measures. Both �_±�b and �b_±�b have a 

decreasing trend as more data filters apply.  

The decreasing trend of �_±�b implies that the size of speed band decreases as more 

potentially non-free-flow trips are removed in the filtering process. The measure 
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�b_±�b also has a decreasing trend. The results shows that the variation of the speed 

band decreases as more of potentially non-free-flow trips are removed.  

To visualize the sensitivity of the speed band by data filter, the speed band profiles of 

South Atlanta Road Southbound are plotted in Figure 59. The speed band is bounded by 

the 95th (�"�) and 5th (��) percentile speed profiles. The “before” speed band is denoted 

by two black solid lines and the “after” speed band is denoted by two red dashed lines. 

Interestingly, this figure shows that the data filters influence mostly the low speed 

percentile and rarely to the high speed percentile. The �� speed profile changes 

dramatically after the data filtering process while the �"� speed profile remains mostly 

the same. Additionally, the �� pattern became similar to the �"� after the data filtering 

process. In conclusion, the size of speed band (�_±�b) decreases after the data 

processing because  �� increases while �"� remains relatively constant. Furthermore, the 

speed band has less variability (�b_±�b) along the corridor because the �� pattern 

becomes similar to the �"�. 
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Figure 52: Sensitivity of Sequential Data Filters to the Traffic Attributes on Corridor 03 Eastbound 
(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, D=Deviated Trips, 
S=GPS Signal) 
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Figure 53: Sensitivity of Sequential Data Filters to the Traffic Attributes on Corridor 26 Westbound 
(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, D=Deviated Trips, 
S=GPS Signal) 
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Figure 54: Sensitivity of Sequential Data Filters to the Traffic Attributes on South Atlanta Road 
Southbound (L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, 
D=Deviated Trips, S=GPS Signal) 
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Figure 55: Sensitivity of Sequential Data Filters to the Traffic Attributes on Corridor 40 Eastbound 
(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, D=Deviated Trips, 
S=GPS Signal) 
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Figure 56: Sensitivity of Sequential Data Filters to the Traffic Attributes on Corridor 71 Westbound 
(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, D=Deviated Trips, 
S=GPS Signal) 
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Figure 57: Sensitivity of Sequential Data Filters to the Traffic Attributes on Corridor 92 Southbound 
(L=Light, R=No Rain, Q=Queue, F1=Free-Flow Type I, F2=Free-Flow Type II, D=Deviated Trips, 
S=GPS Signal) 
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Figure 58: The 85th Percentile Speed Profile of South Atlanta Road Southbound Before (Solid Line) 
and After (Dashed Line) Applying All Filters 

 

Figure 59: The Speed Band (V95-V5) of South Atlanta Road Southbound of Before (Bounded by Solid 
Lines) and After (Bounded by Dashed Lines) Applying All Filters 
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6.3 SENSITIVITY TO INDIVIDUAL FACTORS 

In this section, the filters of interest are switched on and off from the filter set to 

determine how each filter affects the speed parameters.  

6.3.1 Methodology 

Eleven scenarios (numbers 0, 1,2…10) were modeled to gain an understanding of the 

influence of individual filters. The testing factors and filter combinations are described in 

Table 14 and the filter codes are depicted in Table 15. The “Code” column in Table 14 

indices what filters are turned on or off compared with the base scenario “LRFS”. The 

plus sign indicates the filter is turned on and the minus sign indicates the filter is turned 

off. For example, the code “-F+O” denotes that the scenario number 10 has the free-flow 

filter turned off and the off-peak filter turned on, compared with the base case filter 

sequence, LRFS. Therefore, the filters applied in this combination are L, R, O, and S. 

In Table 14, the base scenario (No.1) has the filters L, R, F and S on while other filters, 

namely, W, O, and D are turned off. Scenario No.0 is when there are no filters applied to 

the speed data, accounting for a calculation of the value of speed measures when no data 

filtering processes are involved. Scenarios 2 to 8 test the influence of the daylight, 

weekday/weekend, inclement weather, free-flow condition, off-peak period, highly 

deviated trip pattern, and GPS signal quality, respectively. Scenario 9 tests the sensitivity 

of speed measures when the GPS signal filter is applied first, instead of being the last 

filter. The last scenario, number 10, tests whether the off-peak period can be used as a 
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surrogate of the free-flow pattern algorithm since, in some situations, the speed profile 

data may not be available. 

Note that in this section we combined three free-flow filters, namely, Q, FF1, and FF2 as 

free-flow filter (F). This is necessary as these filters are designed to be run together and 

in sequences. In addition, the off-peak filter (O) does not appear in the previous analysis. 

The off-peak period is defined in Table 16. The off-peak periods exclude the pre-defined 

peak periods which are the morning peak (7:00-9:00), the midday peak (11:00-13:00), 

and the evening peak (16:00-19:00). The Weekday (W) filter is also included to 

determine the difference between a full week (Monday to Sunday) and weekday only 

(Monday to Friday) traffic characteristics. 
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Table 14: Planning Matrix to Determine Individual Factor Effects, 11 Runs 

No. Effect Filter 
Sequence 

∆ Base L W R F O D S 

0 Raw Data  -LRFS        

1 Base LRFS LRFS x  x x   x 

2 Daylight RFS -L   x x   x 

3 Weekday LWRFS +W x x x x   x 

4 Rain LFS -R x   x   x 

5 Free-Flow LRS -F x  x    x 

6 Off-peak LRFOS +O x  x x x  x 

7 Highly-Deviated Trips LRFDS +D x  x x  x x 

8 GPS Signal LRF -S x  x x    

9* GPS Signal Sequence SLRF SLRF x  x x   x 

10 Off-peak, No F Filter LROS -F+O x  x  x  x 

*Note that Run 9 applied the same set of filters as Run 1; however, GPS Signal filter was used at the first 
step in Run 9 to determine the sensitivity of the speed measures due to the sequence of filters. 

 

Table 15: Filter Code Description 

Code Filter 

L Daylight Filter 

W Weekday Filter 

R No Rain Filter 

F A Set of Free-Flow Filters 
(Q+F1+F2) 

O Off-Peak Filter 

D Highly Deviated Trip Filter 

S GPS Signal Check Filter 
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Table 16: Off-Peak Periods 

Off-Peak Period  Time Period 

1 Midnight-7:00 

2 9:00-11:00 

3 13:00-16:00 

4 19:00-midnight 

 

6.3.2 Results and Discussion 

The sensitivity analysis results for the six selected corridors are presented in the bar chart 

format from Figure 60 to Figure 65. Each figure contains ten bar charts: eight are the 

results of speed measures and the other two charts show number of drivers and number of 

trips left from the filtering process. An individual bar chart contains 11 bars, which report 

the values of the same speed measure from 11 filtering combinations listed in Table 14. 

The denotation of the filter code is listed in Table 15. The values of every bar should be 

compared with the base case, LRFS to determine the effect of the factor that has been 

turned on or off. 

The followings are the results and comparisons between each of the ten filter 

combinations and the base scenario. 

No Filter (-LRFS) 

In most cases, the speed measures related to ��� changed only slightly after all the filters 

were removed. The measures, �b85, ��85, and ��85 increase a little. This means that 

��� only slightly more variable if we do not use the filters. The average of ��� along the 

corridor (�85) remains stable with or without the filters.  
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The design consistency parameter (��>��) has a decreasing trend due to lower ��� when 

all the filters are removed.  

The higher value of acceleration noise (`�) is consistent among the six corridors. This is 

a reasonable result as the acceleration noise is expected to be lower under free-flow 

traffic condition (42). 

Regarding the speed band measures, the size (�_±�b) and variability (�b_±�b) of 

speed band (�"� � ��) increases significantly after removing the data filters for most of 

the corridors.  

In summary, the “-LRFS” and the “LRFS” provide similar results for �b85, �85, ��85, 

and ��85 as these variables are not highly affected by the non-free-flow traffic. 

However, the “-LRFS” scenario yields significant higher speed band measures and 

acceleration noise while giving a lower value of ��>��. Therefore, it is reasonably 

acceptable to derive �b85, �85, ��85, and ��85 from the raw speed data. 

The followings are the summary of the effects of the individual filters to the free-flow 

data set. Note that since every corridor has different speed characteristics, the summary is 

the findings from the overall results, rather than corridor-by-corridor descriptions. 

Light Condition (-L) 

The comparison between daylight (LRFS) and all day (RFS) speed data show that the 

speed measures have similar values during the day and night. This implies that the 

potentially free-flow trips during the day and night have similar characteristics. 
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Weekday Only (+W) 

The variation measures seem to be a little lower when including only the weekday free-

flow trips in the data. This is likely because weekday and weekend trips have different 

characteristics. Combining the two distributions increase the variability in the dataset. 

Weather Condition (-R) 

Removing the weather filter does not significantly affect the speed measures of the likely 

free-flow trips. This is likely due to small number of trips being made during the rain 

condition. 

All Traffic Condition (-F) 

The result is in line with expectation. That is, the free-flow filters remove the speed 

variability due to the traffic condition. The measures of speed variability increases as the 

free-flow filters are removed. 

Off-Peak Only (+O) 

Adding the fixed off-peak filter does not affect the speed measures of the already likely 

free-flow trips. This means the free-flow filters effectively remove the non-free-flow trips 

during the fixed peak time. 

Highly Deviated Trips (+D) 

The highly deviated trip filter does not significantly affect the speed measures of the 

likely free-flow trips.  
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No Signal Quality Check (-S) 

With or without signal check filter does not affect the speed measure results significantly.  

