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SUMMARY 

Ionic solids have gained tremendous importance in recent years due to their roles 

in energy conversion devices like solid oxide fuel cells, gas separators, oxygen pumps 

and gas sensors. During their functioning, point defects diffuse through the solid due to 

an electrochemical potential gradient. In general, the electrochemical potential is 

considered to be a function of the local concentration of the defects and temperature only, 

and the non-entropic part of the chemical potential is assumed to be a constant. In 

addition to thermo-mechanical loads, non-uniform strains due to non-stoichiometry can 

create mechanical stresses. Thus the prime motivation for this work stems from 

recognizing that point defect diffusion in the solid occurs under stressed conditions.  

The primary objective of this research is to study the extent of stress-defect 

transport interactions in ionic solids. For this purpose, the first part of this research 

develops a continuum framework for steady state transport of point defects in a typical 

oxide ceramic. The main highlight of this framework is the development of the Eshelby 

stress dependent chemical potential, which is the elastic contribution to the non-entropic 

part of the chemical potential. The gradient of the Eshelby stress dependent chemical 

potential is then used to develop a system of governing differential equations that must be 

solved to address the problem of stress-dependent transport. 

The stress dependent electrochemical potential entailed the introduction of two 

material constants. They are a) the Chemical Coefficient of Expansion (CCE) which 

quantifies the strains induced due to non-stoichiometry and b) a fourth order tensor 

describing the stoichiometry dependent elastic constants called as the Open System 

Elastic Constants (OSEC). The second part of the research determines these material 
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properties for Gadolinium doped ceria (GDC) using a combination of molecular 

simulations and analytical expressions. While the methodology for the determination of 

CCE is straightforward, the stoichiometry dependent elastic constants pose challenges 

due to the non-primitive nature of defective GDC lattice. In order to consider the effects 

of inner elasticity in such non-primitive lattices, a new super cell based approach is 

presented to calculate the elastic constants. Both CCE and elastic constants are 

determined for several levels of non-stoichiometry and temperatures. 

To study the effect of the interactions on the distribution of point defects, 

electrostatic potential and the current voltage relationships, a modified form of the Nernst 

Poisson Planck system of equations (MNPP) is introduced. The 1-D MNPP system 

contains the effects of both the CCE and the OSEC. The singular nature of the MNPP 

system rendered direct numerical solutions impossible for the domain under 

consideration. Hence a combination of the method of matched asymptotic expansions and 

numerical methods are used to obtain solutions. Differences in the distributions of point 

defects and electrostatic potentials were observed on solving the MNPP system with and 

without elasticity effects. This revealed that the interactions between stresses and defect 

transport existed and could be significant under certain conditions. 

Finally, the finite element method was used through a User Element subroutine 

for ABAQUS, to solve fully coupled stress defect transport equations in a 2D elastic 

domain with flaws of various configurations. The stresses induced in the vicinity of these 

flaws were high indicating that premature failure of the component was possible under 

operating conditions. The strain energy release rates were determined for cracked 

electrolytes using the material force approach for various values of applied voltages. The 
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values of these strain energy release rates (G) were also high and indicated the growth of 

existing cracks in the material. The strain energy release rates were then developed as 

explicit functions of the electrochemical boundary conditions providing a means to 

suggest safer operating voltages while functioning of cracked ionic solids in a typical fuel 

cell environment. 

The fusion of the various elements of this thesis provides methodologies and tools 

to model, study and interpret the consequences of stress-defect transport interactions in 

ionic solids. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Ionic solids have gained tremendous importance [1] in recent years due to their 

roles in energy conversion devices such as solid-oxide fuel cells (SOFC) [2], gas 

separating membranes, gas pumps and sensors [3]. Many of the same figures of merit 

apply to these different applications, the main ones being, ionic conduction in solid 

electrolytes for SOFCs, mixed ionic electronic conduction (MIEC) for electrodes [4]. 

During the functioning of the above mentioned devices charged point defects like 

vacancies, interstitial ions, electrons and holes diffuse through the ionic solid in a 

chemical and/or electrical potential gradient. The main motivation for this work stems 

from the need to identify the dependence of the distribution of the electrochemical field 

quantities on mechanical stresses and vice versa. Thus diffusion in an electrochemical 

gradient may create stresses and conversely an applied stress field may cause 

redistribution/diffusion of point defects in the solid. The proposed research work mainly 

aims at developing a framework, methodologies and numerical tools to solve problems 

involving such interactions. The results of this study may then be used to improve 

analysis techniques used to study the functionality and to enhance the reliability of ionic 

solids in various applications. 

1.2 Ionic solid as an electrolyte 

In this thesis an ionic solid, in light of its role as an electrolyte in a fuel cell/gas 

pump will be studied. In particular Gadolinium doped ceria (GDC) is considered for its 
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prospective role as an electrolyte in a low temperature SOFC and for its propensity to 

undergo large chemical expansion. Before introducing various aspects of this research, a 

brief description of the role of the electrolyte (GDC) and its behavior in the solid state 

device is in order. A sketch of the typical environment experienced by GDC under 

normal operating conditions is shown in Figure 1.1. In a fuel cell, the anode is typically 

exposed to hydrogen (referred to as the low oxygen partial pressure side) while the 

cathode to air (higher oxygen partial pressure). The anode and cathode are porous 

materials so as to allow for the fuel and oxygen gas to reach the impermeable electrolyte. 

At moderate temperatures (~1073K), GDC conducts oxygen ions from the cathode to the 

anode, due to the presence of oxygen vacancies in its sub-lattice. Conduction of oxygen 

ions occurs through a vacancy hopping mechanism. At the anode, electrons are released 

by the oxidation of hydrogen with the formation of water. These electrons move in the 

external circuit through a load (shown as a light bulb in Figure 1.1 and on reaching the 

cathode they reduce oxygen gas to form oxygen ions [2]. These oxygen ions are 

incorporated into the electrolyte through a complex mechanism [5] and are carried to the 

anode due to the presence of oxygen vacancies. 

It is also possible to supply and maintain an external voltage to drive the oxygen 

gas from a lower partial pressure side to a higher one. Such a set up is now called an 

oxygen pump. In either case, SOFC or a gas pump, a different partial pressure of oxygen 

on either side of the electrolyte causes a non-uniform distribution of vacancy 

concentration within the electrolyte during the functioning of the device. 

Thus, clearly the electrolyte’s primary function is to conduct ions (oxygen). 

Certain ionic solids like GDC also conduct a small number of electrons, making them 
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Mixed Ionic Electronic Conductors (MIEC). The conduction mechanism can also be 

addressed in terms of the point defects responsible, namely the vacancies. Thus, if the 

oxygen ions move from the cathode to the anode, the vacancies move in the opposite 

direction. In this thesis the conduction mechanism is described in terms of the point 

defect motion.  

 

1.3 Stresses in ionic solids 

Diffusion of charged point defects in ionic solids plays a vital role in the 

conversion of chemical to electrical signals. The diffusivity of these point defects is 

usually larger at higher temperatures, and because of this the operating temperature of the 

solid state device is quite high (typically 500oC-1000oC, allowing for internal reforming). 

This is a primary cause for thermal stresses, especially if the thermal coefficient 

mismatch between the various cell components is large. The materials used for solid state 

devices such as solid oxide fuel cells must meet certain stringent and conflicting 

requirements. For example, the cathode must resist oxidation while the anode must be 

Figure 1.1: Working principle of a solid oxide fuel cell 
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resistant to reducing environments. Electrolytes must resist both these extremities in 

addition to high operating temperatures. Thermal expansion mismatch between the 

constituent elements also induces stresses [6] in ionic solids during service. In addition to 

thermo-mechanical stresses, other contributors are also known to be significant. For 

example, Gadolinium doped ceria (GDC) which is known to be a better ionic conductor 

at lower temperatures than Yttria stabilized zirconia (YSZ) [7] undergoes volumetric 

chemical expansion under reducing environments due to the conversion of Ce4+ to Ce3+ (a 

larger ion) [8]. A strain of around 1.5% was reported in [9] when the oxygen partial 

pressure was 10-18atm. Other ionic solids such as doped Lanthanum Chromite [10, 11] 

and doped Lanthanum Titanate[12, 13] also show chemical expansion behavior. Local 

deviations from composition are always present during defect transport and such 

deviations also create local eigenstrains. When such chemical expansions are not 

accommodated by appropriate deformation, stresses are induced. Such stresses may be 

detrimental to the mechanical stability of the ionic solid, and the GDC’s propensity to 

show this behavior makes it an ideal candidate for this research. Figure 1.2 shows cracks 

observed in a ceria sample which has undergone reduction [14]. In addition to the thermal 

Figure 1.2: Micro-cracks in non-stoichiometric ceria 
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and chemical stresses just discussed the ionic solid may also be subjected to surface 

tractions, like the pressures of the working gases. Thus it is important to first recognize 

that transport of point defect in ionic solids occurs in the presence of mechanical stresses.  

Non-stoichiometry in addition to creating stresses also causes a deviation in the 

mechanical properties of the material. In a recent article [15] the variation of  the 

Young’s modulus of some commonly used electrolytes was investigated. The results of 

such an investigation are shown in Figure 1.3. It can be seen that the modulus decreases 

significantly for lower partial pressures of oxygen. In addition to variation in elastic 

modulus it is not difficult to see that other crucial properties of the material, like fracture 

toughness and strength, may also be dependent on the stoichiometry. In ref.[16] the 

effects of heat treatment on these properties for ceria was studied. The strength 

substantially decreased while fracture toughness increased by about 30-40% when the 

partial pressure was in the 10-20 to 10-22 atm. range. The reason for such a change in the 

Figure 1.3: Variation of Young’s modulus due to non-
stoichiometry for some common electrolytes from [15]  
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toughness was attributed to internal stresses, micro crack toughening and crack deflection 

mechanisms. 

The above paragraph describes how defect transport or non-stoichiometry can 

cause stresses within the solid and also affect its properties. The converse effect, namely, 

stresses affecting the chemical nature of the solid or the transport of defects, can also take 

place. Significant interest in this area has been shown recently. For example in [17, 18], 

stress-relaxation mechanisms in a thin GDC sample were related to an association-

dissociation reaction between the defects. They have suggested that such interactions may 

pave the way for novel handling of stresses in materials used in electrochemical devices. 

Thus, the study of stresses affecting the defect transport or chemistry of the solid is not 

purely academic. 

1.4 Research gap 

Earlier works that perform failure analysis using numerical methods [19] on ionic 

solids neglect the effect of electrochemical fields while those that consider the 

electrochemical fields [20, 21] neglect any mechanical stress effects. Although such 

interactions may not be very significant for certain ionic solids [22], it may not be true for 

others [17, 23, 24] as described in section 1.3. Thus the two way interaction that may 

exist between the electrochemical field quantities and mechanics has not been given 

much attention, at least with regard to ionic solids. This thesis primarily aims to fill this 

gap.  

The following questions aid in obtaining a better conception of this problem.  

1) What are the various field quantities that are of interest in a typical ionic solid? 
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2) What thermodynamic quantity must be fundamentally modified to consider the 

interactions among the various fields? 

In an ionic solid, the mechanical fields that are of interest are primarily the 

stresses and strains, at the level of linear elasticity to which we adhere to in this work. 

These are obtained as solutions to the boundary value problem.  

One of the electrochemical fields is clearly the concentration of the charged point 

defects which are responsible for the conduction. Thermodynamically, it is well known 

that the electrochemical potential of the defect is the equilibrium governing quantity and 

is the driving force for defect transport. For species α this is given as [25], 

 z Fα α αμ μ φ= +  (1.1) 

where, 

αμ , is the chemical potential of species α  and usually depends on the temperature and 

concentration of the defect species 

zα, is the equivalent charge on species α  

F, is the Faraday’s constant  

φ , is the electrostatic potential 

Therefore in addition to the concentration of the charged defects, the electrostatic 

potential must also enter the formulation. The fields that are generally of interest here are 

therefore the stress, strain, concentration and the electrostatic potential.  

The answer to the second question originates in realizing that the forcing term for 

a change in the concentration of a defect at a continuum point is the electrochemical 

potential. Thus this factor must be modified to account for the effect of mechanical field 

quantities on electrochemical fields. Hence, if the electrochemical potentials are known 



8 

as a function of stress, the diffusion problem may be solved using these stress dependent 

potentials to obtain concentration and electrostatic potential distributions. However, due 

to the coupling between the two fields, equilibrium equations of mechanics must be 

solved in conjunction with the diffusion problem in order to obtain a complete solution. 

This makes the problem mathematically non-linear, requiring numerical methods even 

for simple one dimensional cases [26]. A further complication may be induced due to the 

dependence on existing stress fields of the Onsager’s coefficients (or the coefficient of 

diffusion) of the general flux/diffusion equations of irreversible thermodynamics [27] this 

is however not considered in this work. 

1.5 Objectives 

The main goal of the thesis is to numerically study the interactions between 

stresses and defect transport in GDC. For this purpose it is clear from section 1.4 that the 

electrochemical potential of the defect must be first developed as a function of the local 

stress state. The gradient of this stress-dependent electrochemical potential can then be 

the driving force for diffusion of point defects. This can then be used to develop a 

framework, establishing the necessary differential equations and the boundary conditions 

that need to be solved in order to study the interactions. The solution of the differential 

equations will give us the necessary distribution of the mechanical and electrochemical 

field quantities. These distributions can then be compared to the results from the 

uncoupled case (that uses the stress independent chemical potential). The ensuing 

differences in these quantities will conclude on the extent of interactions. 

In order to achieve the objective, this work takes a four pronged approach 

involving, 
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1) Develop a continuum thermodynamic formulation of the stress dependent 

electrochemical potential and establishing the required  coupled differential-algebraic 

equations to be solved to study interactions between defect transport and mechanics 

2) Perform atomistic simulations using Molecular Dynamics (MD) to determine material 

properties introduced as a result of the developed theory 

3) Solve the differential equations for the distribution of the field quantities through 

analytical and numerical methods 

4) Post process the results to quantify other performance related measures of interest 

The pictorial representation of the elements of this thesis is shown in Figure 1.4.  

 

Figure 1.4: Pictorial representation of the elements of this thesis 
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1.6 Significant contributions in this research 

This research addresses the effects of stress on solid state diffusion and hence on 

the effects of stress-defect transport interaction on the electrochemical and mechanical 

fields in a solid electrolyte used in solid oxide fuel cell or oxygen pumps. Previous stress 

analyses on ionic solids generally neglect any concentration dependent eigenstrains, 

while existing solutions of transport equations pertaining to motion of defects in ionic 

solids neglect the effects stresses. 

The primary significant contribution of this research is the conclusion that the 

interaction between mechanical and electrochemical field quantities is significant in 

certain ionic solids. The distribution of the field quantities which are obtained by using 

the coupled theory show significant variations when compared to distributions obtained 

from the uncoupled framework. This makes it clear that the current mathematical 

modeling of transport and mechanical design of ionic solids for applications cannot be 

carried out independently of each other. Designing ionic solids by considering the 

interactions as discussed will aid in manufacturing long term mechanically and 

electrochemically reliable MIECs for use in solid state devices. Secondly, the 

development of the stress dependent diffusion potential couples solid mechanics and 

chemistry at a fundamental, thermodynamic level. Due to this, certain quantities of 

interest in chemistry, like the equilibrium constant for a solid state reaction cannot be a 

constant through out the solid, for it will depend on the stress state in addition to 

temperature. Thus this research opens up a relatively less explored interdisciplinary area 

of electro-mechano-chemistry in association with ionic solids. 
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Other important contributions include atomistic techniques to determine material 

properties ensuing from the theoretical development, namely the Coefficient of Chemical 

Expansion (CCE) and the Open System Elastic Constants (OSEC). These material 

properties come naturally from the thermodynamics and are responsible for coupling 

stresses and defect transport. Although these methods are developed for GDC, they may 

be applied to other ionic solids of interest as well. The only modification required will be 

the construction of appropriate crystal structures. 

User element subroutine that is developed for the ABAQUS finite element 

software can solve steady state coupled stress-defect transport equations. This can be 

used as a starting point by mechanical designers and electrochemists to study the 

consequences of the interactions on both the mechanical and the electrochemical 

behavior. 

Easy to apply formulas are derived for the strain energy release rate (G) for 

cracked electrolytes under defect transport conditions. The formulae derived may be 

expressed entirely in terms of the applied electrochemical loadings (applied voltage, 

partial pressures of gas etc.). This may prove to be very useful in efforts to establish the 

severity of flaws in an electrolyte subjected to electrochemical loading conditions. Using 

this, safe operating voltages may be suggested for specific crack configurations if the 

critical strain energy release rate values of the concerned material are known. 

Grain boundary engineering at both the structural and materials level is proving to 

be of significant importance in ionic solids. For an example at the structural level, 

nanocrystalline ceria shows enhanced electronic conductivity over its bulk counterpart 

[28].On the materials side, composites in which LiI is infiltrated in nanoporous Al2O3, 
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achieve conductivities as high as 10-3 S cm-1 [29]. Thus nano-structured materials 

(homogenous or a heterogeneous mixture) show significantly different and useful 

properties when compared to their macroscopic counterparts [28-34]. In addition to 

tuning properties by grain engineering, externally applied loads may also prove useful for 

obtaining new properties in materials with nano-structures. Although the current work 

does not consider polycrystalline behavior explicitly, the effect of stresses on the surface 

charge is examined in this work. The results indicate that there is a penetration of charge 

layer into the material when stress effects are considered. These effects are extremely 

important and useful especially in nano sized/nano-crystalline materials. The size 

dependency of the performance in such materials can be easily studied by using the 

results of this work. In essence the idea that stresses and defect transport interact in ionic 

materials gives us other methods to tune their properties, like for example by applying 

external loads. 