Check GPS Signal Quality First (SLRF) 

The GPS signal quality check filter is used to determine the percent time an individual 

trip contains “good” quality GPS signal data (the criteria are described in 4.1.10). If more 

than 20 percent of the signal data is identified as low quality, the trip is identified as 

having low quality data and removed from analysis. This filter is strategically placed after 

the acceleration/deceleration zone filter so that low quality data in these zones would not 

be included. That is, as the low quality data in the acceleration/deceleration zones is 

removed before the signal check filter, this trip has a higher chance to pass the 80 percent 

good signal criteria. The assumption is that significant portion of low quality data tend to 

be found under stop conditions, which are more likely to occur at intersections. As this 

study is concerned with midblock performance, intersection data, and thus the source of 

much of the low quality data, will be removed as part of the standard filters. 

The SLRF filter combination places the signal check filter as the first filter. The SLRF 

case shows very similar results to the LRFS case. 

Off-Peak Period as a Free-Flow Filter (-F+O) 

This scenario tests the possibility to use the off-peak period as a free-flow filter. 

The results show that the -F+O filter does not reduce the variation as significantly as the 

free-flow filter. In some corridors, there is even a higher speed variation than the raw data 
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case. One reason for this behavior may be that the fixed off-peak period might not match 

with the real off-peak time on those corridors. Therefore, the off-peak filter might remove 

free-flow condition trips while leaving non-free-flow condition in the dataset. As a result, 

the speed data become more variable. In summary, the fixed off-peak filter should not be 

used as a surrogate for the free-flow filter. 
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Figure 60: Sensitivity of Data Filters to the Traffic Attributes on Corridor 03 Eastbound (L=Light, 
W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) 
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Figure 61: Sensitivity of Data Filters to the Traffic Attributes on Corridor 26 Westbound (L=Light, 
W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) 
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Figure 62: Sensitivity of Data Filters to the Traffic Attributes on South Atlanta Road Southbound 
(L=Light, W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) 
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Figure 63: Sensitivity of Data Filters to the Traffic Attributes on Corridor 40 Eastbound (L=Light, 
W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) 

-L
R

F
S

LR
F

S -L +W -R -F +O +D -S

S
LR

F

-F
+O

Std Dev of V 85

S
D

85
 (

m
ph

)

0

2

4

6

8

-L
R

F
S

LR
F

S -L +W -R -F +O +D -S

S
LR

F

-F
+O

Mean of V 85

Filter Combination

M
85

 (
m

ph
)

0

10

20

30

40

50

-L
R

F
S

LR
F

S -L +W -R -F +O +D -S

S
LR

F

-F
+O

Coef of Var of V 85

Filter Combination

C
V

85

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

-L
R

F
S

LR
F

S -L +W -R -F +O +D -S

S
LR

F

-F
+O

IQR of V 85

Filter Combination

IQ
85

 (
m

ph
)

0

2

4

6

8

-L
R

F
S

LR
F

S -L +W -R -F +O +D -S

S
LR

F

-F
+O

Variation from Speed Limit of V 85

Filter Combination

S
V

LI
M

 (
m

ph
)

0

2

4

6

8

-L
R

F
S

LR
F

S -L +W -R -F +O +D -S

S
LR

F

-F
+O

Acceleration Noise

Filter Combination

A
N

 (
m

ph
/s

ec
)

0.0

0.2

0.4

0.6

0.8

1.0

-L
R

F
S

LR
F

S -L +W -R -F +O +D -S

S
LR

F

-F
+O

Mean of (V95 − V5)

Filter Combination

M
_B

N
D

 (
m

ph
)

0

5

10

15

20

-L
R

F
S

LR
F

S -L +W -R -F +O +D -S

S
LR

F

-F
+O

Std Dev of (V95 − V5)

Filter Combination

S
D

_B
N

D
 (

m
ph

)

0

2

4

6

8

-L
R

F
S

LR
F

S -L +W -R -F +O +D -S

S
LR

F

-F
+O

No. of Drivers

Filter Combination

D
V

R
_N

0
10
20
30
40
50
60

-L
R

F
S

LR
F

S -L +W -R -F +O +D -S

S
LR

F

-F
+O

No. of Trips

Filter Combination

T
R

P
_N

0

200

400

600

800

1000



 

153 

 

 

Figure 64: Sensitivity of Data Filters to the Traffic Attributes on Corridor 71 Westbound (L=Light, 
W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) 
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Figure 65: Sensitivity of Data Filters to the Traffic Attributes on Corridor 92 Southbound (L=Light, 
W=Weekday, R=No Rain, F=Free-Flow, O=Off-Peak, D=Deviated Trips, S=GPS Signal) 
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6.3.3 Summary 

This chapter discussed the sensitivity of speed measures to the data filters used in the data 

processing. The analyzes were performed in two manners: the sensitivity of the speed 

measures as filters are sequentially added the sensitivity of the speed measures to 

individual filters.  

The findings from the sequential filtering analysis are summarized below: 

• The speed measures derived from ��� seem to have little sensitivity to the 

sequential data filters. This is because the filters were designed to remove 

non-free-flow trips, which usually contain low speed data points. 

Therefore, the filters have little impact on the ��� profile. 

• The measure ̀� tends to decrease as additional filters are applied. This is 

because each subsequent filter removes additional the variability from the 

data. However, the variability reduction due to removing the non-free-

flow trips seems to be insignificant. It is possible that the method by which 

the ̀ � is calculated in this study smoothes out the noise from traffic 

congestion. That is, acceleration noise from multiple trips made at 

different times of day and different days of the week made by the same 

driver were averaged to obtain the representative `� for that driver. 

Driver’s acceleration noises were then further averaged to obtain the 

representative ̀� of the corridor. Therefore, the AN in this study is not 

substantially affected by the non-free-flow condition. 
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• The measures derived from the speed band (�"� � ��), such as M_BND 

and SD_BND, were more significantly impacted by the filters than the 

above measures. This is because the filters substantially influence the low 

speed element, ��, of the speed band. More specifically, the filters 

increase �� but not �"� along the corridor, therefore, the size of speed band 

(�_±�b) reduces substantially. In addition, the filters remove the 

variability of the �� due to potential traffic congestion resulting in the �� 
profile along the corridor similar to the �"� profile. As a result, the size of 

speed band becomes more consistent along the corridor, which in turn 

reduces the variance of the band, �b_±�b, along the corridor. 

• The measure SVLIM tends to increase as more filters are applied. This is 

because ��� slightly increases along the corridor after the potentially non-

free-flow trips were removed. Therefore, the ��� is further away from the 

speed limit. 

• When comparing the traffic attributes of different corridors, the variance 

measures seem to be consistent. More specifically, a corridor with 

relatively high values of �b85 tends to have high ��85, ���85, and ̀ � 

as well. 

The findings from the individual effect analysis are summarized below. The comparisons 

are made between the LRFS case and the other test cases. 
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• The individual effect analysis showed a similar result as the sequential 

analysis for the speed measures derived from ���. That is, these speed 

measures seem to have little sensitivity to the sequential data filters. This 

is because the filters were designed to remove non-free-flow trips, which 

usually contain low speed data points.  

• The daylight effect does not have a significant impact on the speed 

measures. It is unknown if the study corridor had street lighting that may 

be impacting performance. Also, the sample size of the night time trips are 

relatively small, e.g., 20 percent of the trips on corridor 03 Eastbound 

were made during the night time. 

• The variation measures seem to be a little lower when only weekday free-

flow trips are considered. This is likely because weekday and weekend 

trips have different characteristics.  

• When removing the free-flow filter set, the measures SD85, CV85, IQR85 

and SVLIM seems to be only slightly impacted while the speed band 

measures, namely M_BND and SD_BND increase significantly. 

• The sequence of applying GPS signal filter does not affect the result. 

• The off-peak filter does not typically yield the same result as the free-flow 

filter. This is likely because different corridors have different peak period 

which can vary daily and seasonally even on the same corridor.  
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• It is seen that the +D filter (removing highly deviated trip) might overly 

reduce the variation of the speed data. For example, the SD85 of corridor 

71 Eastbound and 92 Southbound were reduced by 56 percent and 40 

percent, respectively. The variation from the road geometries might be lost 

due to this filter. Therefore, the highly deviated trip filter should be 

removed from the filtering process.  
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Chapter 7.  MODEL DEVELOPMENT 

This chapter discusses the model development effort. In this effort, crash frequency per 

unit of roadway length is the predicted variable and the traffic attributes in Chapter 5 

along with roadway classification, corridor length, and traffic volume are used to 

construct the prediction model. In the first section of this chapter, road facilities are 

classified using a combined  road classification and traffic volume criteria. Section 7.2 

explores the distribution of the dependent variable, crash frequency. The relationship 

between crash frequency and ADDT is investigated in Section 7.3. The regression tree 

technique used to determine the predictor variables is discussed in Section 7.4. The 

model development methodology is described in Section 7.5. and the results are 

summarized and in Section 7.6. 

Thus far in this research effort, speed measures have been calculated by direction of 

travel as significantly different speed characteristics were often observed in the opposing 

traffic directions on many corridors. The different speed characteristics are likely a result 

of differences in road features such as land uses, driveway density, the direction of 

horizontal curvature, etc. This suggests that the crash prediction model should be 

constructed by direction. However, ninety-three percent of the study corridors are 

undivided roads and the direction of travel at crash impact cannot be accurately 

determined without the police crash reports. At the time of this research, the crash reports 

are available only from 2004-2005.  
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Given this limitation, the model considers the crash data from the two travel directions 

aggregated together. The speed measures are also combined using a weighted average by 

number of drivers in each direction. Further research, when crash reports become 

available, will seek to explore modeling power gained by considering each corridor 

direction separately. 