1.7 Organization of the thesis 

A separate chapter devoted to a literature review is not given. This is so because; 

the thesis involves analysis techniques pertaining to two different length scales, atomistic 

and continuum. A separate chapter titled “Literature Review” discussing material 

related to both these scales will seem disconnected. Since a separate chapter deals with 

each aspect of the thesis, the pertinent literature is presented in the chapter itself and is 

connected to the issue being addressed. Additionally, it is easer to delineate what has 

been done with regards to a particular research problem and what the contribution of this 

thesis to the problem will be if the existing literature is discussed in parallel with the 

contributions. The contents of each chapter are briefly shown in Figure 1.5. 
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The next chapter (Chapter 2) is devoted to the background material required for 

reading the thesis. It discusses point defect chemistry, its representations and 

thermodynamics. The concepts needed for understanding certain nuances associated with 

the electrochemical potential of point defects in solids is discussed in detail. Also 

presented is a brief introduction to molecular dynamic (MD) simulations. The required 

mechanics of materials and finite element background is assumed although some details 

pertaining to material forces and Eshelby’s stress tensor are provided in chapter 6.  

Chapter 3 develops the stress dependent electrochemical potential of the point 

defects. Then it establishes the necessary differential equations and boundary conditions 

that need to be solved in order to study stress and defect transport interactions in ionic 

Figure 1.5: Brief depiction of the content of various chapters 
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solids. This is done for a general ionic solid like GDC possessing several kinds of point 

defects which are typically found in ionic oxides. 

The theoretical development of chapter 3 will introduce certain material related 

properties. These will be obtained for GDC using MD simulations in Chapter 4. In 

particular, methodologies will be developed to determine the properties, and the values 

that are obtained will be compared to some recent literature discussing experimental 

observations. This chapter will also discuss the effect of temperature and defect 

concentrations on the values of these material constants. 

In Chapter 5, the system of equations developed in chapter 4 will be reduced to a 

one dimensional equation under certain conditions. In particular a thin planar electrolyte 

and a long tubular electrolyte are considered for the study. The reduction to 1D will allow 

us to analytically develop solutions to the system of equations and to study the effect of 

interaction on the distribution of the defects, electrostatic potential, stresses and current 

voltage relations. 

Chapter 6 will discuss the effect of interactions on stress distributions and values 

of G for certain electrolytes with flaws in them. Particularly cracks of two configurations 

and an electrolyte with a void is considered for the material in this chapter. A method 

based on the materials forces approach will be used to calculate G. Error incurred in 

performing calculations without the interaction between stresses and defect transport will 

also be quantified. Finally a method to obtain a functional form will be presented to 

calculate G for the considered crack configurations so that the designers may directly 

determine the failure criteria of the ionic solid in typical operating conditions. The 
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functional form will completely depend on the applied electrochemical boundary 

conditions. 

 The last chapter (Chapter 7) concludes the thesis with a summary and a listing of 

the contributions of this research. It also discusses the current state of the art with regard 

to the size effect in ionic solids, suggests recommendations for future research including 

some experimental techniques to verify stress defect transport interactions. 
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CHAPTER 2. BACKGROUND  

2.1 Essentials of point defect chemistry 

2.1.1 General remarks 

As motivated in ref.[35], The conception that solids have an “inner chemical” 

life, which makes it possible for us to tune their properties like we do with liquids, is 

made practical by the existence of point defects in solids. Point defect centers in solids 

were introduced by Wagner and Schottky [36, 37]. Defect chemistry not only provides 

the fundamental understanding of the behavior of point defects, it also enables 

optimization of solids with regard to technological applications. 

There are primarily three kinds of point defects in crystals a) Vacancies –A 

regular lattice site in the crystal is left unoccupied b) Interstitials – Atoms or Ions are 

present in usually unoccupied positions and c) Substitutional defects – Regular lattice 

sites are occupied by foreign or impurity atoms. Usually the concentrations of the point 

defects are not coupled. However, the situation is different for ionic crystals like GDC, 

where the atoms are charged. Here, the defects can posses an effective charge relative to 

the ideal defect free solid. Thus, an interstitial cation is positively charged while a cation 

vacancy is negatively charged. Unlike line (dislocation) and surface defects (Interfaces), 

point defects are thermodynamically necessary and are formed on entropic considerations 

[38], i.e. to attain thermodynamic equilibrium. Point defects created purely by thermal 

effects are intrinsic while those that are created externally, for example by doping, are 

extrinsic. Thus, an ionic solid at 0K will be free of any intrinsic point defects. 
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Point defects are generally quantified by their concentrations in the ionic crystal. 

In addition to the thermodynamic considerations just mentioned, the electroneutrality of 

the entire crystal must be considered while determining the concentrations of the point 

defects in crystals. Hence, the total number of positively and negatively charged 

equivalents of defects in the crystals must be equal. For example, in the material 

considered in this thesis, GDC, two forms are used frequently. They are 10GDC 

(Ce0.9Gd0.1O2-0.05) and 20GDC (Ce0.8Gd0.2O2-0.1). These materials are formed by doping 

the parent material CeO2 with different amounts of Gadolinium atoms. For every two 

Ce4+ atoms replaced by Gd3+, (Substitutional impurity) one positively charged oxygen 

vacancy (Vacancy) is formed in the oxygen lattice of CeO2. This is because on doping the 

lower positive charge on the dopant (Gd+3) when compared host atom (Ce+4), leaves the 

crystal negatively charged. To compensate, negatively charged oxygen atoms (O2-) can 

leave the crystal, creating positively charged vacancies. It is the presence of a high 

concentration of such charged mobile point defects (vacancies in GDC) that make ionic 

solids suitable for electrochemical applications such as electrodes and electrolytes in 

solid state devices.  

2.1.2 Symbolism of point defects and solid state reactions 

Solid state reactions are written in a similar manner to chemical reactions. 

However, the notation of point defects is different when compared to chemical elements 

or compounds. Solid state reactions use the Schottky [39] or the Kroger-Vink (KV) [40] 

notations. Although the Schottky notation is thermodynamically sufficient, it uses the 

building element [41] formulation which is abstract and difficult to use [38]. In both the 

notations, in addition to the defective component being addressed, the lattice sites 
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occupied by the defect together with the charges they posses with respect to a perfect 

crystal are specified. For a review of Schottky and KV notations please see [42].  

The KV notation is used in this thesis because its structural element formulation 

vividly specifies the creation and annihilation of charged defects. According to the KV 

notation, MV •
• is used to represent a positively charged vacancy at a site which had been 

occupied by an atom M. If an impurity atom P is located in the position of a host atom H 

leaving the crystal negatively charged relative to a perfect charge-neutral crystal, it is 

represented by '
HP . Electrons are denoted by e′, while electron holes are represented by h• . 

A single dot “• ” represents a single positive charge while a prime “ '  ”  indicates a single 

negative charge. The charge of an ionic defect is considered with respect to the perfect 

solid while, electronic defects are indicated with the charges they posses. An atom M 

occupying its lattice site is given by X
MM with the X indicating neutral charge. A vacancy 

or an ion in an interstitial site may be represented by replacing the suffix M by i. Thus, 

the reaction involving the formation of vacancies in GDC, due to doping (see section 

2.2.1) may be written in the following form, 

 2 '
2 3 2 3 XCeO

Ce O OGd O Gd V O••⎯⎯⎯→ + +  (2.1) 

where 

'
CeGd  represents Gd atom occupying Ce site thus leaving the crystal negatively charged 

relative to a perfect crystal 

OV •• represents the double positively charged oxygen vacancies 

X
OO represents oxygen atoms in oxygen sites thus having neutral charge.  
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Thus in formulating solid state reactions in which structural elements take part, 

one must observe three balances: 1. the material balance (Same kind of atoms must exist 

on either side of the reaction), 2. the charge balance (Charges must balance on either side, 

just like any chemical reaction) and 3. the site balance (the ratios to one another of the 

possible crystallographic sites must be the same on either side).  

Although we use the KV notation in this thesis, a brief comment on how it differs 

from the Schottky notation is in order (see [43] for details). To illustrate we consider the 

formation of Frenkel [25, 44] defects in AgCl crystal. A Frenkel defect is a disorder 

where the cation moves to an interstitial position leaving a negatively charged vacancy. 

The corresponding solid state reaction is written in Schottky notation as,  

 '•nil Ag Ag+  (2.2) 

The same reaction is represented in the KV notation in the following form,  

 ( ) ( )• ' • ' Or - -X X X X
Ag i i Ag i i Ag AgAg V Ag V nil Ag V V Ag+ + +  (2.3) 

Comparing Eq. (2.2) and Eq. (2.3) we see that building elements are combinations of 

structural elements (see Eq. (2.4)) 

 ( ) ( )' ' • •-  and  -X X
Ag Ag i iAg V Ag Ag Ag V= =  (2.4) 

We note that, while the building element combination (|Ag|') may be added to or removed 

from the solid independent of other building elements, the structural elements may not. 

This is true because it is impossible to remove silver atoms from the crystal without 

creating vacancies in the silver lattice. It is this property of a structural element 

(indirectly reflecting the lattice constraint in the solid) which requires the introduction of 

the diffusion and virtual electrochemical potentials as will be explained in the next 

section. 
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Point defects are also classified as simple and complex point defects. Simple 

defects are isolated structural elements and may interact through coulombic forces 

forming defect associates in ionic solids [45-48]. These are called complex defects. 

Associated complexes are commonly known to occur in both GDC and YSZ (Yttria 

Stabilized Zirconia (YSZ)), both of which are common materials for electrolytes in 

SOFCs. Complex defects ultimately reduce the overall ionic conductivity of the solid 

[38]. Such complex defects are usually formed under high concentrations of point defects 

and need a different treatment. In two recent articles [17] and [18] the effect of stresses 

on the shift in the equilibrium of such a solid-state reaction involving the formation of 

complex defects in Ce0.8Gd0.2O1.9 (20GDC) has been investigated. This is another 

example showing the interaction of stress and electrochemical fields. In the proposed 

research we consider only simple defect chemistry, although the developed framework 

may be extended to include complex defects as well. 

2.2 Thermodynamics of point defects  

2.2.1 The chemical potential 

A vague discomfort at the thought of the chemical potential is still characteristic 

of a physics education. This intellectual gap is due to the obscurity of the writings of J. 

Willard Gibbs who discovered and understood the matter 100 years ago. - C. Kittel; 

Preface to his book: Introduction to Solid State Physics. 

Physically, chemical potential (or electrochemical potential for a charged 

component in an electric field) is a quantification of how much a particular component is 

“disliked” under conditions of constant values of certain state variables and the 

concentration of all other components [38]. Mathematically, the electrochemical potential 
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of a certain chemical component is the partial derivative of the free energy with respect to 

the concentration of that component, keeping other state variables together with the 

concentration of all the other components as a constant. Those state variables that are 

kept constant, depend on the free energy chosen [27, 42]. Most generally we may write 

the electrochemical potential of a component β ( )βμ as, 

 
, , , ,, , , ,i i i iS l c S L c T l c T L c

H
c c c c

α β α β α β α β

β

β β β β

μ
≠ ≠ ≠ ≠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂Π ∂ ∂ℑ ∂Γ
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.5) 

where 

Π  is the internal energy 

H  is the enthalpy 

ℑ is the Helmholtz free energy 

Γ  is the Gibb’s free energy 

S  is the entropy 

T  is absolute temperature 

'siL  are the work coefficients (like pressure, stress, electric field, magnetic field strength) 

'sil  are work co-ordinates (like volume, strain, electric polarization and magnetic 

polarization)  

cβ is the concentration of the component β  

At this point we note that the chemical and the electrochemical potential differ by 

the additive term z Fα φ  as indicated in Eq. (1.1). Henceforth, until stated otherwise, we 

will discuss the chemical potential only and understand that if the defects have net 
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charges, the electrochemical potential can be obtained by adding the term z Fα φ  to the 

chemical potential. 

The virtual nature of the chemical potential of individual structural elements is 

apparent from the definition of structural and building elements explained in the previous 

section. The chemical potential of a structural element cannot be physically realized, as it 

is impossible to change its concentration without changing the concentration of other 

structural elements. This is because of the network requirement of the solid [49], 

according to which the concentration of the structural elements are not independent. For 

this reason, the associated chemical potentials of the individual structural elements are 

termed as virtual chemical potentials [49]. The physically realizable chemical potentials 

are those of the building elements as they inherently the contain network requirement of 

the solid. This is illustrated and explained in considerable detail in the subsequent 

sections.  

2.2.2 Statistical mechanics of point defects 

Consider a diatomic crystal (MO) which allows vacancies in both its cationic (M) 

and anionic (O) lattices. For illustration purposes only, we can imagine that the M atoms 

and O atoms can leave the crystal to go into the surrounding gas MO(g) with the creation 

of vacancies in both the lattices. For simplicity let us consider a case where the defects 

are neutral. The free energy ( )Γ of the imperfect crystal at a given temperature and 

pressure, can be written as a deviation from the free energy of the perfect crystal ( )0Γ  in 

the following form,  

 0
X X X X

M M O O
configV V V V

n n TSγ γΓ = Γ + + −  (2.6) 
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where 

X X
M MV V

n γ is the energy needed to create X
MV

n  vacancies in the cationic lattice 

X X
o OV V

n γ is the energy needed to create X
OV

n  vacancies in the anionic lattice 

configS is the configurational entropy associated with  creating the defects and is given as 

[50], 

 ln lnX X
M O

config B BV V
S k k= + Ω + Ω  (2.7) 

In Eq. (2.7), X
MV

Ω and  X
OV

Ω represent the total number of complexions possible while 

arranging the vacancies in the cationic and anionic lattices and Bk is the Boltzmann’s 

constant. If X
MM

n and X
OO

n represent the total number of cations and anions in the defective 

crystal, then we may write, 

 X X
M M

MM V
n n N+ =  (2.8) 

 X X
O O

OO V
n n N+ =  (2.9) 

where MN  and ON represent the total number of cationic and anionic lattice sites in the 

crystal. For the diatomic lattice considered, M ON N N= = . The number of complexions is 

nothing but the number of ways one can arrange N lattice points, taken, X
M

M V
N n−  

( X
O

O V
N n− ) at a time. This is given from basic combinatorics as, 

 
( )

( )

!
! !
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! !

X
M

X X
M M

X
O

X X
O O

V

V V

V
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n N n

N
n N n
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−

Ω =
−

 (2.10) 
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Using Stirling approximation, to write, ln ! lnK K K K= − (where K is a large number), 

we obtain the configuration entropy as, 

 

ln ln

             ln ln

X
M

X
M

X X
M M

X
O

X
O

X X
O O

V
config B M B V

V V

V
B O B V

V V

nNS k N k n
N n N n

nNk N k n
N n N n
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⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (2.11) 

The chemical potential of the defects is obtained by direct differentiation of Eq. 

(2.7) after substituting for configS from Eq. (2.11).  

 

ln

ln

X
M

X
M M

X X X
M M M

X
O

X
O O

X X X
O O O

V
V BV

V V V

V
V BV

V V V

n
A A k

c n N n

n
A A k

c n N n

μ γ

μ γ

⎡ ⎤⎛ ⎞∂Γ ∂Γ ⎢ ⎥⎜ ⎟= = = +
⎜ ⎟∂ ∂ −⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂Γ ∂Γ ⎢ ⎥⎜ ⎟= = = +
⎜ ⎟∂ ∂ −⎢ ⎥⎝ ⎠⎣ ⎦

 (2.12) 

Noting that the mole number /d dc n A=  (where A is Avogadro’s number and d represents 

either, X
MV , X

OV , M or O) and using the relation, BR k A= (R is the universal gas constant), 

we obtain the form, 
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 (2.13) 

We see that d dAμ γ∗ = is a constant. We may write the expressions for the chemical 

potentials in terms of the mole fractions as well, by diving the terms in the parentheses by 

the total number of moles of the compound. In the case of the solid MO, this is equal 

to ( )M Oc c=  and we get, 
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 (2.14) 

where dρ is the mole fraction of the defect X
MV or X

OV .  

A few comments with regards to the developed chemical potentials are in order. 

1) When the mole fraction of the defects is small when compared 1, the chemical 

potentials take the form,  

 
( )
( )

ln

ln

X
M M M

X
O O O

V V V

V V V

RT

RT

μ μ ρ

μ μ ρ

∗

∗

= +

= +
 (2.15) 

It can be seen that this form of the chemical potential is similar to that of a chemical 

component from traditional chemical thermodynamics. This is the form of the chemical 

potential that will be used in the thesis.  

 

2) In deriving the expressions for the chemical potential, it was assumed that the energy 

needed to form a defect dγ is independent of the number of defects already existing in the 

solid. This is true only for dilute solutions and is not valid in cases where the 

concentrations of the defects are in the order of the concentration of the regular lattice 

sites. 

 

3) It was also assumed in deriving the chemical potential that, the ionic solid is subjected 

to a constant pressure condition. Thus the elastic energy density is uniform throughout 

the solid. This need not be the case because stresses resulting from external 
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thermomechanical loads may be distributed over the solid. Moreover, it was seen in 

chapter 1 that self stresses arising due to deviation from stoichiometry can also be non-

uniformly distributed. Thus, the energy needed to form the defect can depend on the local 

elastic energy density in the solid. Deriving this dependency is in fact the first portion of 

this thesis and is discussed in the next chapter. 

 

4) In the expression for the configurational entropy term, defect interactions are not 

accounted for. If it is known that defect concentrations are large enough to interact, 

forming associated complexes [44], other methods must be used to include site exclusion 

effects. This has been done for Ceria and Lanthanum compounds in [51, 52]. In such 

cases the chemical potentials are generally written as,  
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 (2.16) 

where X
MV

λ and X
OV

λ are called activity coefficients and are functions of the concentrations. 