7.1 ROAD CLASSIFICATION FOR SAFETY 

The literature on crash prediction models often group study locations by categorical 

variables such as traffic control type, divided/undivided, and functional classification 

prior to the model calibration (32). One possible grouping explored for this research was 

by function classification. The 61 final corridors can be classified into three groups based 

on the GDOT’s road functional classification system, namely, minor arterial, collector, 

and local street (note that the data is originally draw from the FHWA project, the Effects 

of Urban Street Environment on Operating Speeds, which include no major arterial data). 

However, the road characteristics might not be accurately represented by the GDOT’s 

current functional classification due to changes in land use and traffic volume over time. 

Therefore, this section investigates whether the study roadways grouped by GDOT’s 

classification demonstrate similar speed and safety characteristics. 

Table 17 describes the study corridor characteristics in terms of average traffic volume, 

and corridor length, and road classifications. On average, the minor arterial corridors 

have the highest traffic volume, followed by collectors and local streets. In terms of 

corridor length, the three road classifications have approximately the same section length. 
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Table 17: Road Characteristics by Functional Classification 

Functional 
Classification 

No. of 
Corridors 

AADT Corridor Length (ft) 

Min Max Average Min Max Average 

16 25 12,465 38,325 23,801 1,746 5,575 3,319 

17 23 5,160 21,660 13,059 1,992 5,143 3,295 

19 13 1,096 19,557 9,811 2,408 5,672 3,349 

Total 61 1,096 38,325 16,770 1,746 5,672 3,316 

 

7.1.1 Definitions 

Because the information on the GDOT’s functional classification is limited, the 

definitions from multiple sources are considered in this study. Functional classification is 

defined by the FHWA (51) as “the process by which streets and highways are grouped 

into classes, or systems, according to the character of service they are intended to 

provide.” NCHRP Report Number 504 (45) also described the characteristics of each 

class in detail. Figure 16 illustrates the excerpt from this report.  

Table 18: Typical Characteristics for Urban Road Classifications, Excerpt from (45) 

Functional 
Classification 

Anticipated Speed Service Typical Cross Section 

Minor Arterial 35-55 mph Balances between 
mobility and access 

Multilane divided or 
undivided 

Collector 30-50 mph Connects local roads to 
arterial 

2-3 lanes with curb and 
gutter 

Local Streets 25-35 mph Permits access to 
abutting land 

Two lanes with curb 
and gutter 
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7.1.2 Data Exploration 

The objective of this section is to understand the distribution of the crash data among the 

different facility types. The examination starts with plots of crashes per mile over all road 

classes. The histogram of the crashes per mile variable in Figure 66(a) shows a rough 

estimate of the density of the dependent variable, crashes/mile, which is clearly not 

normally distributed. Since the histogram plot is sensitive to the bin size, the kernel 

density estimation was also generated in Figure 66(b). The density estimator for a sample 

set Q�,..., Q� is of the form:  

a·�!� � 1�r 1�� � m! � !
�� n�

��  

where � represents the kernel function and �� is the size of the bandwidth analogous to 

bin size of the histogram plot. The optimal bandwidth can be calculated from the 

formula: ��O ¸ 1.06
q�7�/� (52).  

 The kernel density function suggests that the crashes/mile distribution is not unimodal 

and might have a few different distributions residing in this dataset, i.e., one having mode 

at approximately 20 crashes/mile and the other having its mode at approximately 80 

crashes/ mile in the four-year time period. This separation might also be due to the 

difference in traffic and geometric characteristics of different facilities. The right panel of 

Figure 66 shows the individual data points by plotting sorted value of crashes/mile 

against its index. It is seen that the data points for many corridors have low crash 
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frequency and about 4-5 corridors apparently have a higher crash frequency than other 

corridors. 

 

(a) (b) (c) 

Figure 66: Distribution of Number of Crashes per Mile for All Corridors (a) Histogram, (b) Kernel 
Density Estimate, and (c) Index Plot of the Sorted Values. 

 

Next, we investigated road characteristics by their road functional classifications, namely, 

minor arterial, collector, and local street. The boxplot of number of accidents in four 

years of different road classifications is showed in the left panel of Figure 67. Apparently, 

one minor arterial has an extremely high number of crashes relative to the other corridors 

during the four-year period. There are also two outliers on the local street group while the 

collector group does not show any outliers. In addition, the crash distribution of minor 

arterial class is obviously different from the collector and the local classes, i.e., the 
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median number of accidents on minor arterials is three-fold that of the collectors and six-

fold that of the local streets.  

 

Figure 67: Boxplots of Number of Crashes (Left) and Number of Crashes per Mile across Different 
Road Classifications (Right) 

When number of crashes is standardized by the corridor length, the distributions of crash 

frequency across classes remain proportionally constant (See Figure 67, right panel). That 

is, the median of the minor arterial is approximately three-fold that of the collectors and 

five-fold that of the local streets consistent with the volume differences. In addition, the 

first quartile of the minor arterial is only slightly larger than the third quartile of collector 

group. Unlike the total crash count variable, the variations of the crashes/mile variable 

between collector and local groups are more alike, i.e., the interquartile ranges of both 

groups are similar. Unlike the previous plot, two outliers from the collector are revealed 

and only one outlier is shown in the local group.  
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Other exposure measures such as traffic volume and corridor length might be helpful in 

distinguishing the separation in the crash distribution. The left panel of Figure 68 depicts 

the AADT distribution for the different road classifications.  

Based on the AADT distribution, some collectors have AADT values similar to the minor 

arterial group and other collectors have AADT values similar to the local street group. 

The boxplot of corridor lengths in the right panel of Figure 68 shows that median lengths 

of the three road classifications are similar. The minor arterial group seems to have a 

wider range of corridor length than the collector and local street groups.  

 

 

Figure 68: Boxplots of Traffic Volume (Left) and Corridor Length (Right) 
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7.1.3 Technical Approach 

The regression tree technique was used to stratify the distribution of crash frequency by 

the road functional classification variable and other traffic characteristic variables. This 

technique is often used in data exploratory analysis to determine how the data might be 

grouped, and which variables are important, what model form should be used (32, 53). 

The rpart (Recursive Partitioning) package, which can be implemented in the R 

statistical analysis software, was used to construct tree models. The regression tree is 

built by first searching for a single predictor variable and its split point to obtain the “best 

fit”, then separating the data into two groups (for binary partitioning) according to the 

criterion found in the first step. The process continues recursively until some stopping 

rule is satisfied (54). The tree model then simply uses an average of the responses at each 

node to represent its predicted value. In the rpart module, the split variable and its split 

value are chosen when the residual sum of squares (RSS) is minimized. The RSS is 

computed as: 

����[,_-Z-Z^�� � ���­ R ���º 

where ��� � ∑�g
 � g��� and g� is the mean of the response in each partition (55). 

There are a few stopping rules that can be controlled in the rpart package (56): 

• minsplit: the recursive binary partitions will stop when the number of 

observations in a node is less than the minsplit value. 
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• minbucket: the algorithm will not split if either the left or right branch will 

have the number of observations less than the minbucket value after the 

split. 

• cp (the threshold complexity parameter): the algorithm will not split if the 

overall R-squared does not increase by at least cp. The R-squared is of the 

form (39, 53, 55): 

�� � 1 � ��B��1 � 1 � ∑ ∑ sg
,L � gqLy� L∑ ∑ sg
,L � g�y� L  

 where  g
,L is the observation i at the terminal node j 

  gqL is the predicted value of the response at the terminal node j 

  g� is the grand mean of all the observations 

7.1.4 Results 

The regression tree results are showed in Figure 69. To grow a large tree, the cost 

complexity, cp, is set to be as low as 0.001. The minimum number of data points before 

splitting the node, minsplit, is 10 and the minimum number of data points after splitting, 

minbucket, is 5. Sixteen traffic attributes, traffic volume, and functional classification 

variable were included as input variables. Sixty-one observations are used as the input. 

As a result, the variables used in this tree include acceleration noise during all traffic 

condition (̀ �_`) and free-flow condition (̀�_?), traffic volume (̀ ��_``b1), stop 
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frequency per trip per mile (�1�]�), functional classification (?�), interquartile range of 

the 85th percentile speed (��85), and Moran’s Index (���`��). Among these variables, 

?�, ̀ ��_``b1, and ̀ �_? are the first few splitting variables in the tree. The root node 

error is the ratio of the total sum of squares of the dependent variable to the sample size. 

The first split is on the ?� variable, 36 corridors are either collector or local street with a 

mean response value of 26 whereas 25 corridors are minor arterials with the mean 

response value of 71. This supports our boxplot observation in Figure 67 that crash 

frequency on minor arterial is higher than the other two groups. After the first split, the 

total sum of squares reduced from 97,200 to 22,000+45,000 = 67,000.   

Figure 70 visualizes the results in the tree diagram format. The tree diagram illustrates 

quite an interesting result. For local and collector group, the safety is determined by 

`��_``b1, ̀ �_`, ���`��, ��85, and �1�]�. All the mentioned variables, except 

��85, represents the level of traffic activity along the corridors. On the other hand, the 

safety on minor arterial is influenced by `�_? and ̀ ��_``b1. The variable ̀�_? is 

the acceleration noise measured under the potentially free-flow condition; therefore, only 

the noises caused by driver and road geometries are included. The finding from this result 

(for the corridor included in the study) is that the safety on the minor arterial class is 

influenced by road geometries while the safety on the collector and local classes is 

influenced by traffic activity along the roadway. This is reasonable as the collectors and 

local streets have higher accessibility than the minor arterials.  
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The cost complexity table shows the value of \[ parameter indicating how well the tree 

improves as the number of nodes or splits increases. The �� is improved by 31 percent 

after the first split, followed by 18 and 7 percent after the second and third splits, 

respectively. The relative error (rel error) is the ratio of ��B to ��1, or equivalently 

1 � ��, where �� is the usual coefficient of determination in linear regression. xerror and 

xstd denote the cross validation error and cross validation standard error. The plot on the 

left in Figure 71 shows that the first split (FC) offers the most information. The figure on 

the right also shows the 10-fold cross validation error with number of splits and suggests 

that the tree should include only the two splits. 

Regression tree: 

rpart(formula = CPL ~ P_THRU + P_FF + STOPS + MI_S1 00 + SD85 +  

    SVLIM + M85 + SD_BND + M_BND + AN_AF + AN_FF + IQ85 + CV85 +  

    CRAWL_P + FC + AVG_AADT, data = dat, method = " anova", control = 
rpart.control(minsplit = 10,  

    minbucket = 5, cp = 0.01, maxcompete = 4, maxsu rrogate = 5,  

    usesurrogate = 2, xval = 10, surrogatestyle = 0 , maxdepth = 30)) 

 

Variables actually used in tree construction: 

[1] AN_AF     AVG_AADT CV85     FC       M_BND    S TOPS    

 

Root node error: 97201/61 = 1593 

 

n= 61  

 

       CP nsplit rel error xerror   xstd 

1 0.30846      0    1.0000 1.0223 0.2139 

2 0.16555      1    0.6915 0.9843 0.2309 

3 0.06587      2    0.5260 0.9429 0.2036 

4 0.05290      3    0.4601 0.9728 0.1984 

5 0.02765      4    0.4072 0.9512 0.1762 
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6 0.02113      5    0.3796 0.9854 0.1680 

7 0.01648      6    0.3584 1.0096 0.1684 

8 0.01000      7    0.3420 1.0563 0.1865 

node), split, n, deviance, yval 

      * denotes terminal node 

node), split, n, deviance, yval 

      * denotes terminal node 

 

 1) root 61 97200.7400  44.691150   

   2) FC=Collector,Local 36 22252.9300  26.216130   

     4) AVG_AADT< 11511 20  4847.8720  14.287600   

       8) M_BND< 11.6122 14   640.0568   8.428776 *  

       9) M_BND>=11.6122 6  2605.9430  27.958200 * 

     5) AVG_AADT>=11511 16 11002.0200  41.126780   

      10) STOPS< 0.1195111 7  1991.3090  26.431320 * 

      11) STOPS>=0.1195111 9  6323.2530  52.556580 * 

   3) FC=Minor Arterial 25 44965.6900  71.295180   

     6) CV85< 0.03466276 14  9082.6310  48.806540   

      12) AN_AF< 0.670254 5  4920.0990  32.556410 *  

      13) AN_AF>=0.670254 9  2108.6780  57.834400 *  

     7) CV85>=0.03466276 11 19791.3700  99.917090   

      14) AN_AF< 0.8014879 6  9895.4850  80.180710 * 

      15) AN_AF>=0.8014879 5  4754.1620 123.600700 * 

Figure 69: Regression Tree Results of All Corridors  
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Figure 70: Regression Tree with Functional Classification (The Left Branch “bc” is the Collector and 
Local Street Group and the Right Branch is the Minor Arterial Group) 
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Figure 71: Plots of the R-Squared (Left) and the Relative Error from Cross-Validation (Right) for 
the Different Splits of All Corridors 

According to the regression tree results, the minor arterials appear to be very different 

from the collectors and local streets. Using the functional classification as a split, we 

might be able to re-arrange the study corridors into two groups, namely, Higher 

Classification (HC) and Lower Classification (LC). The HC group would contain all the 

minor arterial corridors and some of the collectors while the LC group would contain all 

the local street corridors and the remaining collectors. The reasons of the rearrangement 

into the HC and LC group are as follows: (1) the minor arterial usually has a clear 

distinction from the local street; (2) the collector is harder to be distinguished from the 

local or minor arterial as the collector is the transition between the minor arterial and the 

local street. Some collectors might have characteristics more similar to the minor arterial 

while the other might have characteristics more similar to the local streets. To classify the 

collector corridors into HC or LC, a split variable and its split value was determined by 

fitting the regression tree using only the collector corridors. The results in Figure 72 show 
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that the R-squared is improved by 37 percent using AVG_AADT<11,500 vehicles/day as 

the first split. Therefore, the split variable along with its split value of 11,500 

vehicles/day will be used as a split criteria. More specifically, collectors with AADT less 

than 11,500 would be classified into LC group and the collector corridors with AADT at 

least 11,500 would be classified into HC group. 

Regression tree: 

rpart(formula = CPL ~ P_THRU + P_FF + STOPS + MI_S1 00 + SD85 +  

    SVLIM + M85 + SD_BND + M_BND + AN_AF + AN_FF + IQ85 + CV85 +  

    CRAWL_P + FC + AVG_AADT, data = subset(dat, FC == "Collector"),  

    method = "anova", control = rpart.control(minsp lit = 5, minbucket = 
3,  

        cp = 0.001, maxcompete = 4, maxsurrogate = 5, usesurrogate = 2,  

        xval = 10, surrogatestyle = 0, maxdepth = 3 0)) 

 

Variables actually used in tree construction: 

[1] AVG_AADT M_BND    SD_BND   STOPS    SVLIM    

 

Root node error: 13878/23 = 603.4 

 

n= 23  

 

        CP nsplit rel error  xerror    xstd 

1 0.380570      0   1.00000 1.09579 0.35736 

2 0.342674      1   0.61943 1.14338 0.38116 

3 0.078719      2   0.27676 0.67320 0.24323 

4 0.033785      3   0.19804 0.69743 0.18464 

5 0.031562      4   0.16425 0.71897 0.18298 

6 0.011033      5   0.13269 0.72232 0.18611 

7 0.001000      6   0.12166 0.74804 0.18958 

n= 23  

 

node), split, n, deviance, yval 
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      * denotes terminal node 

 

 1) root 23 13878.220000 27.345000   

   2) AVG_AADT< 11511 11  1215.826000 11.517430   

     4) M_BND< 8.643337 5    27.842320  4.365471 * 

     5) M_BND>=8.643337 6   719.104300 17.477390   

      10) STOPS< 0.0518867 3   168.840300  8.933114  * 

      11) STOPS>=0.0518867 3   112.236200 26.021670  * 

   3) AVG_AADT>=11511 12  7380.764000 41.853610   

     6) SD_BND>=1.22708 9  2019.974000 30.360000   

      12) SVLIM< 6.707976 3   261.921400 14.778850 * 

      13) SVLIM>=6.707976 6   665.578100 38.150570   

        26) SD_BND>=1.891415 3     9.195342 33.0989 50 * 

        27) SD_BND< 1.891415 3   503.269400 43.2022 00 * 

     7) SD_BND< 1.22708 3   605.079200 76.334440 * 

Figure 72: Regression Tree Results of Collector Corridors 
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Figure 73: Regression Tree for Collector Corridors using All Traffic Characteristic Variables 

 

Figure 74: Plots of the R-Squared (Left) and the Relative Error from Cross-Validation (Right) for 
the Different Splits of Collector Corridors 
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The scatter plot in Figure 75 supports the regression tree result. The number of crashes 

per mile tends to be higher when AADT is greater than 11,500 vehicles/day (separated by 

a vertical dashes line).  

The regression tree shows that there is a distinct difference in the crash characteristics 

between the facility with AADT less than and greater than 11,500 vehicles/day. That is, 

the collector with AADT less than 11,500 has a mean response value of 11 while the 

facility with AADT greater than 11,500 has a mean response value of 41. Consequently, 

a new functional classification system was proposed. The collectors with AADT less than 

11,500 vehicles/day and all local streets were grouped together and called the “Lower 

Classification” (LC). The Minor Arterials and the collectors with AADT greater than 

11,500 vehicles/day are defined as the “Higher Classification” (HC).  

 

Figure 75: Scatter plot of Crashes/Mile vs. AADT on Collector Corridors with Regression Fit (R-
Squared = 0.157), and the dotted line separating data at AADT = 11,500 vehicles/day 
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From Table 19, it is seemed that the average AADT of the HC group is more than twice 

of the LC group. In addition, the average corridor length for the HC group is similar to 

that of the LC group.  

Table 19: Sample Size, AADT, and Corridor Length by New Road Classification 

Functional 
Classification 

No. of 
Corridors 

AADT Corridor Length (ft) 

Min Max Average Min Max Average 

HC 37 11,873 38,325 21,692 1,746 5,575 3,328 

LC 24 1,096 19,557 9,179 2,408 5,672 3,299 

Total 61 1,096 38,325 16,769 1,746 7,856 3,316 

 

There are total of 1,217 accidents over the 4 year period on the 20 miles of HC road 

segments and 232 accidents on the 13 miles of LC road segments. The crashes per mile 

of the HC group is approximately three times that of the LC group.  

When divided by manner of collision, rear end type crashes account for more than fifty 

percent for both HC and LC groups, followed by angle type with approximately a quarter 

of the total accidents. It is observed that the percentages of head on and opposite direction 

sideswipe accidents are higher on the LC than the HC. One potential reason is that the LC 

roads generally do not feature TWLTL or raised medians. The same direction sideswipe 

for HC roads likely have a higher percentage as the HC roads generally have higher 

traffic volume, allowing for more opportunities for this type of incident. Compared with 

the state roads (urban and rural) during the same time span, the non motor vehicle 

collisions for the urban streets are much lower. This implies that the surrogate measures 
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related to traffic congestion might be the better explanatory variables for the urban street 

data set in this study. The statistics are summarized in Table 20. 