The product, ρλ , is in general called activity. In this work we consider only dilute 

defects, and site exclusion effects are neglected. For such cases the activity coefficient is 

unity and the activity is simply the concentration of the defects. 

 

5) Interestingly we may differentiate the expression Γ  with respect to the concentration 

of N  at constant defect numbers, to get the chemical potential of the monomeric unit MO 

as, 

 
0 1 1ln ln

1 1X X
M O

MO
MO V V

A RT RT
c

μ
ρ ρ

⎛ ⎞⎛ ⎞Γ
⎜ ⎟⎜ ⎟= + +

⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 (2.17) 
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clearly, the entropic contributions (the ln terms) are negligible when we consider the 

dilute case and MOμ  scales with the number of monomeric units added. Stated differently 

the defect concentrations only weakly affect the chemical potential of the monomeric unit 

MO.  

 

6) We may write the solid state reactions for the example considered resulting in the 

formation of the vacancies as follows, 

 ( )X X X X
M O M OM O V V MO g+ + +  (2.18) 

Rearranging terms we get, 

 ( ) ( ) ( )X X X X
M M O Onil V M V O MO g− + − +  (2.19) 

The terms ( )X X
M MV M−  and ( )X X

O OV O−  are the building elements for the defects, and only 

these combinations are physical quantities. In essence, they emphasize that one can create 

a vacancy structural element only by removing the atom (another structural element). 

Thus the chemical potentials ( ) and 
M OV Vμ μ  derived in this section are for the 

combinations ( )X X
M MV M−  and ( )X X

O OV O−  and not for X
MV and X

OV , i.e. 

 
X X

M M M

X X
O O O

V V M

V V O

μ μ μ

μ μ μ

= −

= −
 (2.20) 

 These potentials (Eq. (2.20)) must be used to establish chemical equilibrium and as a 

driving force for diffusion of the defects, and hence they are termed as the diffusion 

potentials [53]. In simple terms the diffusion potential corresponds to the energy changes 

associated with an exchange mechanism [54]. The quantities X
MV

μ , X
MM

μ , X
OV

μ and X
OO

μ are 

called the virtual chemical potentials of the structural elements [42, 55-57].  
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7) Mass action laws are expressions relating the concentration of all species in chemical 

reactions that are in equilibrium. For a general chemical reaction in equilibrium as in 

Eq.(2.21), involving several reactants Ri’s and products Pi’s at different stoichiometric 

amounts ni and mi respectively,  

 1 1 2 2 3 3 1 1 2 2 3 3... ...n R n R n R m P m P m P+ + + + + +  (2.21) 

we first write the condition for chemical equilibrium as, 

 
1 1

0
i i

N M

i R i P
i i

n mμ μ
= =

− =∑ ∑  (2.22) 

We then substitute the expressions for the chemical potentials and obtain the mass action 

law for the reaction. For the solid state reaction, Eq.(2.19) in our example, this is written 

as follows, 

 ( )0
M OV V MO gμ μ μ= + +  (2.23) 

On using Eq.(2.14) we get, 
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VV
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RT
ρρ
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ρ ρ
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 (2.24) 

This results in, 
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 (2.25) 

The LHS being a constant for given set of conditions, gives, 

 
( ) ( )

K
1 1

XX
OM

X X
M O

VV

V V

ρρ

ρ ρ
=

− −
 (2.26) 

K is called the equilibrium constant of the reaction and Eq.(2.26) is the mass action law. 
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If we had used the dilute approximation for the chemical potentials Eq.(2.15), we 

would obtain, 

 K X X
M OV V

ρ ρ=  (2.27) 

We now note that, the above relation could also have been obtained, if we had naively 

formulated the mass action law for Eq.(2.18) using virtual chemical potentials of the 

individual structural elements in the same form as in Eq.(2.15), i.e., 

 * * * *
( )ln ln ln lnX X X X X X X X

M M O O M M O O
MO gM M O O V V V V

RT RT RT RTμ ρ μ ρ μ ρ μ ρ μ+ + + = + + + + (2.28) 

But the concentration of the regular sites, 1X X
M OM O

ρ ρ= ≅ (for dilute case), and rearranging 

we get back, Eq.(2.27), after recognizing that, * * *
X X

M M M
V V M

μ μ μ= − and  * * *
X X

O O O
V V O

μ μ μ= − . 

None of the quantities, *
X

MV
μ , *

X
MM

μ , *
X

OV
μ  or *

X
OO

μ  is  individually a physical quantity. The 

appropriate difference is and relates to the energy required to form the defect.  

In this thesis, we will consider the solid state reactions and the mass action laws 

as in Eq.(2.28).  In short we will use the definition of the chemical potential in the form 

as in Eq.(2.15) for all the structural elements in the reaction. Structural elements that are 

regular sites in the lattice will be assigned an activity of unity while the activity of the 

defects will be their concentrations in moles per mole of the compound. 

 

8) The change Gibbs free energy may also be written completely in terms of the 

concentration structural elements of the solid MO under constant temperature and 

pressure conditions as follows [38, 58-60] 

 d = X X X X X X X X
O O O O M M M MO O V V M M V V
d d d dμ ρ μ ρ μ ρ μ ρΓ + + +  (2.29) 
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Establishing that the total number of cation and the anion sites remains a constant for the 

solid (network constraint), we have the relations, 

 -   -X X X X
O O M MO V M V

d d and d dρ ρ ρ ρ= =  (2.30) 

Using this in Eq.(2.29) we see that, 

 ( ) ( )X X X X X X
O O O M M MV O V V M V

d d dμ μ ρ μ μ ρΓ = − + −  (2.31) 

 ( ) ( ) and X X X X
O MO O M M

X X
O M

V VV O V M
V V

μ μ μ μ μ μ
ρ ρ
∂Γ ∂Γ

= − = = − =
∂ ∂

 (2.32) 

Thus thermodynamics also reveals that the change in concentration of the vacancies is 

established through the difference in the virtual potentials of the structural elements 

associated with the appropriate lattices. 

It is thus sufficient to express any free energy as a function of the concentration of 

the defects only and understand to that the partial derivatives with respect to their 

concentrations represent the diffusion potential of the defects.  

With this basic introduction we conclude the essential background needed, on 

point defect chemistry, its representation and its thermodynamics. In the next section a 

brief introduction into the theory of Molecular Dynamics simulation is given.  

2.3 Molecular dynamics simulations 

2.3.1 Introduction 

In general three main classes of techniques have been employed in the study of 

materials at the atomic level: atomistic (static lattice [61] or Molecular Statics (MS)), 

Molecular Dynamics (MD)[62] and quantum mechanical (ab-initio)[63] methods. 

Quantum calculations involve the solution to the Schrodinger wave equation or its 

variations. These calculations typically involve many degrees of freedom which makes 
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this method computationally inhibitive for study of more than several hundred atoms 

using modern computers. This is so because the constituent electrons in the system are 

also considered in these simulations.  MS merely uses energy minimization principles to 

find the equilibrium positions of atoms that are interacting through force fields 

represented by empirical interatomic potentials. This technique does not simulate the 

vibration of the atoms about their mean positions which are present at finite temperatures; 

and hence it represents the system of interest at 0K. MD as opposed to MS, uses classical 

mechanics (Newton’s 2nd law) to determine the equilibrium positions and velocities of 

atoms in a system at non-zero temperatures [64]. Both MD and MS neglect the explicit 

effects of electrons and hence are useful for studies where direct electronic effects on 

physical properties can be neglected. For example: thermal conduction of non-metallic 

materials is through phonons (unlike metals where it occurs through electrons) or lattice 

waves. Thus MD can be used to study thermal conductivity of non-metallic materials. 

The interatomic potential is usually fit to a functional form so as to represent the system 

of interest as accurately as possible. The accuracy of the interatomic potential chosen, 

therefore determines the validity of the results of any MD simulation.  

To explain the role of interatomic potential in simple terms, we may imagine the 

heavenly bodies of the universe (galaxies, planets, stars) as atoms. Then the interatomic 

potential energy is simply the well known gravitational potential energy 

 
1 1

r
M N i j

gravitational
j i

ij

G m m
U

r= =
= −∑∑  (2.33) 

where 

mi is the mass of the object 
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ijr is the distance between the atoms 

Gr is the universal gravitational constant 

The negative sign indicates that the energy decreases when the distances between the 

concerned objects reduce and hence gravity is an attractive force. The force on an object i 

is the derivative of the gravitational potential energy with respect to the vectorial 

components of its position, and we get the familiar 1/r2 dependent gravitational force.  

In MD, the potentials assume more complicated forms. They generally are not 

dependent on the masses of the atoms (as gravity is a weak force, being several orders of 

magnitude smaller than the nuclear or electrostatic forces) and can have components that 

are of attractive and repulsive nature. MD potentials actually represent nuclear forces and 

are of short range. Thus when two similar atoms are brought too close together, they 

repel due to electron-electron repulsion (Pauli’s exclusion principle). When they are 

moved apart from each other within a certain distance they attract due to nucleon-electron 

attraction. Thus, there exists an equilibrium distance where the energy is a minimum. In 

addition to the short range forces, sometimes it becomes important to consider the long 

range, non-bonded interaction amongst the constituent atoms. This is, all the more true 

for ionic solids where the bonding is ionic, meaning bonding is through loss or gain of 

electrons, giving the atoms a net charge. Hence, the total potential energy of the system is 

given as a sum of the short range and the long range electrostatic (coulombic) energies. 

Identifying the various kinds of potentials and the techniques to fit them for materials is a 

subject of its own and is beyond the scope of this thesis. In this work we use existing 

interatomic potentials from the literature for the material of interest, GDC, in order to 

determine the properties which will be introduced in the next chapter. As mentioned, MD 
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considers the kinetic energy of the vibrating atoms at non-zero temperatures as well. Thus 

the total energy is actually the sum of the total potential and the kinetic contributions. In 

essence the problem of MD reduces to that of tracking the evolution of the position and 

velocities of atoms over time, basically a multi-body dynamics problem. 

2.3.2 Statistical mechanics and MD 

MD draws its fundamental concepts from the methods of classical statistical 

mechanics [50]. The theory of statistical mechanics mainly aims to relate the 

macroscopic thermodynamic properties of materials, such as temperature, pressure 

chemical potential etc, to the microscopic quantities, the positions and the velocities of 

the constituent atoms. All the properties of the system are assumed to be only time 

averages of an otherwise rapidly fluctuating quantity. As the time period of fluctuation is 

enormously small ( 1510 s−≈ ), statistical mechanics invokes ergodicity [65] by employing 

the concept of ensembles. Ensembles are replicas of the system under consideration, all 

with the same macroscopic properties, but are different microscopically (the velocities 

may be distributed differently among the constituent atoms). Thus instead of time 

averaging, ensemble averages are taken instead. However, MD gives us the trajectories of 

the atoms and the evolution of their velocities over time; hence the time averages of the 

properties of interest can be evaluated after a MD run, with importance being given to 

one important aspect, the initial condition. It was said earlier that MD is nothing but a 

dynamics problem; thus to solve it, initial positions and the velocities must be specified. 

But it would be highly unrealistic if the initial microscopic states give different averages 

of the macroscopic thermodynamic quantity. Hence, an MD simulation has to be carried 

out for sufficient time so that the velocities and positions are de-correlated from the initial 
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state (usually in the range of a few pico – nano seconds). By using MD, we may simulate 

the idealized experiments of thermodynamics and study the system’s response. For 

example, we may simulate a system under constant pressure, temperature and constant 

number of atoms in order to realize an NPT ensemble. This may then be used to 

determine the volume of the system under certain applied temperature and pressure. 

Many numerical advances have been made to realize such ensembles. It is not the subject 

of this thesis to delve into the intricacies of programming MD. For this we refer the 

reader to good expositions on the subject through references, [64, 66]. In this work we 

use MD as a tool to determine the equilibrium configuration of the structure and then we 

post process the results to obtain the relevant quantities of interest. 

With this brief introduction to molecular dynamics we conclude this chapter on 

the necessary background required to proceed reading the thesis further. In the next 

chapter, we develop the thermodynamic framework that explicitly delineates the required 

differential equations to study stress-defect transport interactions after developing the 

stress dependent chemical potential.  
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CHAPTER 3. CONTINUUM FRAMEWORK 

3.1 Chapter abstract 

Pertinent literature associated with this chapter concludes with the identification 

of the Cauchy’s stress dependent chemical potential. However, based on Eshelby’s 

seminal work in 1951 [67] and motivations from a more recent article [68] it is made 

clear that the elastic contribution to the chemical potential of point defects must come 

from the Eshelby stress. The crux of this chapter is to derive this dependence. In doing 

so, two material properties that enable full coupling between defect transport and stresses 

are introduced. These are the CCE and the variation of elastic constants with vacancy 

concentration (or more generally non-stoichiometry) (OSEC). The main content of this 

chapter is then concluded by providing a resume of governing differential and algebraic 

equations that must be solved to numerically study the stress-defect transport interactions. 

The boundary conditions to which these differential equations must be subjected to are 

also provided. The particular kind of defects assumed in this case are the oxygen 

vacancies, oxygen interstitials, electrons and electron holes which is typical for any oxide 

ceramic. 

3.2 Introduction 

3.2.1 Historical to state of the art - Review 

The existence of chemical potential in an inhomogeneously stressed solid, for 

mobile and immobile components was established in [69]. This was done based on 

thermodynamic arguments; expressions for the chemical potential were developed [70]. 

Subsequently, [71] investigated the effect of lattice strains, created by defects such as 



36 

precipitates and dislocation, on the saddle point energy configuration during diffusion. It 

was shown by means of detailed calculation that vacancy migration energies may be 

altered by 10% due to stresses. Therefore it is clear that stress alters defect transport in at 

least two fundamental ways [71-73]. The drift effect is of thermodynamic origin and is 

due to the dependence of the chemical potential on stress and to a kinetic effect due to the 

effect of stress on the migration barrier for diffusion (i.e. the mobility). Since volumetric 

strains are generated by the formation volume of the defect and by the migration volume, 

local elastic energy directly affects diffusion. Consequently, both the stress dependent 

chemical potential and the kinetic parameters governing diffusion should consider the 

effect of stress on both these volume changes. It could be assumed for the sake of 

simplicity that the kinetic coefficients of diffusion are not affected by stress and that the 

volume of defect formation is larger than the volume change that is associated with 

migration [74]. A recent article [75] has however provided a technique to use atomistic 

simulations to study the effect of stresses on both the formation and the migration 

energies. 

It was not until the work of Li, Nolfi and Johnson in [76] that the chemical 

potentials of point defects were applied for diffusional equilibrium of defects in an 

inhomogeneous stress field. When point defects are considered, as was shown in section 

2.2.2 it is the diffusion potential that must be modified to include the effects of stress. 

The term diffusion potential was coined in ref.[77]. In this work since we consider dilute 

defect concentration, the terms diffusion potential and the chemical potential can be used 

interchangeably as was mentioned in section 2.2.2. Although Maxwell’s type expressions 

relating chemical potential, stress, strain and concentration were given in ref. [69] it was 
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only about seven years later in ref. [78] that the expression was developed for the 

diffusion potential as a function of the local stress state. These were developed based on 

the integration of the Maxwell’s type expression [58].  

Assuming defects similar to those in section 2.2.2 for the MO oxide, the stress 

dependent diffusion potential for the vacancies in the oxygen and the metal sub-lattices 

can be given in the following form [78],   

 ( ) ( ), ,0 -
2
m

m ij ij ijkl kl ij

VV sα α
α α αμ ρ σ μ ρ η σ σ σ= −  (3.1) 

where, 

α, is either VO or VM 

( )α α ,0μ ρ , is the stress independent diffusion potential 

Vm , is the molar volume of the solid 

σij , is the Cauchy’s stress tensor 

ij
ij

α
α

α

ε
η

ρ
∂

=
∂

, is the Chemical Coefficient of Expansion (CCE) 

ij
αε , are the eigenstrains due to compositional change of defect species α 

ijkl
ijkl

S
sα

αρ
∂

=
∂

, is the change in elastic compliance due to a change in concentration of the 

defect species α 

ijklS is the compliance of the material 

αρ is the concentration in moles per mole of the compound 

From Eq. (3.1) it is clear that the expression for stress dependent diffusion 

potential entails the introduction of two material parameters ij
αη and ijklsα . ij

αη  represents the 
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eigenstrains (or stress free strains) induced due to deviations in local composition; is 

known as the Chemical Coefficient of Expansion (CCE) for species α. CCE is identical to 

the Thermal Coefficient of Expansion (TCE) in the sense that it represents strains per unit 

change in concentration just as TCE represents strains per unit temperature change. ijklsα  

represents the variation of the elastic compliance with composition. It must be noted that, 

in general the compositional strains follow Vegard’s law, which states that strains are 

linearly related to the deviation in composition through the CCE [79]. It is also clear from 

the definition of the diffusion potential that these material constants must be associated 

with the diffusion potential and not the virtual potential of the species. 

Expressions such as Eq. (3.1) were developed for metallic systems (alloys) 

originally in [78] and were extended to nonlinear materials in [80]. Ionic solids were 

considered to account for charged defects in [81, 82].  

There are several applications of the diffusion potential in Eq. (3.1); it can be used 

to determine the equilibrium concentration distribution of the defects in a solid when it is 

subjected to a non-uniform stress field [83]. In addition to this it can also be used to study 

steady state and transient diffusion induced stresses in thin films and in electrolytes [84, 

85], by using the gradient of the diffusion potential as the driving force for diffusion. 