Table 20: Crash Distribution by Manner of Collision 

Road 
Class 

Crash 
Counts Angle Head on 

Rear 
End 

Sideswipe- 
Same Dir 

Sideswipe- 
Opposite 

Dir 

Not a 
Collision with 

Mother 
Vehicle 

HC 1,217 26% 2% 52% 12% 2% 6% 

LC 232 26% 4% 54% 4% 3% 9% 

Total 1,449 26% 2% 53% 10% 2% 6% 

State of 
Georgia 1,004,675* 27% 2% 36% 9% 3% 24% 

*Crash counts from 2002-2005 without traffic signal in the vicinity of collision 

 

7.1.5 Discussions 

Figure 76 illustrates boxplots of various variables. With the number of incidents per mile 

(CPL) variable, many of the observations are well separated by HC/LC classification 

system. The CPL distribution of the LC group is much lower than that of the HC group in 

general. The median of the LC group (10 crashes/mile) is less than one-fifth of the HC 

group (57 crashes/mile). The two outliers of the LC group have much higher crashes/mile 

values than the rest of the LC group. The CPL values for these two corridors reside 

between the mean and the 75th percentile value in the HC group, and would therefore not 

have been detected as high crash locations if the HC and LC corridors were combined. 

This functional classification alone reduces the variation in the crash data by 28 percent.  
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The traffic volume of the HC group has a higher median than that of the LC group, by 

approximately 2.5 times. This indicates that the crash frequency is not proportional to the 

traffic volume. Regarding the corridor length, the HC group has a higher variability of the 

length than that of the LC group.  

In general, the variation of speed profile (�b85) of the HC group is lower than the LC 

group. This is reasonable as the road geometries on the HC group tend to have a higher 

design standard. The mean of 85th percentile speed of the HC group is only slightly 

greater than that of the LC group. 
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Figure 76: Box Plots of Roadway Parameters for Higher and Lower Road Classification Corridors 
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7.2 DISTRIBUTION OF CRASH FREQUENCY 

Various distribution plots for the HC and LC groups are illustrated in Figure 77 and 

Figure 78, respectively. It is seen that crash frequency is not normally distributed. Based 

on the shape of the crash frequency distribution, Poisson and negative binomial 

distributions were used. A number of studies have shown that crash data fitted well with 

the Poisson and negative binomial distributions (17, 30, 32, 57-60). 

 

(a) (b) (c) 

Figure 77: Distribution of Number of Crashes per Mile for Higher Classification Corridors (a) 
Histogram, (b) Kernel Density Estimate, and (c) Index Plot of the Sorted Values. 

 

(a) (b) (c) 

Figure 78: Distribution of Number of Crashes per Mile for Lower Classification Corridors (a) 
Histogram, (b) Kernel Density Estimate, and (c) Index Plot of the Sorted Values 
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7.3 CRASH FREQUENCY AND AADT 

Many crash prediction models have been developed using AADT as a predictor variable 

to represent traffic exposure of the roadways (17, 18, 32, 34, 35, 37, 48, 58, 60, 61). This 

section investigates the relationship between the crash frequency per mile and the traffic 

volume on different road classifications. In Figure 79, the scatter plot of the crash 

frequency per mile vs. the AADT and the regression fit shows that the two variables have 

a positive relationship. The R-square of 0.29 indicates that traffic volume alone explains 

29 percent of the total variation of the crash data. It can be seen that in the lower traffic 

volume range, the data points are more clustered around the fitted line and becomes more 

varied when the traffic volume increases. 

  

Figure 79: Scatter Plot of Crashes per Mile vs. AADT with Regression Fit (R2 = 0.292) of All 
Classifications 

Previous studies (30, 32, 34, 35) reported that crash frequency and AADT have a non 
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throughout the AADT range. This implies that the relationship of crash and traffic 

volume might not be the same for different road classifications. Regression lines were 

fitted for the HC and LC roads separately in Figure 79. For the HC group, the fit shows a 

low R-square and the AADT is not a significant variable for predicting crash frequency.  

For the LC group, the fit shows that the AADT is a significant variable in the model, 

explaining 20 percent of the variation in the model.  

 

 (a) R2 = 0.061 (b) R2 = 0.203 

Figure 80: Scatter Plot of Number of Crashes per Mile vs. AADT with Regression Fit of (a) Higher 
Road Classification and (b) Lower Road Classification 

These results provide insight regarding the impact of traffic volume to the crash trend on 

different road classifications. That is, the traffic volume has a higher impact on the LC 

group and has little impact on the HC group. Other traffic attributes of the HC roads 

might have a higher influence on the accidents than merely the traffic volume. 
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7.4 ANALYSIS OF INFLUENTIAL FACTORS 

The first step of statistical analysis involved the use of statistical tools to understand the 

predictor variables that might have relationships with the response variable, i.e., crash 

frequency per unit length (�]>). Note that only speed-profile variables are considered in 

this study to keep the crash prediction model practical for a road network screening 

process. Including road geometries and roadside features might have improved the 

prediction power but would require demanding data collection efforts and hence makes 

the model costly for an initial screening tool. 

The regression tree technique is used to explore the importance of each variable. The HC 

and LC groups are analyzed separately as shown in Figure 81. All the potential 

explanatory variables were first supplied to both the HC and LC models. 

 

Figure 81: Final Model Development Structure 

 

Dependent Variable:          

Crashes /Mile 

Model HC: Higher Class 

Model LC:  Lower Class 
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7.4.1 Results 

Model HC: Crashes per Mile for Higher Classification 

The results for the Model HC are shown in Figure 82. The corridors are split into six 

groups using four variables including �_±�b, �b_±�b, �1�]�, and ��>��. As seen 

in Figure 83, the variable �1�]� is used as the first split and it reduces the variation by 

19 percent. The left node with STOPS < 0.36 has the corresponding mean response of 53 

accidents per mile over a four year period. The right node with STOPS > 0.36 has the 

corresponding mean response of 95 accidents per mile over a four year period. The R-

squares of further splits are much smaller. The cross validation error in Figure 84 

suggests that the error increases as more splits are added. 

Regression tree: 

rpart(formula = CPL ~ P_THRU + P_FF + STOPS + MI_S1 00 + SD85 +  

    SVLIM + M85 + SD_BND + M_BND + ANT_A + ANT_F + IQ85 + CV85 +  

    FC + AVG_AADT, data = hc, method = "anova", con trol = 
rpart.control(minsplit = 9,  

    minbucket = 3, cp = 0.01, maxcompete = 4, maxsu rrogate = 5,  

    usesurrogate = 2, xval = 10, surrogatestyle = 0 , maxdepth = 30)) 

 

Variables actually used in tree construction: 

[1] M_BND  SD_BND STOPS  SVLIM  

 

Root node error: 59375/37 = 1604.7 

 

n= 37  

 

        CP nsplit rel error xerror    xstd 

1 0.189199      0   1.00000 1.0309 0.25367 

2 0.076698      1   0.81080 1.3403 0.28601 
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3 0.056138      3   0.65740 1.4006 0.31329 

4 0.001000      5   0.54513 1.3870 0.32625 

> dat_rpart 

n= 37  

 

node), split, n, deviance, yval 

      * denotes terminal node 

 

 1) root 37 59374.6200 61.74656   

   2) STOPS< 0.3567338 29 26588.9200 52.59479   

     4) M_BND< 13.89791 24 17087.9200 46.91634   

       8) SD_BND>=1.473479 8  1158.8040 27.29626 * 

       9) SD_BND< 1.473479 16 11309.7500 56.72638   

        18) SVLIM< 9.146291 11  7930.2020 48.12635   

          36) STOPS< 0.1608791 5  1351.7350 27.0734 2 * 

          37) STOPS>=0.1608791 6  2515.5620 65.6704 6 * 

        19) SVLIM>=9.146291 5   776.1402 75.64643 *  

     5) M_BND>=13.89791 5  5012.5150 79.85138 * 

   3) STOPS>=0.3567338 8 21552.0700 94.92173 * 

Figure 82: Regression Tree Results for the Model HC 
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Figure 83: Regression Tree Diagram and its Corresponding Box Plot for Model HC 

 

Figure 84: Plots of the R-Squared (Left) and the Relative Error from Cross-Validation (Right) for 
the Different Splits for Model HC 
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Model LC: Crashes per Mile for Lower Classification 

The results for the Model LC are shown in Figure 85. The corridors are split into five 

groups using four variables including `�_`, ]_??, ]_1@��, and �1�]�. As seen in 

Figure 86, the variable �1�]� is used as the first split and it reduces the variation by 59 

percent. The left node with STOPS < 0.59 has the corresponding mean response of 12 

accidents per mile over four years. The right node with STOPS > 0.59 has the 

corresponding mean response of 63 accidents per mile over four years. Note that there are 

only three observations on the right node. The R-squares of further splits are very small. 

The cross validation error in Figure 84 suggests that only the first split reduces the cross 

validation error and the error will increase as number of splits increases. 