Numerical simulation of kinetic demixing of solids under non-hydrostatic stresses can 

also be performed using these stress dependent potentials [86]. It is important to note that 

the chemical potential, in addition to determining diffusional equilibrium of the solid also 

governs the chemical equilibrium of the solid state reactions [17]. For example, the 

equilibrium constant of the mass action law, of a chemical reaction is no longer only a 

function of temperature [27] but is also a function of the stress state. This is hence 
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another level of coupling between the electrochemical and mechanical fields in the ionic 

solid. Finally boundary conditions/concentrations are modified by applied tractions, 

which can also be obtained through the stress dependent diffusion potentials on the 

boundary chemical reactions. Thus the stress dependent diffusion potential couples the 

two fields. 

Although the discussed diffusion potential is useful for numerically modeling and 

for studying diffusion-stress coupled problems, some of its features raise questions on its 

generality. For example, [87] showed that the governing diffusion differential equations 

and the mechanical equilibrium equations could be decoupled completely under certain 

conditions. These conditions were; a) isotropic material requiring η  to be scalar quantity 

b) the compliance/stiffness being independent of the composition c) Diffusion (or more 

generally Onsager’s) coefficients being independent of stress and concentration of the 

specie. The decoupling arises because in an isotropic material (η  is a scalar), the 

elasticity term that governs diffusion is the gradient of the trace of the Cauchy’s stress 

tensor ( )iiσ∇  (see Eq. (3.2)) 

 ( ) ( ), ,0 - m iiV α
α α αμ ρ σ μ ρ η σ∇ = ∇ ∇  (3.2) 

Using the above equation in a continuity condition [88] for the species α, we get,  

 ( )( ) ( )( )2 2• ,0 - ,0 -m ii m iiD V D V
t

α αα
αα α α α α

ρ μ ρ η σ μ ρ η σ∂ ⎡ ⎤⎡ ⎤= ∇ ∇ ∇ = ∇ ∇⎣ ⎦ ⎣ ⎦∂
 (3.3) 

Now it can be easily shown through linear elasticity [88] that,  

 ( )2 2 0 2-2 -2-
1- 1-ii

E Eα α
α α α

α α
σ η ρ ρ η ρ

ν ν
∇ = ∇ = ∇∑ ∑  (3.4) 

where, 

E, is the Young’s modulus 
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ν , is the Poisson’s ratio 

0
αρ , is the concentration of the species α at stoichiometry 

αη , is the chemical coefficient of expansion for species α 

Dα , is a constant relating the flux of species α and the gradient in the diffusion potential 

(Defect diffusion coefficient) 

Thus the continuity equations may be written completely in terms of 

concentrations, decoupling the mechanical and the diffusion governing equations. Once 

the boundary values of the concentrations are prescribed the diffusion problem can be 

solved completely, independently of the mechanical equilibrium conditions, given by 

 , 0ij jσ =  (3.5) 

It must however be noted that the boundary conditions may still depend on the applied 

tractions. Although the diffusion problem may be solved independently of the mechanical 

equilibrium conditions, the solution to the elasticity problem requires knowledge of the 

concentration profiles. Thus, these equations (3.3) and (3.5) represent a one way coupling 

between stress and diffusion.  

3.2.2 Contribution of current research 

In the proposed research the diffusion potential in Eq. (3.1) is only a special case 

of the more general diffusion potential that is derived in this study based on continuum 

thermodynamics. The motivation behind the development of an alternative stress 

dependent diffusion potential is from Eshelby’s seminal work on the forces on elastic 

singularities [67]. Here, he derived the expression for the force on an elastic singularity 

like a material inhomogeneity in an elastic body. The stresses associated with these forces 

are called the “Energy Momentum Tensor of Mechanics” or “Eshelby’s Stress”[89].  We 



41 

will use the term Eshelby’s stress (Eshelby stress) in this work. This has received wide 

spread attention in material mechanics particularly with problems associated with defects 

and inhomogeneities in continuous media. In our problem, since vacancies and point 

defects are elastic singularities, it is the Eshelby’s stress which should appear as the 

elastic contribution to the chemical potential and not just Cauchy’s stress. Recently Wu 

[68] has brought this to light with regard to neutral chemical components. In this work, 

we extend Wu’s work to include charged point defects as well. We also show that only 

under certain conditions of self-stressed diffusion (where non-stoichiometry is the only 

source of stress) can one use expression (3.2).  

The Eshelby’s stress tensor, plays two important role in this thesis. First, as just 

mentioned, it will be elastic contribution to the chemical potential. Secondly, certain 

balance laws related to the Eshelby’s stress tensor will be used to determine the strain 

energy release rates of cracked electrolyte configurations. The details of the Eshelby’s 

stress tensor are not particularly important in this chapter. Here, we introduce it, as we 

derive the stress dependent chemical potential from the fundamentals. In chapter 6, while 

discussing crack driving forces, we explain it in greater detail. For now, it is sufficient to 

understand that the Eshelby’s stress is a function of Cauchy’s stress and the strain energy 

density at a continuum point.  

With this motivation we derive the stress dependent diffusion potential and 

clearly highlight the governing differential/algebraic equations that are to be solved, in 

order to numerically study the coupled problem.  
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3.3 Necessary mechanics 

3.3.1 Kinematics, stress measures and equilibrium 

3.3.1.1 Deformation 

Consider an ionic solid in equilibrium at a given temperature.  It is assumed that 

at this initial state, the solid is stress-free. By treating the solid as a continuum, the 

kinematics of the motion of the material particles in the solid can be described by a 

continuous displacement field u  given by 

 u = x - X  (3.6) 

where x is the position occupied at the current time t by the particle which occupied the 

position X in the initial configuration (t = 0). The Lagrangian and Eulerian descriptions 

of motion are given by, 

 ( , )i ix x t= X  (3.7) 

and 

 ( , )I IX X t= x  (3.8) 

Equations (3.7) and (3.8) may be interpreted as a mapping between the initial 

configuration and the current configuration. The continuum mechanics theory assumes 

that such mapping is sufficiently smooth (differentiable) and is one-to-one, i.e., the 

Jacobian (J) given by  

 
0

Det[ ]i j iJ

dVJ x X F
dV

= ∂ ∂ = =  (3.9) 

is non-zero. In the above, 0dV  is the representative volume element in the initial 

reference state and dV  is the corresponding volume element the current deformed state. 
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Partial differentiation of Eq. (3.7) with respect to JX  and Eq. (3.8) with respect to 

jx  yield, respectively, 

 i iJ Jdx F dX= , I Ij jdX f dx=  (3.10) 

where 

 i i
iJ iJ

J J

x uF
X X

δ∂ ∂
= = +
∂ ∂

, I I
Ij Ij

j j

X uf
x x

δ∂ ∂
= = −
∂ ∂

 (3.11) 

are called the material deformation gradient tensor and the spatial deformation gradient 

tensor, respectively. Clearly, we have Ik kJ IJf F δ= where ijδ  is the Kronecker delta [88]. In 

the above and the rest of this chapter, repeated Roman (both upper and lower case) 

subscripts are summed from 1 to 3 according to the summation convention, while Greek 

subscripts are not summed unless indicated explicitly. 

The Lagrangian finite strain tensor is defined in terms of the deformation gradient 

tensors,  

 ( )1 1
2 2

ji k k
IJ kI kJ IJ

i i i j

uu u uE F F
X X X X

δ
⎛ ⎞∂∂ ∂ ∂

= − = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.12) 

When the displacement gradients are small, i.e., 1i ju X∂ ∂  and 1i ju x∂ ∂ , 

neglecting the higher order terms leads to 

 1 1
2 2

j ji i
ij ij

i i i i

u uu uE
X X x x

ε
∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂

= + = + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.13) 

where ijε  is called the infinitesimal strain tensor, and the distinction between the spatial 

and material descriptions is no longer necessary. 
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3.3.1.2 Stress measures, equilibrium 

The state of stress at a point in a continuum can be represented by the Cauchy 

stress tensor ijσ  in the current (or deformed) configuration. Note that the components of 

the Cauchy stress tensor are defined as force per unit area in the deformed configuration.  

The balance of the moment of momentum (Cauchy's second law of motion) dictates the 

symmetry of the Cauchy stress tensor, i.e., ij jiσ σ= . The equations of equilibrium are 

given by [88] 

 0ji
i

j

f
x
σ∂

+ =
∂

 (3.14) 

where if  is the body force per unit volume in the deformed configuration. 

Equation (3.14) is valid for any material point within a continuum body. For a 

material point on the surface (boundary) of the continuum, the following Cauchy formula 

applies 

 ij j iS
n pσ =  (3.15) 

where in  is the unit outward normal vector of the surface S and ip  is the traction vector 

applied on S.  Note  that ip  is measured as force per unit deformed area. 

Further Eq. (3.14) describes the equilibrium of an infinitesimal material element 

in the deformed configuration. The Cauchy stress tensor is typically written as a function 

of the Eulerian spatial coordinates ix . To describe the equilibrium in the initial 

(undeformed) configuration, the Piola-Kirchhoff stress tensors are introduced. 

The first Piola-Kirchhoff stress tensor, 0
ijσ , is defined as the actual force in the 

deformed configuration per unit undeformed area, while the second Piola-Kirchhoff 
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stress tensor, ijσ , is defined as a fictitious force in the undeformed configuration per unit 

undeformed area. The fictitious force here is obtained by transforming the actual force in 

the deformed configuration back to the undeformed configuration, which is equivalent to 

pre-multiplying the actual force in the deformed configuration by the spatial deformation 

gradient tensor Ijf . Hence, the two Piola-Kirchhoff stresses are related by the deformation 

gradient tensors in the following manner 

 0
IJ Ik Ikfσ σ=  or 0

Ij IK jKFσ σ=  (3.16) 

The Piola-Kirchhoff stresses are typically written as functions of the Lagrangian 

material coordinates iX . They can be related to the Cauchy stress tensor by  

 0
Ij Ik kjJfσ σ= , IJ Ik Jm kmJf fσ σ=  (3.17) 

In Eq. (3.17) that IJσ  is symmetric while 0
Ijσ  is generally non-symmetric. It is 

important to keep in mind that the Piola-Kirchhoff stress tensors are not actual stresses, 

i.e., they do not exist in the continuum under consideration. They are introduced to 

simplify the equilibrium equation in the initial configuration, namely, 

 
0

0 0Ji

J

f
X
σ∂

+ =
∂

 or ( )
0 0JK iK

J

F
f

X
σ∂

+ =
∂

 (3.18) 

where 0f  is the body force per unit volume in the initial configuration. 

The Cauchy formula given by Eq. (3.15) can also be expressed in the initial 

configuration as, 

 0
Ji J iJ JN F pσ = , 0

JI J Ij jN f pσ =  (3.19) 

where  

 0

0
j j

dSp p
dS

= , 
0

J Jk k

dSp f p
dS

=  (3.20) 
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and 0dS  is an area element in the initial configuration and dS  is the same area element in 

the deformed configuration. Note that jp  is the force acting on the deformed surface per 

unit deformed area. Therefore, 0
jp  is the force acting on the deformed surface per unit 

undeformed area, while Jp  is a fictitious force acting on the deformed surface per unit 

undeformed area. This fictitious force is the actual force acting on the deformed surface 

transformed by Jkf . Neither of 0
jp  and Jp  is a real traction vector. They are called 

pseudo traction vectors, introduced to accommodate the pseudo stress tensors. 

For small deformation, i.e., 1i Ju X∂ ∂  and 1i ju x∂ ∂ , one can show from 

Eq. (3.13) that when the same coordinate system is used for both the Lagrangian and 

Eulerian configurations, 

 i
ij ij

j

uF
X

δ ∂
≈ +

∂
 and 1 i

i j
j

uJ x X
X
∂

= ∂ ∂ ≈ +
∂

 (3.21) 

Thus, it follows from Eq. (3.21) that Piola-Kirchhoff stress reduces to the Cauchy stress,  

 0
ij km ijσ σ σ= =  (3.22) 

for small deformation. Furthermore, the distinction between in  and iN , and between dS  

and 0dS  can also be neglected. Thus, the pseudo traction vector reduces to the Cauchy 

traction vector as well.  

3.3.2 Multiplicative decomposition of F  

As discussed in section 1.3, a change of defect concentration from its 

stoichiometry can cause a volumetric change (deformation) in the ionic solid. If such 

changes are uniform throughout the solid and the solid is not constrained mechanically 

the deformation would be uniform and no stress would be generated anywhere in the 
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solid, though the solid has undergone a volumetric change. Such a homogeneous 

deformation of the ionic solid from its stoichiometric state to a non-stoichiometric state is 

inelastic, since no stress is generated. Thus, it is called an eigentransformation after [68]. 

However, if the solid is constrained mechanically or if the change in defect concentration 

is not uniform throughout the solid, stresses may be created due to the incompatibility of 

the eigentransformation. Consequently, elastic deformation has to occur so that the total 

deformation becomes compatible. Therefore, the total deformation of an ionic solid in its 

non-stoichiometric state is described by the following multiplicative decomposition of the 

deformation gradient, 

 E c=F F F  (3.23) 

where cF  represents the eigentransformation due to non-stoichiometry only, and EF  

represents the elastic deformation associated with cF  so that the total deformation is 

compatible. 

It follows from the first of Eq. (3.12) that the total Lagrange strain can be written 

as 

 ( )1 ( )
2

TT c E c c= − = +E F F I F E F E  (3.24) 

where 

 ( )1
2

TE E E⎡ ⎤= −⎣ ⎦E F F I , ( )1
2

Tc c c⎡ ⎤= −⎣ ⎦E F F I  (3.25) 

are the elastic strain and the compositional strain (eigenstrain), respectively.  
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Following [68], we will use three configurations as in Figure 3.1 to develop the 

kinematics of the deformation. The stoichiometric state of the solid at a given  

temperature is called the initial or natural state. It is assumed that in the natural state of 

the solid, there is no stress (residual stress from manufacture etc.). From the natural state, 

the solid is transformed by the total deformation gradient F into its current state. In the 

current state, both elastic and inelastic deformation, as well as stress, may co-exist. In 

addition to these two physical states, we introduce an intermediate state. The intermediate 

state is the one created by transforming the natural state through the eigentransformation 

cF . Clearly, the intermediate state is also a stress-free state. One must realize that the 

intermediate state is not an actual physical state, as the solid is not necessarily continuous 

in the intermediate state due to the incompatibility of the eigentransformation. The three 

states are schematically shown in Figure 3.1. The specification of a Cartesian coordinate 

system to the intermediate state is still questionable [90], and investigation into the 

Figure 3.1: Multiplicative decomposition of the deformation gradient 
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properties of such a space is required. Nevertheless, since such a choice cannot be ruled 

out by mathematical or physical arguments according to ref. [90], and since it has been 

used in ref.[68, 91]  and many others, we continue to use the Cartesian system for the 

intermediate state. 

For clarity, tensorial quantities associated with the natural, current and 

intermediate states will be indicated, respectively, by subscripts of upper case Roman 

letters, lower case Roman letters and upper case Roman letters with a cap.  For example, 

a second order tensor is written as IJω  in the natural state, ijω  in the current state, and ˆˆIJω  

in the intermediate state.  Using this convention, we can write the component form of Eq. 

(3.23) as ˆ ˆ
E c

iJ iK KJF F F= , since ˆ
c

KJF  is the two-point tensor mapping the natural state to the 

intermediate state and ˆ
E

iKF  is the two-point tensor mapping the intermediate state to the 

current state. 

3.3.3 Strain energy densities & elastic constitutive equations 

If we let the deviation from stoichiometry of defect species α  be αρΔ , then, to 

the leading order, the total volumetric change of the solid can be written as a linear 

function of the deviation of all defects from their stoichiometric values [92] 

 3
c

m m

m

V V
V α α

α
η ρ−

= Δ∑  (3.26)  

where mV  is the molar volume of the solid in its natural state, and c
mV  is the molar volume 

of the solid in its intermediate state obtained by mapping mV  through the 

eigentransformation cF , i.e., 

 c c
m mV J V=  (3.27) 



50 

where cJ  is related to cF  through Eq. (3.9) . Clearly c
mV  is a function of the defect 

concentrations. In Eq. (3.26), 0
α α αρ ρ ρΔ = −  with 0

αρ  being the stoichiometric defect 

concentration for the species α . The constant αη  is called the coefficient of chemical 

expansion (CCE) of species α . Clearly, when the defect concentration is measured using 

the molar fraction, the corresponding CCE is dimensionless. It follows from Eq. (3.26) 

that the CCE can be written as 

 1
3

c
m

m

V
Vα

α

η
ρ

∂
=

∂
 (3.28) 

The CCE is an intrinsic material property. The advantage of introducing such a non-

dimensional parameter to characterize the volumetric deformation due to compositional 

change is obvious. Gadolinium doped ceria (GDC) is known to have high CCE. Equation 

(3.28) also provides a way to obtain the CCE theoretically (experimentally) by computing 

(measuring) the molar volume of the ionic solid at different levels of non-stoichiometry.  

Next we introduce the molar concentration in the natural and intermediate states 

by mVα αρ ρ=  and c c
mVα αρ ρ= , respectively. They are related by the Jacobian 

 
c

c m
c

m

VJ
V

α

α

ρ
ρ

= =  (3.29) 

In terms of the Jacobian cJ , the eigentransformation induced by defect deviation can be 

written as 

 ( )
1

3
ˆ ˆ
c c

IJ IJF J δ=  (3.30) 

Therefore, it can be easily shown that 

 ˆ
ˆ

1
3

c c
cIJ

IJc

F J F
Jα αρ ρ

∂ ∂
=

∂ ∂
 (3.31) 
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The deformation from the intermediate state to the current state represented by EF  is an 

elastic one. The elastic strain energy induced by such an isothermal and isocompositional 

deformation can be written as a function of the elastic strain EE , entropy s and molar 

concentrations c
αρ  of the intermediate state. For convenience, we define ( , , )E cw s αρE  as 

the elastic strain energy of the current state per unit volume of the intermediate state. 

Since EE  is related to EF  through Eq. (3.25) and EF  is related to F and cF  through Eq., 

(3.23), EE  is a function of F and cF . Further, the volume elements between the 

intermediate and the natural states are related through cJ . Therefore, the elastic strain 

energy density of the current state per unit volume of the natural state can be written as 

 ( , , , ) ( , , ) ( , , )c c E c c E cW s J w s J J w sα α αρ ρ ρ= =F F E E  (3.32) 

For future reference, we expand the elastic strain energy density into power series of the 

defect concentrations. To the leading order, one may write 

 0( , , ) ( ) ( )E c E c E
mw s w V wα β β

β
ρ ρ= + Δ∑E E E  (3.33) 

where 

 0
0 ( ) ( , , )E Ew w s αρ=E E ,

0

( , , )( )
c

E c
E

c
m

w sw
V

α α

α
β

β ρ ρ

ρ
ρ

=

∂
=

EE  (3.34) 

in which 0 0
mVα αρ ρ=  is the molar concentration of species α  at the natural state 

(stoichiometry). Substituting Eq. (3.33) back to Eq. (3.32) yields the expansion of the 

elastic strain energy density in the natural state 

 0( , , , ) ( ) ( )c c E E
mW s J w V wα β β

β
ρ ρ= + Δ∑F F E E  (3.35) 

where Eq. (3.29) has been used to convert the molar concentration in the intermediate 

state to the natural state.  
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For linear elastic materials, the elastic strain energy density is given by 

 ˆˆ ˆ ˆ ˆˆ ˆ ˆ

1( , , )
2

E c E E
IJKL IJ KLw s C E Eαρ =E  (3.36) 

where ˆˆ ˆ ˆIJKLC  is the linear elastic stiffness tensor of the solid at the intermediate state. 

Therefore, ˆˆ ˆ ˆIJKLC  is a function of the defect concentration. It then follows from Eq.(3.34) 

that 

 0
ˆˆ ˆ ˆ ˆˆ ˆ ˆ0

1( )
2

E E E
IJKL IJ KLw C E E=E , ˆˆ ˆ ˆ ˆˆ ˆ ˆ

1( )
2

E E E
IJKL IJ KLw c E Eβ

β =E  (3.37) 

where 

 0

0
ˆˆ ˆ ˆ ˆˆ ˆ ˆ cIJKL IJKLC C

α αρ ρ=
= , 

0 0

ˆˆ ˆ ˆ ˆˆ ˆ ˆ
ˆˆ ˆ ˆ

c

cIJKL IJKL
IJKL c

m

C C
c J

V
α α α α

β

β βρ ρ ρ ρ
ρ ρ

= =

∂ ∂
= =

∂ ∂
 (3.38) 

Clearly 0
ˆˆ ˆ ˆIJKLC  is the elastic stiffness tensor of the solid at stoichiometry (represented in the 

intermediate state). The dependence of the elastic modulus on the defect concentration 

has been demonstrated experimentally [93] for several ionic solids of practical interest. 

The tensor ˆˆ ˆ ˆIJKLcβ  represents the change in the elastic stiffness with stoichiometry. This 

dependence will be analyzed in the next chapter using atomistic simulations. 

For elastically isotropic materials, the elastic stiffness tensor ˆˆ ˆ ˆIJKLC  can be written 

as 

 ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ

2
3(1 2 ) 2(1 ) 3KLIJKL IJ IK JL IL JK IJ KL

E EC δ δ δ δ δ δ δ δ
ν ν

⎛ ⎞= + + −⎜ ⎟− + ⎝ ⎠
 (3.39) 

where E is the elastic Young's modulus and ν  the Poisson's ratio; both are functions of 

defect concentrations. In this case Eq. (3.36) can be recast into 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , )
2(1 ) 2(1 )(1 2 )

E c E E E E
KJ KJ KK LL

E Ew s E E E Eα

νρ
ν ν ν

= +
+ + −

E  (3.40) 
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When the deformation is small, i.e., ˆ, 1I Ju  and ˆ, 1i Ju , one may neglect the 

distinction between the Lagrangian and Eulerian frames and use lower case subscripts for 

all quantities. It thus follows from Eq. (3.21) that the total deformation gradient is given 

by ,ij ij i jF uδ= +  , where iu  is the displacement field. The total strain is then given by 

 1 1( )
2 2

ji
ij ki kj ij

i i

uuF F
x x

ε δ
∂⎛ ⎞∂

= − = +⎜ ⎟∂ ∂⎝ ⎠
 (3.41) 

Similarly, the eigentransformation due to compositional change is simplified to 

 (1 )c c
ij ijF ε δ= +  (3.42) 

where  

 c α
α α

α α
ε ε η ρ= = Δ∑ ∑  (3.43) 

is the compositional strain induced by the deviation of all defect concentrations from 

their stoichiometric values. The Jacobian is simplified to 

 3Det (1 ) 1 3c c c cJ ε ε= = + = +⎡ ⎤⎣ ⎦F  (3.44) 

It then follows from Eq. (3.23) that 

  ( ) 1 ,
,

( )
1
ij i jE c c

ij ik kj ij i j ijc

u
F F F u

δ
δ ε δ

ε
− +

= = ≈ + −
+

 . (3.45) 

Consequently, it follows from the first of (3.25) that the elastic strain that maps the 

intermediate state to the current state is given by, 

 1
2

E E E E c
ij ij kj kj ij ijE F F Iε ε ε δ⎡ ⎤= = − = −⎣ ⎦  (3.46) 

This is the small deformation elastic strain. Thus,  

 0
0

1( )
2

E E E
ijkl ij klw C ε ε≈E 1( )

2
E E E

ijkl ij klw cβ
β ε ε≈E  (3.47) 
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In the case of small deformation, the Piola-Kirchhoff stress is the same as the 

Cauchy stress, i.e., 0
ij ij ijσ σ σ= = . So, following Eq. (3.46), we can write the small strain 

Hooke's law as 

 ( )0 E c
IJ ij ij ijkl kl ijkl ij ijC Cσ σ σ ε ε ε δ= = = = −  (3.48) 

For isotropic elasticity this reduces to, 

 
(1 ) (1 )(1 2 )

(1 2 ) (1 )
(1 )(1 2 )

E E
ij ij kk ij

kk ij ij ij

E E

E
α α

α

νσ ε ε δ
ν ν ν

νε δ ν ε ν η ρ δ
ν ν

= +
+ + −

⎡ ⎤= + − − + Δ∑⎢ ⎥⎣ ⎦+ −

 (3.49) 

Consequently, 

 3
(1 2 )kk kk

E
α α

α
σ ε η ρ

ν
⎡ ⎤= − Δ∑⎢ ⎥⎣ ⎦−

 (3.50) 

Before closing this section, we want to mention that it is customary in 

electrochemistry to define deviation from stoichiometry using molar fraction. For 

example, the stoichiometric composition of GDC is Ce0.8Gd0.2O1.9. The stoichiometric 

oxygen vacancy concentration in terms of molar fraction is 0.1 or 10%. A deviation of δ  

from stoichiometric oxygen vacancy concentration is commonly denoted by 

Ce0.8Gd0.2O1.9-δ. Therefore, the deviation of oxygen vacancy from stoichiometry is  

 vρ δΔ =  (3.51) 

Generally speaking, the CCE needs to be measured for a given ionic solid. For 

example, it is found that [94] the volumetric strain in 0.8 0.2 1.9Ce Gd O  is 0.0145 when the 

oxygen vacancy deviation from stoichiometry is 0.12δ = . Therefore, it follows from Eq. 

(3.43) - Eq. (3.51) that the CCE due to oxygen vacancy in GDC is 0.1208η = . Atomistic 
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calculations [95-97] can also be used to calculate the CCE for a given ionic solid. Results 

from the atomistic simulations for GDC will be reported in the next chapter. 

3.4 Eshelby stress dependent chemical potential 

3.4.1 The formulation 

As in [78, 81, 82], we consider the internal energy density ( , , )iJF s αρΠ  to be a 

function of the local entropy density s, the total deformation gradient iJF , and the molar 

fraction αρ  of all the structural elements typically present in GDC (oxygen ions, double 

positively charged oxygen vacancies, double negatively charged oxygen interstitials, 

holes and electrons and the interstitial vacancies). GDC primarily allows defects in its 

anionic sub-lattice; therefore we consider deviation in compositions only in the anionic 

lattice. In fact it is the structural integrity of the cationic lattice that allows us to define 

continuum quantities like stress, strain displacement field etc. Note that, other free 

energies may also be used as mentioned in Chapter 2, section 2.2.1 The change internal 

energy per unit volume in the natural state can be written as [27, 60], 

 ''

0
X X X X
o o o i i i

Ji iJ v O e e h hO O V V V O
d dF Tds d d d d d dσ μ ρ μ ρ μ ρ μ ρ μ ρ μ ρ••∏ = + + + + + + +  (3.52) 

where 

 0

,

Ji
iJ s

F
αρ

σ
⎛ ⎞∂Π

= ⎜ ⎟∂⎝ ⎠ ,iJF

T
s

αρ

∂Π⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (3.53) 

are the first Piola-Kirchhoff stress tensor and the absolute temperature, respectively, 

while αμ  is the electrochemical potential for the species α . They are the thermodynamic 

driving forces that cause the changes in deformation, entropy and defect concentrations. 

Recall that the electrochemical potentials for the electronic species ( eμ  and hμ ) are true 
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electrochemical potentials while those of the ionic species are not (See discussion in 

section 2.2.2). Making use of the definition of diffusion potentials one may re-write Eq. 

(3.52) as 

 0
Ji iJd dF Tds dα α

α
σ μ ρ∏ = + +∑  (3.54) 

where the sum is carried out for , , ,v O e hα =  only (only for the defects) and 

 X
o o

v V O
μ μ μ••= − , '' X

i i
O O V

μ μ μ= −  (3.55) 

are called the diffusion potentials for oxygen vacancies and oxygen interstitials, 

respectively. These diffusion potentials and the electrochemical potentials for electrons 

and holes are related to the internal energy through, 

  
, ,iJF s β α

α
α ρ

μ
ρ

≠

⎛ ⎞∂Π
= ⎜ ⎟∂⎝ ⎠

  , , , ,v O e hα =   (3.56) 

As mentioned earlier, for dilute defect concentration we may loosely call the 

diffusion potentials of the ionic species the electrochemical potentials as well. 

An expression of the internal energy is given in [68], 

 0( , , , ) ( , )cW s sα αρ ρΠ = +ΠF F  (3.57) 

where ( , , , )cW s αρF F  is the strain energy density given in Eq. (3.32). The function 

0 ( , )s αρΠ  is the standard internal energy density when no stresses are present in the ionic 

solid so that the electrochemical potential of species α  at zero stress can be written as, 

 ( ) 0

, ,

, 0
iJF s β α

α α
α ρ

μ ρ
ρ

≠

⎛ ⎞∂Π
= ⎜ ⎟∂⎝ ⎠

, , , ,v O e hα =  (3.58) 

To obtain the stress-dependent electrochemical potential, consider the derivative 
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 0

, ,

( )( , , , ) ( )
iJ

c Ec
E

m

F s

J wW s V w
β α

α
α

α αρ

ρ
ρ ρ

≠

∂ ⎡ ⎤∂ ⎣ ⎦= +
∂ ∂

EF F E  (3.59) 

In deriving the above, the elastic strain energy expansion (Eq. (3.35)) has been 

used.  The first term on the right hand side of Eq. (3.59) can be further reduced to 

 ( ) 10 0 ˆ ˆ
ˆ

ˆ

( ) ( )
3

c E c E c c c
cIJ m KKMI

IK KMc c
IJ

J w J w F F V JF
F Jα α α αρ ρ ρ ρ

−∂ ∂⎡ ⎤ ⎡ ⎤ ∂ ∂ Σ ∂⎣ ⎦ ⎣ ⎦ ⎡ ⎤= = Σ =⎣ ⎦∂ ∂ ∂ ∂ ∂

E E
  , (3.60) 

where 

 0
0 ( )c E

IJ IJ Im mJJ w Fδ σΣ = −E  (3.61) 

is known as the Eshelby stress tensor for dilute defect concentrations. The second 

equality in Eq. (3.60) is derived in Appendix A. A slightly different version of it can be 

found in [68]. The third equality in Eq. (3.60) is a direct consequence of Eq. (3.31). 

Substituting Eq. (3.60) into Eq. (3.59), then into Eq. (3.56), in conjunction with Eq. 

(3.58), yields the Eshelby stress-dependent electrochemical potential as 

 ( ) ( ), ,0 el
α α α α α αμ ρ τ μ ρ μ= +  (3.62) 

where ( ),0α αμ ρ  is electrochemical potential of species α  at zero stress and  

 el
mVα αμ τ=  (3.63) 

 ( )
3

c
E KK

c

Jw
Jα α

α

τ
ρ

Σ ∂
= +

∂
E  (3.64) 

el
αμ  is the effect of elasticity on the chemical potential. This electrochemical potential 

containing the Eshelby stress appears to be new to the electrochemical literature. For 

linear elastic and small strain deformation, the Piola-Kirchhoff stress can be replaced by 

the Cauchy stress.  It thus follows from Eq. (3.21) that 

 0
,( )Im mJ im mj m jF uσ σ δ= +  (3.65) 
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Furthermore, Eq. (3.44) and Eq. (3.47) lead to  

 0
0

1( )
2

c E E E
ijkl ij klJ w C ε ε=E , 1( )

2
E E E

ijkl ij klw cβ
α ε ε=E  (3.66) 

Consequently, 

 0 0
0 ,

3( )
2

c E E E
KK KK Km mK ijkl ij kl kk km m kJ w F C uδ σ ε ε σ σΣ = − = − −E  (3.67) 

Making use of Eqs. (3.65) , (3.66) and (3.44) in (3.64) yields 

 0
,

1 3
2 2

E E E E
ijkl ij kl ijkl ij kl kk km m kc C uα

α ατ ε ε ε ε σ σ η⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

 (3.68) 

Note that ijmn mnkl ijklC S I= , mnklS  is the elastic compliance tensor. Therefore, we can show 

that 

 E E
ijkl ij kl ijkl kl ijc sα αε ε σ σ= −  (3.69) 

where 

 
0

ijkl
ijkl

S
s

α α

α

α ρ ρ
ρ

=

∂
=
∂

 (3.70) 

is the variation of the elastic compliance with respect to the defect concentration αρ .  

Therefore, Eq. (3.68)can be rewritten in terms of the Cauchy tensor, 

 0
,

1 3
2 2ijkl ij kl ijkl ij kl kk km m ks S uα

α ατ σ σ σ σ σ σ η⎛ ⎞= − + − −⎜ ⎟
⎝ ⎠

 (3.71) 

The complete electrochemical potential thus follows from substituting Eq. (3.68) into Eq. 

(3.62) and realizing that the diffusion potentials at zero stress can be generically written 

as in section 2.2.2  

 ( ) ( )*,0 lnRT z Fα α α α α αμ ρ μ λ ρ φ= + + , ,v Oα =  (3.72) 
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3.4.2 Self stressed diffusion 

As pointed out by Wu [68], for problems involving compositional changes, it is 

usually necessary to keep the higher order term 0
ijkl ij klS σ σ  during linearization. In this 

particular case, linearization of the full nonlinear expression  Eq. (3.64) was carried out 

by retaining terms linear to αρΔ . In a given ionic solid under small strain deformation 

, 1m ku <<  , if all the stresses are caused by αρΔ  (self stresses), i.e., ~c
ij ij ασ σ ρ= Δ .  Then, 

0 2~ ( )ijkl ij klS ασ σ ρΔ .  In this case, 0
ijkl ij klS σ σ  can be neglected and the electrochemical 

potential reduces to that used by [54, 78, 85], namely, 

 kkα ατ σ η= −  (3.73) 

 However, in many problems, the total stress field is caused by a combination of 

compositional change and other factors, i.e., c
ijij ijσ σ σ= + , where ijσ  is the stress 

induced by other factors such as thermal stress, applied loads, etc.  In these cases, the 

higher order term becomes linear to αρΔ , i.e., 0 ~ijkl ij kl ijS ασ σ τ ρΔ ; therefore, it cannot be 

neglected. 

3.5 Governing equations 

3.5.1 Diffusion of defects 

As mentioned in section 3.4.1, we consider a network solid through which the 

defects diffuse. By a network solid we mean that the solid is non-diffusing, and it does 

not lose its physical identity by dissolving into the surrounding medium, for example. 

This enables us to define strain, displacement and stress at a continuum point [78]. The 

defects are considered as species that simply diffuse through a solid with a solid 
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framework that does not change. The defect concentrations are defined at a continuum 

point like stress or strain and are given in moles per mole of the compound. 