Regression tree: 

rpart(formula = CPL ~ P_THRU + P_FF + STOPS + MI_S1 00 + SD85 +  

    SVLIM + M85 + SD_BND + M_BND + ANT_A + ANT_F + IQ85 + CV85 +  

    CRAWL_P + CRAWL_I + BLK_P_01 + FC + AVG_AADT, d ata = lc,  

    method = "anova", control = rpart.control(minsp lit = 9, minbucket 
= 3,  

        cp = 0.001, maxcompete = 4, maxsurrogate = 5, usesurrogate = 
2,  

        xval = 10, surrogatestyle = 0, maxdepth = 3 0)) 

 

Variables actually used in tree construction: 

[1] ANT_A  P_FF   P_THRU STOPS  

 

Root node error: 10471/24 = 436.28 

 

n= 24  

 

        CP nsplit rel error xerror    xstd 

1 0.638042      0   1.00000 1.1301 0.52269 
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2 0.069542      1   0.36196 1.0955 0.54058 

3 0.014496      3   0.22287 0.9335 0.34044 

4 0.001000      4   0.20838 0.9620 0.33745 

> dat_rpart 

n= 24  

 

node), split, n, deviance, yval 

      * denotes terminal node 

 

 1) root 24 10470.6000 18.397380   

   2) STOPS< 0.5923704 21  2370.9720 12.091350   

     4) ANT_A< 0.8457284 12   500.1113  7.687239   

       8) P_THRU>=0.8615558 7    75.8281  4.681509 * 

       9) P_THRU< 0.8615558 5   272.5050 11.895260 * 

     5) ANT_A>=0.8457284 9  1327.7660 17.963510   

      10) P_FF< 0.6067029 6   241.9371 10.840800 * 

      11) P_FF>=0.6067029 3   172.6345 32.208930 * 

   3) STOPS>=0.5923704 3  1418.9460 62.539580 * 

Figure 85: Regression Tree Results for the Model LC 
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Figure 86: Regression Tree Diagram and its Corresponding Box Plot for Model LC 

 

Figure 87: Plots of the R-Squared (Left) and the Relative Error from Cross-Validation (Right) for 
the Different Splits for Model LC 
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7.4.2 Discussions 

Model HC: Crash Frequency per Mile for Higher Classification 

The cross validation error in Figure 84 estimates how this tree model will perform in 

practice. The figure shows that the model might not perform well with other datasets. 

Since STOPS is the most influential variable in the model, the relationship between 

STOPS and CPL is illustrated by the scatter plot in Figure 88. The STOPS variable does 

not appear to be a good classifier between the low and high crash road groups. The 

splitting line is very tight with five observations almost on the line. Corridors 35, 33, and 

21 are on the right side while the corridors 17 and 32 are on the left side of the line. 

Despite the low R-square and high cross validation error, the model results can be used to 

investigate the relationship of the response to each variable. The direction of relationships 

between the response (�]>) and the predictor variables in the tree model were generally 

as expected with the exception of �b_±�b. For instance, the crash frequency increases 

as the stop frequency increases. The regression tree shows that when the �1�]� is 

greater than 0.36 stops/mile/trip, the number of accidents increases two-fold. For the 

variable �_±�b, the number of accidents also increases as the speed band widens. The 

high variation from the speed limit along the roadway (��>��) associates with high 

crash frequency. The direction of variation of speed band (�b_±�b) to the response is 

counter-intuitive, i.e., the crash frequency decreases as the variation of speed band 

increases. 
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Figure 88: Scatter Plot between Stop Frequency and Number of Crashes per Mile. The Vertical line 
shows the data separation at STOPS=0.36 Stops/Trip/Mile. 

 

Model LC: Crash Frequency per Mile for Lower Classification 

The LC model indicates the �1�]� variable being the most influential variable. The 

cross validation error in Figure 87 shows that the error increases for a number of splits 

greater than one. This means that only the �1�]� variable has a predictive power in 

practice. The scatter plot of �1�]� versus �]> is shown in Figure 89. It is seen that the 

splitting line at �1�]� = 0.59 separates the high crash and low crash corridors quite well. 

The three corridors with stop frequency per trip per mile greater than 0.59 have relatively 

high crashes while the others have relatively low crashes. This is in line with expectation 

as a corridor with high number of stops indicates likely higher traffic congestion. Note 
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that high traffic congestion does not necessarily imply high traffic volume. For example, 

corridor number 40 has twice the traffic volume as corridor number 30 but half the 

number of stops. This means reducing number of stops on the road may also reduce 

number of accidents on the road, depending on the method used. 

 

 

 

Figure 89: Scatter Plot between Stop Frequency and Number of Crashes per Mile for the LC Group. 
The Vertical line shows the data separation at STOPS=0.59 Stops/Trip/Mile. 

Regarding the direction of the relationship to the response, two variables are in line with 

expectation. For instance, high acceleration noise associates with a higher number of 

accidents. Also, a high percentage of through traffic (or low percentage of turning 

movement to/from the driveways) associates with lower crash frequency. The last split is 

counter-intuitive. It indicates that high percentage of free-flow traffic associates with high 

crash frequency. 
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7.5 MODEL DEVELOPMENT 

Regression tree and the linear regression techniques are deployed in the model 

development effort. The regression tree results from the previous section are compared 

with the results from the linear models constructed in this section. The model with a 

better R-square is selected.  

Using multiple linear regression might not be appropriate with the crash data because the 

response can take only positive integer values and the crash counts are unlikely to have a 

normal distribution. A Generalized Linear Model (GLM) approach was applied with a 

log link function as described in Section 2.5.3. This approach ensures that the fitted 

values are positive and does not require the dependent variable to be normally distributed 

(62). The followings are model development for the HC and LC corridor groups. 

Model HC: Crash Frequency for Higher Classification Roadways 

HC: Tree Model with Stop Frequency Variable 

The tree model with �1�]� as the most important explanatory variable is used. The 

result is shown in Figure 90. The mean responses (accidents in 4 years per mile) are 53 

for the left node and 95 for the right node. The R-square for this model is 0.19. The 

further splits are not shown because the tree model could not be significantly improved 

by adding more variables. 
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Figure 90: Regression Tree Diagram for Model HC with R-square of 0.19 

 

HC: Generalized Linear Model 

In this section, we try to fit the GLM model. Most of the crash prediction models were 

constructed using the Poisson and Negative Binomial error distribution (18). The 

following model form is used: 
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number of accidents increases proportionally to the length of the corridor. To make 

parameter estimation simple, the log transformation is used and the model form becomes 

   log�`��/>� � P� R P�Q� R P�Q�.… , or 

log�`��� � log�>� R P� R P�Q� R P�Q�.… 

The log form of length with a fixed coefficient of one is used because it is expected that 

the corridor length has a proportional effect on the crash frequency. 

 

HC: Poisson vs. Negative Binomial Distribution 

Since we do not know whether the Poisson or negative binomial error structures should 

be used, we first estimate the model parameters (P�, P�, P�, … � with the Poisson error 

structure and calculate the deviance. The deviance (b) for the Poisson regression can be 

calculated as (17, 38, 39): 

b �  2rsg
 log�g
 <̂
⁄ � � �g
 � <̂
�y�

��  

where g
 is the response value of observation Z and <
 is the fitted value for the 

corresponding g
. If the model deviance is significantly greater than its corresponding 

degrees of freedom (n-p), it indicates that the data have greater dispersion than could be 

captured by the Poisson distribution and the negative binomial distribution is suggested.  
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The Poisson regression model is fitted to the HC dataset and the results are shown in 

Figure 91. 

 

Call: 

glm(formula = ACC ~ STOPS + offset(I(log(LEN))), fa mily = poisson,  

    data = hc) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-7.4778  -3.1957  -0.3224   2.0051  10.9754   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  3.95709    0.03630 109.017   <2e-16 ** * 

STOPS        0.61062    0.07382   8.272   <2e-16 ** * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for poisson family taken to b e 1) 

 

    Null deviance: 546.95  on 36  degrees of freedo m 

Residual deviance: 489.24  on 35  degrees of freedo m 

AIC: 677.98 

 

Number of Fisher Scoring iterations: 5 

Figure 91: Results of the Poisson HC Model with the Predictor Variable STOPS 

The fitted GLM model shows that the estimated parameter for �1�]� is statistically 

significant beyond the 0.01 level of significance, even though we cannot observe an 

obvious trend between the crash frequency and stop frequency in the scatter plot of 

Figure 88. 
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Also included in the results are the null deviance and residual deviance. The null 

deviance is the deviance for a model with no predictor variable and the deviation is 

calculated merely from the intercept term. The residual deviance measures how much the 

data deviates from the current model.  

It can be seen that the residual deviance (489) is much larger than the corresponding 

degrees of freedom (35). This is likely to be the symptom of overdispersion, i.e., the 

residual deviance is much larger than the degrees of freedom. The Pearson chi-square test 

can be used to statistically check the goodness of fit of the model. The null hypothesis is 

that the Poisson regression model has a good fit to the data. The residual deviance of 489, 

to be compared with a chi-square distribution with 35 degrees of freedom. The p-value of 

less than 0.001 rejects that the Poisson regression model fits well. 

The property of Poisson distribution that mean equals the variance is too restrictive for 

the empirical variance in this data. Therefore, the negative binomial should be considered 

to remedy the overdispersion phenomenon of the crash data. 

 

HC: Negative Binomial Regression with Stop Frequency 

The Negative Binomial family is used to fit the crash prediction model with STOPS as a 

predictor. The detailed results are not reported since the �1�]� variable is not significant 

at 0.05 level of confidence. However, the residual deviance (41) for the negative binomial 

model is closer to its corresponding degrees of freedom (35) indicating a better fit than 

using the Poisson model.  
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HC: Negative Binomial Model with Acceleration Noise, All Traffic Condition 

To select other important predictor variables, scatter plots of the crash frequency per mile 

and the predictor variables were investigated. Out of the 15 predictor variables, only 

acceleration noise under all traffic condition, (`�_`) seems to have a relationship with 

the response (Figure 92). The GLM approach is used to construct the model shown in 

Figure 93.The ̀�_` is significant at 0.05 confidence level with the R-square of 1-

(19,392/28,992) = 33 percent, which is greater than the R-square from the regression tree 

with the �1�]� variable. The residual deviance for this model is 40.8 to be compared 

with the chi-square distribution with 35 degrees of freedom. The p-value for the chi-

square test is 0.23, therefore we do not have to reject the null hypothesis that the negative 

binomial model has a good fit with the data. 