A gradient in the electrochemical potential of the defects causes the defects to 

diffuse within the solid. According to non-equilibrium thermodynamics [58], the molar 

flux of the diffusing mobile defect species α  is given by, 

 N Lα αβ β
β

μ= − ∇∑  (3.74) 

where Lαβ  are the phenomenological Onsager coefficients. The off-diagonal terms in Lαβ  

represent the interactions between the various defects. For the four mobile defect species 

(electrons, electron holes, oxygen interstitials and oxygen vacancies), such interactions 

are considered negligible in this work. However recent studies have shown that this may 

not be the case [98] for certain materials. In this study Lαβ  is taken as a diagonal tensor, 

so that current density of a charged species reduces to 

 D
RT
α α

α α

ρ μ= − ∇J  (3.75) 

Where 

 
m

z FRm TD
V

α α
α =  (3.76) 

is the concentration independent part of the diffusion coefficient and ∇  is the spatial 

gradient operator, and mα  is the mobility of the species. Substitution of Eq. (3.62) into 

Eq. (3.75) leads to 

 ln1
ln

mV D z D FD
RT RT

α α α α α α
α α α α

α

λ ρ ρρ τ φ
ρ

⎛ ⎞∂
= − + ∇ − ∇ − ∇⎜ ⎟∂⎝ ⎠

J  (3.77) 

In deriving the above equation, the following relationship has been used,  
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 ln( ,0) 1
ln

RT α
α α α

α α

λμ ρ ρ
ρ ρ

⎛ ⎞∂
∇ = + ∇⎜ ⎟∂⎝ ⎠

 (3.78) 

We note here that, although Lαβ  is assumed as a diagonal tensor, the flux of one 

species may still depend on other species because the function ατ  depends on the total 

compositional strain, which is dependent on all defects. In other words, compositional 

strain causes flux interaction among different species. This fact will be seen later in the 

examples.  

The continuity condition for each type of defect leads to 

 1
t z F
α

α
α

ρ∂
= − ∇

∂
Ji  (3.79) 

Combining,  Eq. (3.79) for the oxygen ions and oxygen vacancies, and similarly for the 

electrons and electron holes results in  

 ( )1
2

O v
O vt t F

ρ ρ∂ ∂⎛ ⎞+ = ∇ +⎜ ⎟∂ ∂⎝ ⎠
J Ji  (3.80) 

 ( )1e h
e ht t F

ρ ρ∂ ∂⎛ ⎞+ = ∇ +⎜ ⎟∂ ∂⎝ ⎠
J Ji  (3.81) 

3.5.2  Boundary and interfacial conditions 

The governing equations derived in previous sections are valid within the ionic 

solid of interest. Defect distributions within the solid depend also on what happens at the 

boundary of the solid. In this section, appropriate boundary conditions will be developed. 

Consider an ionic solid Ω  with surface S with outward unit normal vector in . 

Without loss of generality, the total boundary S may be divided into three types, namely, 

fS  - the portions in contact with a fluid, sS  - the portions in contact with another solid, 

and vS  - the portions in contact with vacuum.  Note that, in general, each type may 
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contain multiple noncontiguous parts.  Furthermore, the boundary conditions to be 

described consist of three aspects, mechanical, electrical and electrochemical. 

3.5.2.1 Mechanical boundary conditions 

For a coherent solid-solid interface, the displacement vector and the traction 

vector must be continuous across the interface, 

 s s

s
i iS S

u u= , 
s s

s
ij j ij jS S
n nσ σ=  (3.82) 

where s
iu  and s

ijσ  are the displacement vector and stress tensor in the adjacent solid. 

For a solid-fluid interface under static equilibrium, the displacement normal to the 

interface and the normal stress must be continuous across the interface. Further, the shear 

stress vanishes at the interface. Thus, 

 f f

s
i iS S

u u= , ff

s
ij j i SS
n p nσ =  (3.83) 

where sp  is the pressure in the adjacent fluid. On the solid-vacuum interface, either 

displacement condition 

 vi iS
u u=  (3.84) 

or the traction condition 

 vij j iS
n pσ =  (3.85) 

may be specified, where iu  is the prescribed displacement, and ip  is the prescribed 

traction vector. 
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3.5.2.2 Electrochemical conditions 

3.5.2.2.1 Electrode-Electrolyte interface kinetics 

Before we present the electrochemical conditions used in this work, it is important 

to mention a few points from the theory of electrode kinetics, and the simplifications 

done in this work for mathematical ease. At the electrode-electrolyte interface, oxidation 

and reduction reactions take place, Eq.(3.86), 

 reduction

oxidation
OX e RD⎯⎯⎯→+ ←⎯⎯⎯  (3.86) 

where, 

OX denotes an oxidized component 

RD denotes the reduced component 

e denotes an electron 

To specify the boundary conditions to the system of defect transport equations developed 

(Eqs. (3.80) - (3.81)), the kinetics of these reactions must be used. According to Liu, et. al 

[99], equation of the Butler-Volmer type must be used in conjunction with the governing 

differential equations of the problem. If this is done, then the concentrations of the 

various electrochemically active species cannot be specified independently of the applied 

external voltage at the boundaries. The reaction rate constant would be potential 

dependent (see [100] for details).  

However, to proceed in this manner a detailed understanding of the kinetics of the 

reactions at the electrode-electrolyte (In the case of SOFC electrolyte, electrode-

electrolyte and gas) is required. Although mechanisms are being proposed for the 

reactions at the gas solid interface in a solid electrolyte (see Eqs. (3.87),(3.89)) [5, 99, 

101] the actual mechanisms still remains unclear. Moreover, the gas-solid reactions in 
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solid electrolytes are multistep processes thus complicating the kinetics even more. Since 

the main aim of this work is to study the interactions between stresses and defect 

transport and not the electrode-electrolyte interface kinetics, we assume that the boundary 

reactions (which are about to be discussed) are in equilibrium (or that the kinetics is 

infinitely fast). This is done purely for mathematical simplicity so as to allow us to solve 

the governing differential equations. In a real system, kinetics may play a significant role 

and must be considered. 

3.5.2.2.2 Equilibrium gas-solid reactions 

At the solid-gas (or fluid) interface, defects in the solid may react with the species 

in the gaseous phase. For example, if electrons e′  and oxygen vacancies OV ••  are the 

majority defects in a solid in contact with oxygen gas, then the following redox reaction 

may take place at the solid-gas interface, see Appendix B, 

 { }
oxidation

2
reduction

1(solid) 2 (solid) (gas)
2

X
O OO V e O•• ′+ +  (3.87) 

where the direction of the reaction depends on the oxygen partial pressure ( )2PO in the 

gas phase relative to the oxygen concentration in the solid [99]. The corresponding mass 

action law on the surface of the solid is thus given by 

 2
1 2

O
S eV

K POρ ρ••=  (3.88) 

Another reaction at the solid-gas interface is the formation of a neutrally charged 

vacancy through a reaction between interstitial atoms and holes,  

 { }''
2

12 (solid) (solid) (gas)
2

X
i iO h V O•+ +  (3.89) 

The corresponding mass action law on the solid surface can be written as   
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"

2
2

i

S
hO

PO
K

ρ ρ•
=  (3.90) 

In the above, 1SK  and 2SK  are the equilibrium constants for the reactions (3.88) 

and (3.90) respectively. Obviously, the equilibrium constants 1SK  and 2SK  are 

temperature dependent. 

When reaction (3.87) is read from right-to-left it represents the entry of oxygen in 

the form of gas into a vacancy in the solid thus occupying its lattice position.  A similar 

explanation can be given for reaction (3.89) as well.  

3.5.2.3 Electrical conditions 

To describe electrical boundary conditions, the total surface S is divided into 

electrically conductive and insulating portions. On the insulating boundary iS , 

 0ie S
=J ni  (3.91) 

On the conductive boundary cS , one has 

 ce S
FVμ = −  (3.92) 

where V is the applied voltage (relative to a reference state). A frequently encountered 

situation is when two parts of the conductive boundary c
IS  and c

IIS  are subjected to 

prescribed voltages IV  and IIV , respectively. In this case, the electrical boundary 

condition for the electrochemical potential can be written as 

 ( )c c
II I

II I
e eS S

F V Vμ μ− = − −  (3.93) 
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If the conductive boundaries c
IS  and c

IIS  of the solid are exposed to ideal gas with 

oxygen partial pressure 
2

I
OP  and 

2

II
OP , respectively, then the electrical potential difference 

across these two parts of the boundary is given by,  

 ( ) ln
c
II

c c
II I

c
I

e SII I
S S

e S

RTV V
F

ρ
φ φ

ρ

⎛ ⎞
⎜ ⎟− = − +
⎜ ⎟
⎝ ⎠

 (3.94) 

3.5.3 Resume of governing equations 

In the preceding sections, eight basic field quantities were introduced. They are 

the four defect concentrations, , ,  and e h v Oρ ρ ρ ρ , the electrostatic potential φ , and the 

three displacement components iu . The equations that govern these field quantities at 

steady state are highlighted with boxes and the number of the equation is given on the left 

hand side.  

The diffusion equations 

1st ( )10
2 O O O v v vD D

FRT
ρ μ ρ μ−

= ∇ ∇ + ∇i  (3.95) 

2nd ( )10
2 e e e h h hD D

FRT
ρ μ ρ μ−

= ∇ ∇ + ∇i  (3.96) 

The Poisson equation for the electrostatic potential, 

3rd 2

0 m

F z
Vε α α

α
κ φ ρ

ε
− ∇ = ∑  (3.97) 

where 49.648 10 C molF = ×  is the Faraday constant, -12
0 8.854×10 farad mε =  is the 

electric permittivity of free space, εκ  is the dielectric constant of the solid, mV  is the 

molar volume, and zα  is the effective charge of defect α . The sum should include all 
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point defects in the solid including both mobile and immobile defects. The set of 

equations (3.95)- (3.97) is often referred to as the Nernst-Poisson-Planck (NPP) system of 

equations, when the stress independent chemical potentials are used. We will call the 

system using the stress dependent chemical potentials as the Modified Nernst Poisson 

Planck system of equations (MNPP). The Poisson equation is of immense importance and 

creates numerical issues during the solution of the NPP set, especially when the size of 

the ionic solid is much greater than a characteristic length of the problem, the Debye 

length. Methods of perturbation analysis prove useful in obtaining solutions to such 

problems. The details of this issue are dealt with in chapter 5 where the MNPP will be 

solved using the perturbation method approach. 

 The three equilibrium equations of mechanics  

4th, 5th and 6th 0ji
i

j

f
x
σ∂

+ =
∂  (3.98) 

Mass action laws  

The two more algebraic equations are required. They are 

7th and 8th O v FKρ ρ =  and e h eKρ ρ =  (3.99) 

The first of (3.99) represents the mass action law for the Frenkel defect reaction (see 

APPENDIX B), 

 ••+ +"X X
O i i OO V O V  (3.100) 

while the second for the electron hole reaction, 

 •′ + =e h nil  (3.101) 

and FK and eK are the equilibrium constants for the reactions. 
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These eight equations together with the appropriate boundary conditions 

presented in the section 3.5.2 constitute the boundary value problem for the mechanical, 

electrical and electrochemical fields in an ionic solid. Solutions to this boundary value 

problem provide us with the distribution of charged defects and the deformation/stress 

induced by the deviation from stoichiometry of these charged defects, as well as the 

electrostatic potential. 

Before concluding this section, we note that, mass action laws for the defect 

reactions are obtained by equating the chemical potentials that are functions of 

concentrations only. The equilibrium constants in this case are functions of temperature. 

For the coupled mechanical and electrochemical field, the chemical potentials become 

dependent on the stress state and so will the equilibrium constants. Similarly, the 

boundary conditions will also depend on the mechanical stress acting at the boundary of 

the solid. The stress dependent chemical boundary conditions are derived in Appendix C. 

3.6 Conclusions 

In this chapter the Eshelby stress dependent chemical potential is derived and a 

system of governing equations and associated boundary conditions has been delinated for 

the coupled mechanical and electrochemical field quantities. Although Eshelby’s stress is 

only a function of the Cauchy’s stress and the strain energy density as derived, we have 

distinguished between the “Cauchy Stress” dependent and the “Eshelby Stress” 

dependent chemical potentials for the physical significance the Eshelby stress has in 

domains with singularities (see section 3.2.2). These equations were derived for the ionic 

solid with four types of majority defects, namely, oxygen vacancies, interstitials, 

electrons and holes, which are typical in oxide ceramics. Equations for small strain linear 
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elastic ionic solids were also presented. Solutions to the boundary value problem 

presented will yield the distributions of defect concentrations, electrostatic potential and 

the mechanical stresses in the ionic solid. 
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CHAPTER 4. ATOMISITIC SIMULATIONS 

4.1 Chapter abstract 

The material properties introduced in chapter 3, namely the CCE and the OSEC 

that enable full coupling between defect transport and mechanics are determined in this 

chapter for the materials 10GDC and 20GDC. A combination of analytical and MD 

simulations is used to determine these parameters. 

The determination of the CCE involves comparing the volumes of the MD cells at 

each non-stoichiometric level to the volume of the stoichiometric cell. It is found that the 

CCE was constant with temperature and the chemical strains varied linearly with non-

stoichiometry validating Vegard’s law. The numerical values of the CCE are found to be 

reasonably close to existing experimental data and in the range of 0.069-0.079 for a wide 

range of temperatures.  

For the determination of elastic stiffness as a function of non-stoichiometry, it is 

recalled that the analytical expressions obtained from the interatomic potential by 

application of virtual homogenous strains needed modification on account of a possible 

inner elastic contribution due to the non-primitive nature of defective GDC crystals. The 

MD cell is built using a new approach to allow for calculating the inner elastic 

contributions. The modified expressions are then used to predict the total elastic constants 

at various temperatures and stoichiometric levels. For GDC it is found that; 

1) The elastic constants of the defective structure show a cubic material response.  

2) The elastic constants are insensitive to temperature. 

3) The inner elastic contribution is negligible. 
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4) The components C11 show a greater variation with non-stoichiometry than any 

other component (C12 or C66).  

Once the single crystal elastic constants of GDC are determined, a polycrystalline 

material response is found by homogenization method for a GDC sample consisting of 

randomly oriented grains. The isotropic material response of such a polycrystalline 

material is then quantified using the familiar Young’s modulus and Poisson’s ratio. It is 

found that the latter did not vary beyond 4% over the entire range of non-stoichiometry 

studied. The Young’s modulus showed close to a linear variation with a maximum slope 

of about -200GPa over all the temperatures considered. 

Finally a possible reason for the higher variation with non-stoichiometry for C11 

when compared to C12 or C66 is given by examining the contributions towards the elastic 

constants of the short and long range parts of the interatomic potentials. It is found that, 

for C11, both parts decreased with non-stoichiometry with almost equal slopes, thus 

causing an overall decrease in the elastic constant. For C12 or C66, the short range 

contribution decreased while the long range increased with non-stoichiometry, with equal 

slopes negating each others effects and thus negating the effect of non-stoichiometry on 

C12 or C66. 

This chapter hence provides the values of the necessary parameters that must be 

used to together with the framework of the previous chapter to completely describe the 

interaction between defect transport and mechanics in GDC. 
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4.2 Introduction 

4.2.1 State of the art- Review 

Since the advent of modern parallel computing, MD has been used for analyzing 

solids at the atomic level. Instead of providing a historical review of general applications 

of MD to solids, in this discussion a short review of some of the applications of MD to 

determine the properties of ionic solids with defects is presented.  

Ionic solids with defects have been analyzed through molecular simulations for 

several purposes. Some of them are; to calculate defect energies [102], entropies, 

transport [103-107], mechanical [108] and thermal properties [109]. A review of the 

several methods for calculating some of these properties can be found in [110]. In 

addition to the properties mentioned, point defect interactions [111, 112], crystal structure 

[113] and oxygen diffusion mechanisms [106, 114-116] and diffusion characteristics 

under different dopant concentrations and types [105, 117-119] have been studied for 

popular SOFC materials (ex. GDC, YSZ and Lanthanum oxides). Another pertinent 

article that deserves mention here is ref. [120]. The goal of this article involved 

determining the cluster configuration of defects in GDC with the least binding energies.  

4.2.2 Contribution of current research 

In this thesis MD is used as a tool to determine the CCE and the elastic constants 

for non-stoichiometric GDC. These material properties couple defect transport and 

mechanics at a fundamental thermodynamic level through the chemical potential as 

introduced in the previous chapter. The main aspects of the atomistic simulations 

performed in this work are in order. 
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4.2.2.1 CCE 

Although several existing works determine the properties of defective ionic solids 

as presented in section 4.2.1, there have been none that use MD to determine the CCE. 

Here, the expansion of the defective MD cells of reduced GDC at specific temperatures is 

first determined and compared with that of the stoichiometric MD cells at the same 

temperatures. In this manner any thermal expansion effect is negated. Then, the 

volumetric strains are calculated at different levels of defect concentrations. This allows 

us to validate the extent of non-stoichiometry to which Vegards’ law might be valid (as it 

is one of the primary assumptions in the previous chapter), then the CCE is determined 

accordingly. Although formation volumes of defects can be calculated from some of the 

methods presented in recent works [121], these are not the same as determining the CCE. 

Thus, the first aim of this chapter is to present the methodology to determine CCE and 

apply it to GDC. 

4.2.2.2 Elastic Constants 

Firstly we note that we examine the elastic stiffness tensor ijklC at various levels of 

stoichiometry and not the quantity ijklcα  which is the derivative of ijklC  with respect to the 

concentrations. By doing so we first ensure that it is realistic to assume the elastic 

constants have a linear variation with stoichiometry. This could be looked upon as 

validating Vegard’s law for the elastic constants (Linear variation of elastic stiffness with 

non-stoichiometry). The determination of elastic constants for defective lattice structures 

is not as straightforward as the CCE. Direct MD experiments to obtain stress-strain 

variation cannot yield the complete stiffness tensor. In this work the method of 

homogenous strains is used to obtain an analytical expression for the elastic constants 
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directly from the interatomic potential [122]. For crystals made of one kind of sub-lattice, 

analytical derivatives of the interatomic potential energy with respect to a virtual 

homogenous strains yield the elastic stiffnesses (if the effect of temperature is neglected) 

[65]. The effect of temperature on the elastic constants for materials that exist in the solid 

state for a wide range of temperature can be assumed to be negligible [123]. If the effect 

of temperature must be considered, a statistical mechanics approach must be taken and it 

must account for the thermal vibrations explicitly in the expressions for the elastic 

constants, as can be seen in references [124, 125]. For solids made of several sub-lattices 

constituting a heterogeneous system [126], “Inner Elasticity” [127, 128] must be 

considered. Inner elasticity refers to a contribution to the elastic response of solids from 

relative displacement arising between the various sub-lattices when the crystal is 

subjected to a homogenous strain [122]. Such relative displacements occur when the 

atoms of a particular sub-lattice are not present at a site possessing the inversion 

symmetry [129] and therefore have to undergo a preferential inner displacement to attain 

equilibrium for an applied homogenous strain. The effect of inner elasticity comes from 

the contribution of inner elastic constants to the total elastic constants [128, 130, 131]. In 

materials like ceria (fluorite structure) which has three kinds of sub-lattices (1 Ceria and 2 

Oxygen) [132, 133], and also in doped stoichiometric and non-stoichiometric ceria 

compounds, it appears that the effects of inner elasticity cannot be neglected.  

In other structures with the fluorite structure, such as calcium fluorite (CaF2), 

there is experimental evidence of inner displacement [134]. However, because two 

fluorine sub-lattices move in equal and opposite direction along the body diagonal of the 

fluorite unit cell, the effective contribution to inner elastic constants is negligible [135]. 
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While the contributions of inner elastic constants to the total elastic constants may turn 

out to be small for fluorite based structures like GDC or non-stoichiometric GDC, such 

an assumption is not obvious. This is because the location of oxygen vacancies and the 

dopant atoms in the crystal may be such that the contribution of inner elastic constants to 

some, or all of the elastic constants is significant. In this work the total elastic constant of 

10 and 20GDC for various vacancy concentrations and temperatures is computed. 

Following this, the magnitudes of the contributions from inner elastic constants to the 

total elastic constants are discussed. 

Three references [136-138], in which an expression for the non-stoichiometry 

dependent Young’s modulus for GDC was developed from an interatomic potential 

deserves a mention here. Although the analytical expressions derived there provide a 

trend in the variation of modulus with stoichiometry, the potential used is not appropriate 

for ionic solids, especially since it does not account for the coulombic interactions. 

Further, the model provides values for the Young’s modulus but does not consider the 

general elastic stiffness tensor and also uses experimental results to obtain the elastic 

modulus at the stoichiometric state. In this work the Buckingham potential with 

interatomic potential parameters from existing literature is used to calculate the entire 

stiffness matrix for 10 and 20GDC while considering inner elastic contributions as well. 

Also reported are the average values of Young’s modulus and Poisson’s ratio for the 

materials. Further, the contributions to the elastic stiffness tensor from the interatomic 

potential and the long range coulombic parts are examined to investigate their variability 

with vacancy concentrations. 
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4.2.2.3 A semi MD approach 

Although MD simulations were used in this work, the fluctuations in the 

calculations of the various properties were not considered explicitly. The cell vectors 

(required for the calculation of volumes of the MD cell for the determination of CCE) or 

the position of the atoms (needed for the calculation of the elastic constants) is obtained 

by averaging the relevant quantities (volumes and positions) over the production run of 

the MD simulation. In essence the effects of temperature are considered only to the extent 

that they affect the final position of the atoms. This makes our approach “Semi MD”. It 

was found that the elastic constants of pure ceria were predicted accurately even without 

the fluctuations being considered. This semi-analytical method has proven to be accurate 

for computing elastic properties of FCC metals [139]. 

In the next section, we first present the interatomic potentials used in this study. 

Then we explain the crystal structure of pure ceria ( )2CeO  and we present the 

methodology to build a non-stoichiometric GDC structure that will allow us to calculate 

the contribution of inner elasticity to the total elastic constants. Finally, the results for the 

CCE and elastic constants for non-stoichiometric 10 and 20GDC are given for various 

temperature and defect concentrations. 

4.3 MD simulations 

4.3.1 Interatomic potentials & simulation parameters 

In this work, we use DL-POLY to perform the MD simulations [140]. 

Buckingham potential is used according to which the energy due to short range 

interaction is given by  
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where mnr  is the scalar distance between atom m and atom n. The parameters A, ρ and C 

are listed in Table 4.1, where two sets of potential parameters for the pairs Ce4+-O2-, O2--

O2- and Ce4+-O2- are shown. 

The first set of parameters of pure ceria is taken from [141]; these are known to 

predict the lattice parameters, lattice energies, static relative permittivity and high 

frequency dielectric constant of pure ceria with good accuracy. However, they over 

predict the elastic constants C11 by about 27%, C12 by 16% and C44 by 50% of pure ceria 

at its stoichiometric state, when compared to existing experimental data in the literature. 

Therefore the first set of parameters was used to calculate only the CCE. The second set 

of potential parameters was taken from [142] to compute the elastic constants as they 

predict the elastic properties of pure ceria with a good accuracy. The pair potential 

between Gd3+-O2- were also taken from [48] where they were used to study defect 

clusters in doped ceria. 

As mentioned before, neither potential has been used to predict the CCE. In this 

work both the potentials were considered and used to calculate the CCE. It was however 

found that the CCE values matched experimental values with good accuracy only for the 

first set. Hence only these results are reported in this work.  

The cut off radius for the short range forces was set to 16.0Å in all simulations. 

Further, in addition to the short range interactions, even coulombic interactions exist for 

the material under consideration (see section 1.3). These electrostatic interactions are 

computed using Ewald’s sum in DL-POLY. The simulated structures also have complete 
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charges assigned to the specific ions i.e.,+4 or +3 for Ce (depending on whether it is Ce4+ 

or Ce3+), +3 for Gd and -2 for O.  

Table 4.1: Interatomic potential parameters for GDC 
A(eV) ρ(Å) C(eV Å6) Ionic Pairs[141], [48][142], [48][141] ,[48][142], [48][141] ,[48] [142], [48]

O2- - O 2- 9547.96 9533.421 0.2192 0.234 32.0 224.88 
Ce4+ - O2- 1809.68 755.1311 0.3547 0.429 20.40 0.0 
Ce3+ - O2- 2010.18 1140.193 0.3449 0.386 23.11 0.0 
Gd3+-O2- 1885.75 1885.75 0.3399 0.3399 20.34 20.34 
 

All simulations were performed in an NST (constant stress) ensemble so as to 

allow for any variation in MD cell shape which may take place due to non-stoichiometry. 

Further, the total period of equilibration was 3ps, and the production run was carried out 

for 5ps with a time step of 0.1fs. 

4.4 Material system 

4.4.1 Pure ceria 

Ceria (CeO2) has a typical fluorite structure (see Figure 4.1) .The fluorite structure 

can be viewed as three interpenetrating FCC sub-lattices, with the two oxygen sub-

lattices shifted by 1
[111]

4
±  along one body diagonal direction of the cerium sub-

lattice[133]. CeO2 belongs to space group 3Fm m  and has a lattice constant 5.411Å at 

room temperature. It consists of Ce4+ ions forming a face centered cubic configuration 

which encloses a simple cubic configuration of the oxygen ions. Crystallographically, Ce 

is located in the Wyckoff position (4a), while the two oxygen ions are in positions (8c). 

The importance of the Wyckoff position arises in discussing the contribution of the inner 

elastic constants and is explained in APPENDIX D.  
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4.4.2 Building non-stoichiometric GDC 

Generating the defective lattice from pure ceria is complicated as there are several 

ways in which it can be done. For determination of CCE or elastic constants of non-

stoichiometric 10GDC or 20GDC, oxygen atoms must be removed and Ce3+ ions must be 

introduced to reflect the appropriate level of non-stoichiometry and chemical reduction. 

This may be done at random for the determination of CCE. However, to determine elastic 

constants taking into account the inner elastic contributions according to the development 

in [130], a periodic MD simulation cell is needed. It is also necessary to identify specific 

sub-lattices in the crystal structure. This may be achieved by using a single unit cell of 

ceria and by applying periodic boundary conditions. However, the range of vacancy 

concentration that can be investigated using a single unit cell is severely restricted. For 

example, a single unit cell of ceria has 4 cerium atoms and 8 oxygen atoms. Even if one 

oxygen vacancy is created, it amounts to creating vacancy concentration of 0.25 mole 

fraction. This means that cases of stoichiometric or lower vacancy concentrations cannot 

Figure 4.1: Structure of pure ceria 
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be examined. Thus, a large simulation cell with a sufficient number of atoms has to be 

created, allowing one to generate a wide range of vacancy concentrations. To this large 

simulation cell, periodic boundary conditions may be applied to simulate the bulk 

material. Vacancies may be generated in this large simulation cell randomly by removing 

appropriate number of oxygen atoms and replacing the necessary number of Ce4+ atoms 

with Gd3+ or Ce3+, simulating stoichiometric or reduced material respectively. To 

illustrate let us suppose that we have x number of Ce4+ spots and 2x numbers of O2- spots 

(this corresponds to pure ceria) in the MD cell. We want to generate a structure 

corresponding to the formula Ce0.9Gd0.1O2-0.05-y. Firstly, we recognize that, this compound 

is non-stoichiometric 10GDC with y mole fraction of vacancy concentration in excess of 

the stoichiometric compound (Ce0.9Gd0.1O2-0.05). Hence, the total number of oxygen 

atoms to be removed to create the Nv number of vacancies is,  

 ( )0.05vN y x= +  (4.2) 

The total number of Ce4+ positions to be replaced by Gd3+ is given by, 

 3 0.1
Gd

N x+ =  (4.3) 

Further, owing to the reduction we replace 3Ce
N + of the Ce4+ spots with Ce3+ atoms 

such that the system is electrically neutral, in this case it is 

 3 2
Ce

N yx+ =  (4.4) 

 

 The replacement of atoms can be done at random within the MD simulation cell. 

But by doing so, information regarding the kind or the number of sub-lattices present in 

the system is lost (disorder [143]). Every atom in the system may be labeled as a sub-

lattice, as periodicity is imposed on the entire simulation cell (see Figure 4.2) for 
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simulating the bulk. But as will be shown, the inner elastic tensors arising in the 

determination of inner elastic constants become so large that it is computationally very 

inefficient to label all atoms in the system as a sub-lattice. The explanation for this is 

given in APPENDIX D. Thus, the randomly generated structure (MD cell) can no longer 

be identified as one that is obtained from a periodic repetition of some unit cell. 

To address this disorder problem, a structural theory of anion deficient fluorite 

structure has been proposed [144]. These methodologies, impose specific restrictions on 

the modular unit cells that may be used to build the defective unit cell [145]. For 

example, one of the restrictions is that not more than two anion vacancies may exist in a 

fluorite module. Such restrictions entail a large number of modules to simulate a bulk 

defective crystal structure, and they hence cause the size of the MD cell to be very large, 

increasing the computational time. These techniques are therefore not used in this work. 

Moreover, the analyses given in these references address undoped oxides only and are not 

easy to build computationally. Clearly, there is no unique way to generate the defective 

Figure 4.2: MD Cell and its periodic images 
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structure so that the repeating unit containing certain number of vacancies and other 

atoms is always identified with a unique space group. 

 In this work, the methodology to generate the MD simulation cell involves five 

unit cells of pure ceria with a total of 60 atoms (x=20). Oxygen atoms are removed; Ce3+ 

and Gd3+ replace the Ce4+ sites, depending on the level of non-stoichiometry that needs to 

be studied. This we call the unit cell of the defective structure, and this will be addressed 

from now on as the D-unit cell (Defective unit cell). All the atoms forming this unit cell 

are identified as a sub-lattice (a maximum of 60 sub-lattices can exist, and this 

corresponds to pure ceria). The created structure is repeated in the X, Y and Z directions 

and periodicity is imposed to simulate bulk. To this end, we use two unit cells in the 

[100], ten [010] and [001] directions. The unit cell of the defective structure so formed 

allows us to create a wide range of non-stoichiometry exactly. The replacement of atoms 

as required is done at random within the unit cell in the same manner as exemplified by 

Eqs.(4.2),(4.3) and (4.4). Before proceeding any further we would like to point out four 

aspects of this method of constructing the defective MD cell: 

1) The placement of the 5 unit cells of ceria from which the defective unit cell is created 

is completely arbitrary. 

2) To indicate the number of possible generations for a particular defective crystal, we 

can look at stoichiometric 10GDC. Here, the removal oxygen to create vacancies may be 

done in 40 different ways, and replacement of Ce4+ with Gd3+, for each of the 40 ways of 

placing the vacancies, may be done in 190 ways. There are hence, 7600 ways to just 

generate the stoichiometric 10GDC for one arrangement of the 5 unit cells. For the non-

stoichiometric case, there are 
( )

40!
! 40 !n n−

 ways to create vacancies (n is the number of 
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vacancies), for each vacancy distribution, there are 190 and 4845 ways to create the 

doping for 10 and 20GDC respectively, and for a particular distribution of vacancy, there 

are ( )
( ) ( )

20 !
2 ! 20 2 !

d
n d n

−
− −

 ways of replacing Ce4+ with Ce3+ atoms to generate the reduced 

state where d=2 for 10GDC and d=4 for 20GDC. 

3) The specification that every single atom in the D-unit cell forms a sub-lattice 

engenders the possibility of the existence of two or more sub-lattices that may not be 

different. To be very accurate one has to examine the unit cell structure to classify it 

under a specific point group. Even if this is done, the relaxed state of the crystal structure 

can consist of D-unit cells belonging to a different point group. Therefore, by treating all 

the atoms in the D-unit cell as individual sub-lattices we allow the crystal structure to 

evolve during the simulation, as required by energy minimization. The inner elastic 

constants take their values naturally as required by the relaxed structure, and no prior 

knowledge regarding possible crystal symmetry is needed. 

4) We now note that if the preferred locations of the vacancies with respect to the dopant 

atoms are known, it is possible to reduce the number of possible generations. However, in 

this work we assume that any position of vacancy relative to the position of the dopant 

atom is equally likely.  

Figure 4.3: Five unit cells of pure ceria 

Ce4+ O2-Ce4+ O2-Ce4+ O2-
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 Clearly, it would be impossible to perform all possible simulations as articulated 

in point (2). In this work, we examine one particular generation for each defective state, 

and we also consider that the five unit cells of ceria are placed next to each other as 

shown in the Figure 4.3. From this, the defective unit cells are created using the 

procedure just described. The unit cell is then repeated in the X, Y and Z directions as 

explained previously.  

The simulation cell used in this work has x=4000 and corresponds to a total of 

12000 atomic spots. The simulations were all carried out for four temperatures 100, 900, 

1173 and 1273K for both 10 and 20GDC. The non-stoichiometries examined were δ=0, 

0.05, 0.1, 0.15, 0.2 and 0.25 for both Ce0.9Gd0.1O1.95-δ (10GDC) and Ce0.8Gd0.2O1.9- δ 

(20GDC). 

4.4.3 Expression for total and inner elastic constants 

In this section the formula used to determine the elastic constants is presented and 

we also discuss the issue of inner elasticity. The detailed derivation of the total elastic 

constants, comprising of the inner elastic contribution is given in APPENDIX D. 

Although the derivation there closely follows ref. [146], we feel that the presentation here 

is slightly more clear with regards to the notation.  

As explained in section 4.2.2.2, in those crystals that are primitive ( Bravais 

lattice based crystals) it is not necessary to consider inner elasticity, as there will be no 

preferential displacement of the sub-lattices with respect to each other on the application 

of a homogenous strain. In cases where the crystal is non-primitive, inner elasticity has to 

be accounted for, as the sub-lattices move on application of a homogenous strain. This is 

shown for two kinds of sub-lattices in Figure 4.4. 
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 On subjecting a primitive crystal (all atoms have inversion as a symmetry 

element), with N sub-lattices to a homogenous Lagrange strain (E), any vector ro, joining 

two atoms in the undeformed state, transforms to the deformed state of r through the 

relation,  

 or= rF  (4.5) 

where, 

F is the deformation gradient 

ro is the position vector between two atoms before deformation 

r is the position vector after deformation 

The homogenous Lagrange strain is given by, 

 T1E = F F - I
2
⎡ ⎤⎣ ⎦  (4.6) 

where, I is the identity tensor  

Figure 4.4: Inner displacement of non-primitive crystals 
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If the system is governed by a central kind of interatomic potential (interaction between 

atoms depends only on the magnitude of distances between the atoms), then the total 

energy density (u) is given as, 

 
1 1

1 ( )
2 = =

≠

= ∑ ∑
Ω

N N
pq

p q
q p

u e r  (4.7) 

Where,  

e(rpq) is the potential energy due to interaction between atom p and q due to both the 

short and the Coulombic forces. 

rpq is the magnitude of the distance between atom p and q 

Ω is the MD cell volume 

The elastic constants Cijmn for the primitive lattice system are given using the 

formulae, 
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where  

[ ]o pq
ir  refers to the ith component of the position vector from atom p to q at zero strain and 

 [ ] [ ] [ ]2= +ab o ab o ab
mn mn m ns E I r r  (4.10) 

is the square of the magnitude of the distance between atom a and b. Eq.(4.9) is the 

common expression used to determine elastic constants directly from the interatomic 

potential when inner elasticity can be neglected. 
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For a non-primitive crystal, preferential displacement of sub-lattices is allowed, 

Eq. (4.5) is no longer correct, and the following relation must hold (See Figure 4.4),  

 [ab] o[ ]r  =Fr δ δ+ −a bs sab  (4.11) 

Where, δ as is read as the relative displacement of sub-lattice to which atom ‘a’ belongs. 