The mathematical equation for this negative binomial regression model is as follows: 

gq
 � <
 � >� O F��.»�»��.�»��¼¬_¼j�� ,or 

�]>½ ¾¿ � gq
 >À � F��.»�»��.�»��¼¬_¼j�� 
where gq
 is expected number of accidents in four years for the road section Z with length 

> (mi); �]>½ ¾¿ is the expected number of accidents per mile over four years for the same 

road section; and ̀�_` is the acceleration noise under all traffic condition (mph/sec). 
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Figure 92: Scatter Plot between Acceleration Noise under All Traffic Condition and Number of 
Crashes per Mile for HC dataset. The dotted line represents the fitted model with R-square of 0.33. 

 

Call: 

glm.nb(formula = ACC ~ ANT_A + offset(I(log(LEN))),  data = tempdat,  

    init.theta = 2.45167823371255, link = log) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-3.22218  -0.77174  -0.04393   0.40073   1.50348   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)    2.626      0.638   4.116 3.86e-05 ** * 

ANT_A          1.862      0.796   2.339   0.0193 *   

--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for Negative Binomial(2.4517)  family taken to 
be 1) 

 

    Null deviance: 46.013  on 36  degrees of freedo m 

Residual deviance: 40.800  on 35  degrees of freedo m 

AIC: 322.85 

 

Number of Fisher Scoring iterations: 1 

 

 

              Theta:  2.452  

          Std. Err.:  0.623  

 

 2 x log-likelihood:  -316.853 

Figure 93: Results of the Negative Binomial HC Model with the AN_AF Variable with R-square of 
0.33 

HC: Negative Binomial Model with Acceleration Noise and Multiplicative Form of 

Length 

The assumption of proportional relationship between segment length and crash frequency 

is tested by relaxing the fixed coefficient of the length variable. When the coefficient of 

the log of corridor length is not fixed to 1.0, the relationship becomes multiplicative form 

and the results are shown in Figure 94.  

In this model, the power of the corridor length is less than one (0.706). This means that if 

there are N accidents on 1 mile section, it is expected to have 1.6*N accidents on the 2 

mile section with the same traits. The proportion of deviance explained by this model, 1-

20,076/28,992= 31 percent, indicates a similar fit to the previous model. 
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To test the goodness of fit of this model, the Pearson chi-square test is used. The residual 

deviance for this model is 40.819, to be compared with the chi-square distribution with 

34 degrees of freedom. The p-value of 0.20 indicates that the model appears to be 

adequate. 

The mathematical equation for this negative binomial regression model is as follows: 

gq
 � <
 � >.$�» O F��.�"�#��.��"��¼¬_¼j��  
where gq
 is expected number of accidents in four years for the road section Z with length 

> (mi); and ̀ �_`
 is the acceleration noise under all traffic condition (mph/sec). 
Call: 

glm.nb(formula = ACC ~ ANT_A + (I(log(LEN))), data = tempdat,  

    init.theta = 2.51080164865263, link = log) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-3.23781  -0.76959  -0.06308   0.46183   1.69620   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)   2.2923     0.7299   3.141  0.00169 **  

ANT_A         2.0295     0.8079   2.512  0.01200 *  

I(log(LEN))   0.7060     0.3349   2.108  0.03506 *  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for Negative Binomial(2.5108)  family taken to 
be 1) 

 

    Null deviance: 55.361  on 36  degrees of freedo m 
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Residual deviance: 40.819  on 34  degrees of freedo m 

AIC: 324.05 

 

Number of Fisher Scoring iterations: 1 

 

 

              Theta:  2.511  

          Std. Err.:  0.641  

 

 2 x log-likelihood:  -316.049 

Figure 94: Results of the Negative Binomial HC Model with the Predictor Variables STOPS and 
LEN with the R-square of 0.31 

 

Model LC: Crash Frequency for Lower Classification Roadways 

LC: Tree Model with Stop Frequency Variable 

From the analysis in Section 7.4, the measure �1�]� is the most important variable for 

the lower functional classification. The splitting point is at �1�]� = 0.59 stops per trip 

per mile. The mean responses are 12 and 63 accidents in 4 years per mile for the left and 

right nodes, respectively. There are 21 corridors on the low crash frequency group and 

only 3 corridors on the high crash frequency group. The R-square of the first split is 0.64.  
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Figure 95: Regression Tree Diagram for Model LC with R-square of 0.64 

 

LC: Negative Binomial Model with Stop Frequency Variable  

Next, we check if the GLM model could have a better fit than the regression tree model. 

The two variables that are significant in the negative binomial model include �1�]� and 

`�_`. The �1�]� model reports the R-square of 1-2346/2927= 20 percent and its scatter 

plot is shown in Figure 96. The residual deviance of 26.537 is compared with the chi-

square distribution with 22 degrees of freedom. The p-value of 0.23 is large enough to 

conclude that the negative binomial model has a good fit.  
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Figure 96: Scatter Plot between Stop Frequency and Number of Crashes per Mile for LC Dataset. 
The dotted line represents the fitted model (R-square = 0.20). 

 

LC: Negative Binomial Model with Acceleration Noise, All Traffic Condition  

Furthermore, the acceleration noise (`�_`) model indicates the R-square of 1-

1755/2927=0.4 and its scatter plot is shown in Figure 97. The residual deviance of 25.8 is 

to compared with the chi-square distribution with 22 degrees of freedom. The p-value of 

0.26 is large enough to conclude that the negative binomial model has a good fit. 
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Figure 97: Scatter Plot between Acceleration Noise under All Traffic Condition and Number of 
Crashes per Mile for LC Dataset. The dotted line represents the fitted model (R-square= 0.40). 

 

Since the regression tree model is superior to the two GLM models, we classify the LC 

dataset using the STOPS criterion. The mean response of 63 accidents per mile is used as 

a predicted value for the right node since there are only three observations. The left node 

has 21 observations and we might be able to improve the prediction power by adding 

splitting nodes or constructing a GLM model. According to the regression tree results in 

Figure 85, the next split would improve the R-square by 7 percent, which is not a 

sufficient improvement to justify the additional model complexity.   
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LC [STOPS<0.59]: Negative Binomial Model with Acceleration Noise, All Traffic 

Condition  

For the STOPS< 0.59 dataset, the measure AN_AF is used to construct the negative 

binomial regression model. The parameter estimate is barely significant with the p-value 

of 0.04 and the R-square for this model is 1-620/684=0.09. The Pearson chi-square test 

shows a p-value of 0.25 indicating that the negative binomial model has a good fit. 

 

The mathematical equation for this negative binomial regression model is as follows: 

gq
 � <
 � >� O F��.Á»$$��.Á����¼¬_¼j�� ,or 

�]>½ ­¿� � gq
 >À � F��.Á»$$��.Á����¼¬_¼j�� 
where gq
 is expected number of accidents in four years for the road section Z with length 

> (mi), �]>½  is the expected number of accidents in four years per mile for the same road 

section, and ̀�_` is the acceleration noise under daylight and dry conditions (mph/sec). 

Note that the coefficient for the corridor length is not restricted to one, the parameter 

estimate is not statically significant and therefore the model with multiplicative effect of 

corridor length is not considered in the final model. 
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Figure 98: Scatter Plot between Acceleration Noise under All Traffic Condition and Number of 
Crashes per Mile for LC[STOP<0.59] Dataset. The dotted line represents the fitted model (R-
square= 0.09). 

 

Call: 

glm.nb(formula = ACC ~ ANT_A + offset(I(log(LEN))),  data = tempdat,  

    init.theta = 1.94540428001504, link = log) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-2.2223  -0.7984  -0.2272   0.2825   1.7236   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)   

(Intercept)   0.4677     0.9836   0.475   0.6344   

ANT_A         2.4581     1.1875   2.070   0.0385 * 

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0
10

20
30

40

LC[STOP<0.59] Model: Acceleration Noise vs. Crashes /Mile

AN_AF (mph/s)

C
ra

sh
es

/M
ile

36

40

56

59

63

67

69
70

72 74

77
79

80

8485

87
91

93

94
96 97



 

209 

 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for Negative Binomial(1.9454)  family taken to 
be 1) 

 

    Null deviance: 26.057  on 20  degrees of freedo m 

Residual deviance: 22.611  on 19  degrees of freedo m 

AIC: 123.10 

 

Number of Fisher Scoring iterations: 1 

 

 

              Theta:  1.945  

          Std. Err.:  0.816  

 

 2 x log-likelihood:  -117.103 

Figure 99: Results of the Negative Binomial Model with the AN_AF Variable for the LC with STOPS 
Less Than 0.59. The R-Square is 0.09 

 

7.6 SUMMARY  

The final crash prediction model is a combination of the regression tree and the 

generalized linear models. First, the proposed functional classification system is used as a 

splitting variable to separate lower and higher functional classifications. The higher 

classification is a combination of the minor arterials and high traffic volume (greater than 

11,500 vehicles per day) collectors while the lower functional classification includes the 

lower volume (less than 11,500 vehicles per day) collectors and local streets. This 

classification improved the R-square by 28 percent. 
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For the lower functional classification, the variable �1�]� is used to separate high stop 

frequency (> 0.59 stops/trip/mile) and low stop frequency (<0.59 stops/trip/mile) 

segments. The R-square is improved by 64 percent by this split. For the low crash 

frequency corridors, the crash frequency is predicted by the GLM model (R-square = 

0.09): 

`��­¿� � >� O F��.Á»$$��.Á����¼¬_¼j�� 
The high stop frequency LC segments will have an expected crash frequency of 63 

accidents per mile in four years and can be formulated as: 

`��­¿�  �  > O 63 
For the HC corridors, the crash frequency is predicted by the GLM models (R-squares = 

0.33 and 0.31 for the >� and >�.$ models, respectively): 

`��¾¿ � >� O F��.»�»��.�»��¼¬_¼j��,  
or 

`��¾¿ � >.$�» O F��.�"�#��.��"��¼¬_¼j�� 
The overall R-square of the final model is 0.48, which indicates that almost half of the 

variation in the crash data can be explained using functional classification, stop frequency 

and acceleration noise variables. The model is potentially be used as a screening tool for 

road safety improvement program. The final model structure is illustrated in Figure 100. 
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LC+HC 

`��¾¿ � >Â O F�U8�UD¼¬_¼� 

FC=HC FC=LC 

STOPS<0.59 STOPS>0.59 

`��­¿� � >� O F�U8�UD¼¬_¼� `��­¿�  �  > O 63 

Figure 100: Final Model Structure R-square = 0.48 (LC=Lower Functional Classification, 
HC=Higher Functional Classification, STOPS= Stops Frequency, AN_AF= Acceleration Noise 
under All Traffic Condition)  
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Chapter 8.  CONCLUSIONS 

This chapter summarized the research tasks and findings from this dissertation in Section 

8.1. Major contributions are listed in 8.2. Limitations and future works are suggested in 

Section 8.3. 

8.1 SUMMARY OF FINDINGS 

This dissertation is the first study developing a crash prediction model for low speed 

urban streets using continuous speed data from the GPS-equipped vehicle data. The 

developed model is intended to be used as a screening tool in which traffic engineers can 

use GPS traces from vehicles in concert with basic roadway information such as road 

classification to identify the sections on the urban street network that might be expected 

to exhibit a higher than normal number of crashes. 

While the previous researchers constructed similar models using point-specific speed 

measures, this study proposed several measures using the speed profile data. The profile-

based measures are expected to reveal the variation of speed along the spatial dimension 

of the roadway, which might indicate safety issues.  

Some of the proposed measures are designed to capture speed consistency. This requires 

the speed data to be under free-flow conditions. However, the original GPS-based 

trajectory data did not include a direct information of the flow regime. As a result, a 

series of speed data processing filters were developed to identify likely free-flow speed 

data. The sensitivity of the data filters to the speed-related measures was analyzed and the 

findings are as follows: 
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• The speed measures derived from the 85th percentile speed profile 

including �b85, �85, ��85, and ��85 are not sensitive to the data filters. 

This is because the filters are designed to remove potentially non-free-

flow trips, which usually contain low speed data points, and thereby the 

filter effect on the high percentile speeds is minimal. As a result, the speed 

measures derived from the high percentile speed data might not require the 

free-flow filtering process. 

• The speed measures utilizing the low speed data, such as, mean and 

variation of the speed band and the acceleration noise are affected by the 

free-flow filters on many corridors. Therefore, the free-flow condition is 

an important factor to determine the values of these measures when they 

are desired for operating speed analysis. 

• It is observed that the off-peak period cannot be effectively used as a 

surrogate of the free-flow filters because different urban streets have 

different peak period. Therefore, the speed profile pattern filters provide 

more reliable information about the traffic condition than a time-of-day 

filter. 

In the model development effort, the study corridors were divided into two classes, 

namely, higher and lower functional classifications. The crash prediction model was 

constructed using the regression tree and generalized linear modeling approaches. 

Findings from the models are summarized as follows: 
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• The safety characteristics of roadways are likely a function of the roadway 

classification. Separation of corridors by functional classification allows for the 

identification of high crash LC corridors (relative to other LC corridors) that 

might not be otherwise identified.  

• For the higher classification roadways, the most important explanatory variable 

used to construct the regression model is the acceleration noise under all traffic 

condition (̀ �_`) which includes all continuous trips made during day light and 

no rain conditions. The model explains 27 percent of the total variation in the 

crash data. The `�_` has a positive relationship with the crash frequency on the 

HC corridors, i.e., the higher the acceleration noise, the higher the expected crash 

frequency. 

• For the lower classification roadways, the variables stop frequency (�1�]�) and 

acceleration noise (̀�_`) were used to construct the crash prediction model. 

Both variables have positive relationships with the crash frequency on the LC 

corridors, as expected. 

• Several measures derived from likely free-flow speed data such as �b85, �85, 

�b_±�b, �_±�b, and ̀ �_? do not have significant relationship with the crash 

frequency. This might be because accidents on the urban streets are mainly a 

function of a combination of traffic congestion, and the roadway design, and 

roadside characteristics while the mentioned variables are designed to measure the 

speed consistency along the corridor without considering the level of traffic 
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congestion. The traffic condition of the roadway can be partially explained by the 

variables �1�]� and ̀ �_`. 

• While most of the crash prediction models include traffic volume as their traffic 

exposure measure, the model in this study does not require the comprehensive 

traffic volume information because this can be represented by the road functional 

classification, the acceleration noise, and the stop frequency variables.  

8.2 CONTRIBUTIONS 

Existing crash prediction models require data such as physical road geometries, traffic 

volume, and speed characteristics. These data can be expensive and time consuming to 

collect. Most of the speed-safety models also use point-specific speed measures, which 

do not capture speed consistency along the corridor. This study explores the use of the 

speed profile data from GPS instrumented vehicles. The major contributions of this 

research are summarized as follows: 

• The research developed a methodology to obtain the speed profile data under 

various conditions. 

• The research provides an understanding of the impact of data filtering processes 

on the speed measures. 

• The crash prediction model provides a foundation for a speed profile based 

screening tool in a road safety improvement program. In particular, traffic 
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engineers can use this model to identify potential problem corridors using only the 

speed data collected from the instrumented vehicles.  

8.3 LIMITATIONS AND FUTURE WORK 

Additional research work that can be conducted includes the followings: 

• Since the GDOT crash database includes information regarding the manner of 

collision and level of severity (e.g., number of injuries and fatalities) , the model 

should be extended to examine the relationship of speed profile characteristics 

with different crash types and different degrees of severity. 

• The geometric elements and roadside features that can be readily obtained could 

be incorporated in the crash prediction model to examine the improvement in 

predictive power. 

• The design consistency indicator, ��>��, measures the variation of operating 

speed from the speed limit. However, this variable was not found to be significant 

in the final model. It might be interesting to see how this measure is improved 

when only the over speed data, i.e., speed data above the speed limit, are included.  

Additionally, the following is suggested as the future research when the required data are 

available: 

• The study corridors were selected mainly based on availability of GPS data and 

the need of FHWA study, Effects of Urban Street Environment on Operating 

Speeds. Therefore, the selected sites do not necessarily portray an unbiased 
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distribution of crash data. A future study should include a large sample of 

randomly selected corridors. 

• It is also possible that additional variables potentially influencing road safety have 

not been included in this study.  For example, a bias in driver demographics 

across the corridors may introduce a bias in the incident statistics. Future research 

should investigate the impact of driver and vehicle characteristics on the surrogate 

measures. 

• The speed measures, stop frequency, and acceleration noise are partially 

influenced by the traffic congestion on the corridor. The trip data distribution used 

to calculate these measures may potentially be biased by time of day drivers of the 

instrumented vehicles tended to traverse the corridor. For example, if most of the 

instrumented vehicles travel on a particular corridor during the peak time and only 

a few trips are made during off-peak, the stop frequency and the acceleration 

noise determined are likely to be overestimated for the corridor. Future research 

into the impact of the trip sampling on measures should be conducted. 

• When more speed data are available during the inclement weather and nighttime 

period, speed and safety characteristics during inclement weather and low 

visibility condition should be inspected as these might expose additional 

geometric design or other roadway characteristic issues. 

• Regarding the modeling approach, each direction of the road should be model 

separately as each direction potentially has different speed and safety 
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characteristics. In this study, accidents were combined from the two directions of 

travel as the impact direction of travel could not be accurately identified from the 

given crash database. Additional explanatory power in the model is expected 

when the model incorporates direction of travel.  
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APPENDIX A: SUMMARY OF DATA PROCESSING 
RESULTS 

 

The following bar charts are the summary of data reduction from data processing steps 

performed in Chapter 4. Each figure represents percent trips that passed the filtering 

criteria of one directional corridor. Number of trips of the initial data set is placed at the 

top right corner of the chart. The notations of the filters are described below: 

• L=Light 

• W=Weekday 

• R=No Rain 

• F=Free-Flow 

• O=Off-Peak 

• D=Deviated Trips 

• S=GPS Signal 
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APPENDIX B: SENSITIVITY ANALYSIS RESULTS 

 

The charts in this appendix are the results of the sensitivity analyses of the speed 

measures to the spacing distance discussed in Chapter 5. The sensitivity plots are grouped 

by the effective corridor length, i.e., the corridor length subtracted by the traffic control 

influential zones. 

The speed measures exhibited in this section include: 

• Speed variation (SD85) 

• Mean of 85th percentile speed (M85) 

• Coefficient of Variation of 85th percentile speed (CV85) 

• Interquartile Range of 85th percentile speed (IQ85) 

• Variation of 85th percentile speed from the speed limit (SVLIM) 

• Mean of speed bands (M_BND) 

• Variation of speed bands (SD_BND) 

• Acceleration noise under free-flow condition (AN_FF) 

• Acceleration noise under all-flow condition (AN_AF) 
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Sensitivity of Speed Variation (SD85) Plots 
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Sensitivity of Mean of 85th Percentile Speed (M85) Plots 
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Sensitivity of Coefficient of Variation of 85th Percentile Speed (CV85) Plots 
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Sensitivity of Interquartile Range of 85th Percentile Speed (IQ85) Plots 
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Sensitivity of Variation of 85th Percentile Speed from the Speed Limit (SVLIM) Plots 
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Sensitivity of Mean of Speed Bands (M_BND) Plots 
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Sensitivity of Variation of Speed Bands (SD_BND) Plots 
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Sensitivity of Acceleration Noise under Free-Flow Condition (AN_FF) Plots 
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Sensitivity of Acceleration Noise under All-Flow Condition (AN_AF) Plots 
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