The relative displacements are always taken with respect to the reference atom in the Nth 

sub-lattice. We also note that δ as =0 if the sub-lattice to which ‘a’ belongs is the same as 

the one to which N belongs. This is true because the atoms belonging to a particular sub-

lattice suffer a rigid body preferential displacement with respect to the reference atom.  

Using the corrected deformation gradient as in Eq. (4.11), the total elastic 

constant is given by, 

 T k kr r
ijmn ijmn ij mnC C D g Dα αβ β= −  (4.12) 

where, the tensors D and g are as derived in the appendix from the interatomic potential.  

In order to verify the codes written to perform the computations, the internal 

strain (see APPENDIX D) P, of pure fluorite structure (CaF2) was also computed. It is 

shown that internal strains suffered by the two oxygen sub-lattices are equal and opposite 

as required by the fluorite structure [134]. The values of the internal strains of the oxygen 

sub-lattices are also compared, to data from literature, validating our codes both 

qualitatively and quantitatively. The details of this calculation are explained in 

APPENDIX D. 
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4.5 CCE Results 

4.5.1 CCE from MD Simulation 

An MD simulation cell was relaxed in a NST (Constant Stress) ensemble to allow 

for any variation in cell shape. After relaxation, the MD cell vectors were examined, and 

it was concluded that the strain induced as a result of non-stoichiometry was purely 

volumetric. This is in accordance with experimental evidence[147]. The chemical 

expansion coefficient was then obtained by comparing the volumes of the relaxed MD 

simulation cells of non-stoichiometric GDC, to the volume of the cell at stoichiometry. 

Both volume calculations were done at the same temperature. By comparing the volumes 

at a constant temperature the effect of thermal expansion was automatically excluded 

from the CCE. Once the linear strains ( )/ 3L V Vε = Δ  are obtained, the CCE for the 

vacancies can be calculated using the expression,  

 /v LCCE η ε δ= =  (4.13) 

Figure 4.5: Linear chemical strain vs. δ for 10GDC 
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where, ∆V is the change in volume with respect to the volume V at stoichiometry. 

Eq. (4.13) however assumes that chemical strains vary linearly with non-

stoichiometry. To verify this we plotted the linear chemical strains vs. non-stoichiometry. 

Figure 4.5 shows the plot for 10GDC while Figure 4.6 shows the same result for 20GDC. 

Clearly the strains vary linearly with non-stoichiometry for all temperatures, thus 

validating Vegard’s law [79] and also corroborating Eq. (4.13). The slopes of the lines 

may be regarded as CCE for the appropriate compound and temperature. Table 4.2 shows 

the average CCEs (calculated using Eq.(4.13)) for both 10 and 20GDC for the various 

temperatures. The CCEs are slightly higher for lower temperatures, suggesting that the 

effect of temperature on the CCE is to decrease it. Also, the CCE values are higher for 

10GDC than for 20GDC concluding that a higher doping concentration reduces the CCE 

values.  

The value of CCE ranges between 0.069-0.079 for all the temperatures and the 

non-stoichiometry levels examined in this work compare well with recent experimental 

Figure 4.6: Linear chemical strain vs. δ for 20GDC 
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studies [148]. Further, it must be mentioned that the standard deviation in the CCE values 

was 0.0026 and 0.0029 for 10 and 20GDC respectively. For this reason the CCE for GDC 

may be approximately considered to be in the range of 0.069-0.079 for a wide range of 

temperatures.  

Table 4.2: Average CCE values for 10 and 20 GDC at various temperatures 
Temperature K CCE/10GDC CCE/20GDC 

100 0.0791 0.0765 
900 0.07291 0.07093 
1173 0.07291 0.0698 
1273 0.0729 0.069 

 

4.5.2 Comparison with experiments 

To compare the results with experiments, we closely followed reference [137]. In 

this article the authors have plotted the linear chemical strains vs. the partial pressure of 

oxygen instead of the vacancy concentration. We have compared our results with this 

data after converting the partial pressure to the vacancy concentration (and hence the 

Figure 4.7: Comparison with experiments ref.[137] 

 



 91

deviation δ) using expression 11 in the reference. Figure 4.7 shows the comparison of 

linear chemical strains for various values of non-stoichiometry for 10 GDC. Clearly we 

can see that the MD results match the results from the experiments for lower levels of 

non-stoichiometry. For larger vacancy concentrations the MD simulations seem to under 

predict the chemical strains by a maximum of 10%.  

4.6 Elastic constants 

4.6.1 Single crystal GDC 

The single crystal stiffness tensor for the range of non-stoichiometry and 

temperatures considered are plotted in Figure 4.8. These were calculated based on 

Eq.(4.12). Although the GDC structures were all constructed from ceria, which has a 

cubic symmetry, the GDC crystal no longer the cubic symmetry structure-wise. 

Nevertheless, we found that the deviation from cubic symmetry is negligibly small. 

Therefore, only the three elastic constants C11, C12 and C66 representing cubic response 

are reported here, and their variations with non-stoichiometry are plotted in Figure 4.8 for 

various temperatures. 

Figure 4.8a shows how C11 varies with δ at 100, 900, 1173 and 1273 degrees 

Kelvin for 10GDC.  The same is shown in Figure 4.8 b for 20GDC.  Similarly, data for 

C66 are shown in Figure 4.8 c – d, and C12 in Figure 4.8e – f for 10GDC and 20GDC, 

respectively. The trend obtained in the variation of the elastic constants with non- 
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stoichiometry clearly indicates one important point. The variation is higher for C11 than 

for C12 and C66. The C11 decreases with an average slope of 400 while the others increase 

with a slope of 45. The former components fall by about 75-100GPa over the entire range 

of non-stoichiometry examined here while the latter ones do not increase more than 10-

Figure 4.8: (a,b) C11, (c,d) C66 and (e,f) C12 for 10 and 20GDC 
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12GPa. Possible reasons for this behavior will be analyzed in the section below, while the 

contributions of the short range and the long range terms to the elastic tensor will be 

examined in section 4.6.5 

4.6.2 Elastic constants for polycrystalline GDC 

The elastic constants obtained using the above approach are valid for a single  

crystal. However it is well known that the electrolytes are in general polycrystalline. 

Hence in this section we obtain the elastic constants for polycrystalline GDC using a 

homogenization method. Consider a polycrystalline solid comprised of numerous 

randomly oriented defective single crystal GDC (grains) as analyzed above. The  

effective elastic constants for the polycrystalline solid can be obtained by a weighted 

average of the elastic constants of the individual grains [149], 

Figure 4.9: Young’s Modulus vs. δ for 10GDC 
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where ,  and θ ϕ ψ  are the Euler angles representing the grain orientation and ( ), ,f ϕ θ ψ  

is the probability distribution of the grain orientation. For random orientation, 

( ), , 1f ϕ θ ψ = . 

Due to the random nature of the grain orientation, the effective elastic constants of 

the polycrystalline solid are isotropic. Therefore, they can be more conveniently 

represented by the two more familiar engineering elastic constants, Young’s modulus and 

Poisson’s ratio [137, 149]. Results for the Young's modulus are plotted in Figure 4.9 and 

Figure 4.10 for 10GDC and 20GDC, respectively.  

It is again seen that the trend predicted is well approximated by a linear function 

with a negative slope. Further, it appears from these figures that the Young’s modulus by 

Figure 4.10: Young’s Modulus vs. δ for 20GDC 
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itself and its variation with stoichiometry are not strong functions of temperature.  

Although not shown, it was found that the Poisson’s ratio is about 0.26, and it 

does not change by more than 4% over the range of temperature and non-stoichiometry 

considered here.  

To verify the accuracy of the MD simulation estimate, we compare our computed 

Young's modulus with the experimental data reported in [137] for 10GDC. This is shown 

in Figure 4.11. Clearly, both experimental data and our numerical computation indicate 

the near linear variation of Young's modulus versus non-stoichiometry. Our numerical 

results tend to over predict the modulus at higher vacancy concentrations by about 13%. 

It is possible that this deviation occurs because the interatomic potential used here was fit 

Figure 4.11: Comparison with experiments 
ref. [15] 

 



 96

for stoichiometric GDC. It may not predict the elastic properties of non-stoichiometric 

compound very accurately, especially at higher vacancy concentrations.  

4.6.3 Contribution of inner elastic constants 

Intuitively, one would think that that the defective GDC structure, far from being 

a centro-symmetric, or monatomic Bravais lattice, would not deform homogeneously 

even under a homogeneous overall deformation. Thus, the inhomogeneous part of the 

elastic constants ( ijklC ) would be not negligible. However, our numerical results show 

that for the ranges of non-stoichiometry and temperature considered here, the 

contribution from ijklC  is only about 2% for both 10GDC and 20 GDC. 

Some authors [145, 150, 151] have suggested that defective fluorite structures 

may be built from fluorite type modules by different arrangements. In particular 22 

different basic fluorite type modules were suggested in [150, 151], which could be used 

to build defective fluorite based oxides that form a homologous series of the form AnO2n-

2m (A-cation, O-Oxygen). These structures, built from fluorite type modules, are non-

primitive and show inner-elastic contribution. The results obtained here seem to indicate 

that defective ceria structures with several kinds of dopants may not be simply modeled 

using fluorite type modules. The relaxation of atoms around the vacancies is significant 

and alters the structure so that the inner elastic contribution becomes negligibly small.  

To test this hypothesis, we also computed the elastic constants of the unrelaxed 

defective GDC structure. Essentially, the unrelaxed structure comprises only fluorite 

modules as suggested in [150, 151]. By “unrelaxed” we mean the structure as built 

(before the MD run was performed) where all cations are in the Ce4+ positions while all 

the oxygen ions and vacancies are in the O2- position of a perfect fluorite structure. We 
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found that for 20GDC at δ = 0.15 and 1173 K, contributions from ijklC  to the total elastic 

constants can be as much as over 70% for some of the components. Under the same 

conditions, ijklC  in the relaxed state contributes only a few percent to the overall elastic 

constants (see Table 4.3). 

Table 4.3: Contribution of inner elastic constants 
Inner Elastic 

Constants 
Unrelaxed 
Structure  

(GPa) 

Relaxed 
Structure

(GPa) 
C 1111 -6.055 -2.63 

C 2222 -28.17 -1.53 

C 3333 -22.35 -1.54 

C 1122 -69.52 0.050 

C 1133 -75.00 0.18 

C 2233 -10.53 -0.29 

C 2323 21.19 -3.40 

C 1313 -35.46 -4.59 

C 1212 -53.00 -4.32 

C 1123 -46.30 -0.010 

C 1113 21.78 0.156 

C 1112 14.10 -0.046 

C 2223 3.11 -0.058 

C 2213 -5.90 0.076 

C 2212 -2.05 -0.025 

C 3323 18.41 -0.12 

C 3313 -8.80 0.11 

C 3312 -1.60 -0.06 

C 2313 -49.61 -0.16 

C 2312 -0.88 0.12 

C 1312 4.86 -0.16 
 

Thus, as a conclusion, we believe that the defective ceria structures may not be 

properly modeled by using fluorite type modules. The relaxed positions that the atoms 

take are significantly different from the unrelaxed ones in defective structures and must 
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be accounted for to study the material response. Furthermore, ceria based defective 

structures (10 and 20GDC), with the vacancy concentrations and dopants examined in the 

current work, behave more like cubic structures with all the atoms at positions that are 

either close to or at inversion centers. Therefore there is very little contribution from 

inner elasticity.  

4.6.4 Dependence of elastic constants on initial configuration 

Another issue worth mentioning is whether the initial structure created will lead to 

the global minimum energy state after relaxation. Because of the complex composition of 

the material, its energy landscape may have a local minimum. An arbitrarily generated 

initial structure would fall into a local minimum after relaxation, which may then give 

very different elastic constants each time a new initial structure is used. To verify if this 

is the case, we generated three different initial structures with M = 5 for one specific 

stoichiometry level and temperature for 10GDC. The OSEC computed from these three 

initial structures are shown in Table 4.4 in the columns labeled Trial 1 – 3. It is seen that 

the results from these three very different initial structures differ by less than 1%. This 

seems to indicate that the computed OSECs are relatively independent of the initial 

structure of the simulation cell. 

A further verification of the above conclusion is conducted by building an initial 

MD simulation cell in such a way that all vacancies and the replacement of the ions were 

carried out completely randomly within the entire MD cell itself (i.e. no super cells were 

constructed) and no inner elasticity was accounted for (i.e. using Eq. ). The results are 

shown in Table 4.4 under the column Trial 4.  It is seen that the results differ from those 

under Trials 1 – 3 by less than 1%.  Recall that the results under the columns Trial 1 – 3 
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were obtained using different initial structures within a super cell and that they accounted 

for inner elasticity. Data shown in Table 4.4 indicate that the OSEC in the materials 

considered are independent of both the initial structure and the internal relaxation 

between different sub-lattices. 

Table 4.4: Elastic constants calculations for four trials 
 Elastic Constants in 100GPa % variation from the Average

Components Trial 1 Trial 2 Trial 3 Trial 4 Average Trial 1 Trial 2 Trial 3 Trial 4
C11 3.02 2.92 3.09 3.10 3.03 0.41 0.11 -0.06 -0.07 
C22 3.19 3.24 3.14 3.12 3.17 -0.62 -0.06 0.03 0.05 
C33 3.20 3.18 3.28 3.12 3.19 -0.20 0.02 -0.09 0.08 
C12 1.07 1.08 1.06 1.08 1.08 0.30 -0.01 0.01 -0.01 
C13 1.07 1.07 1.06 1.08 1.07 0.20 0.00 0.01 -0.01 
C23 1.08 1.06 1.07 1.09 1.07 -0.26 0.01 0.01 -0.01 
C44 1.04 1.01 1.00 1.09 1.03 -0.23 0.03 0.03 -0.05 
C55 1.00 1.00 0.96 1.08 1.01 0.98 0.01 0.05 -0.07 
C66 1.01 0.98 0.97 1.08 1.01 0.27 0.03 0.04 -0.07 
 

4.6.5 Short-range and coulombic contributions 

In this section we investigate the relative contributions of the short-range and the 

Figure 4.12: Contribution of long and short range parts of the interatomic potential 
towards C11 
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long range force fields (coulombic interactions) to the total elastic constants of the 

compound. All the analyses performed showed a similar trend for the entire range of non-

stoichiometry and temperature. Hence, we report the behavior for 1273K, 20GDC only. 

In Figure 4.12  we show the relative contributions from the coulombic and the short range 

forces to the elastic constant C11.  It can be seen that the contribution of the long range 

coulombic sum to the elastic constants is relatively small when compared to the 

contributions from the short range part. Moreover, both contributions, decreased with 

non-stoichiometry.  

The same type of data is shown in Figure 4.13 for C12.  From the figure it is clear 

that the relative magnitudes of the contributions are comparable. Further, with increasing 

vacancy concentration, the short range contribution decreases while the coulombic 

contribution increases.  From this we can infer that the variation of total C12 (Coulombic 

Figure 4.13: Contribution of long and short range parts of the 
interatomic potential towards C12 
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+ short range contributions) with the vacancy concentration is small, and this explains the 

results in Figure 4.8. A similar trend was observed for C66 as well (not shown). 

4.7 Conclusions 

By using a semi-analytical approach in conjunction with MD simulations, the 

CCE and elastic constants of reduced 10 and 20GDC are determined over a range of non-

stoichiometry and temperatures. The MD simulations were conducted on periodic 

simulation cells of defective 10 and 20GDCs that were constructed using a new approach 

to allow for the calculation of inner elastic constants. It was shown that the relaxed 

structure obtained after the simulations was such that the atoms were on, or close to 

locations which were a center of inversion. Thus the contribution from the inner elastic 

constants was negligible. This study seems to indicate that the internal relaxation in 

defective 10 and 20GDC significantly altered the structure to the extent that defective 

fluorite modules as in [150, 151] may not be used to construct reduced non-

stoichiometric ceria. 

The numerical results also show that the compositional strain can be 

approximated as a linear function of non-stoichiometry following Vegard’s law, and the 

corresponding CCE associated with GDC was found to be in the range of 0.069-0.079 for 

the wide range of temperatures examined.  

 Over the range of non-stoichiometry examined, the elastic constant C11 was 

found to decrease significantly while C12 did not vary as much. Reasons for this behavior 

were given by examining the contributions from the short range and the coulombic 

portions to the elastic constants. It was observed that the variations of the contributions to 

C12 was with opposite slopes of almost equal magnitudes and thus did not cause a 
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significant variation in C12 with vacancy concentration. Thus for single crystalline 

defective GDCs it is sufficient to consider only the variation of C11 in order to study the 

elastic response at varying levels of non-stoichiometry. 

The averaged polycrystalline elastic constants were determined by considering an 

assembly of single crystals with random orientations. The corresponding Young’s 

modulus and Poisson’s ratio were tabulated. It was found that for defective GDC 

structures made of polycrystalline material, it is sufficient to consider only the variation 

of Young’s modulus while modeling the interactions between defect transport and 

mechanics in GDC. 

Finally it is found that neither CCE nor elastic modulus is sensitive to 

temperature.
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CHAPTER 5. STRESSES AND DEFECT TRANSPORT 

5.1 Chapter abstract 

In this chapter the system of equations introduced in chapter 1 are presented in a 

one dimensional form. These equations are identified as a modified form of the Nernst-

Poisson-Planck system of equations (MNPP). The NPP system has applications in a wide 

range of physical phenomena ranging from transport in biological membranes [152, 153] 

to more general electrochemical systems [154]. The numerical issue associated with the 

classical NPP system is also presented. The presence of a small parameter multiplying the 

largest derivative in the Poisson equation renders common numerical methods of 

solutions in the entire domain impossible. This is especially true when the size of the 

domain is much greater than a characteristic length. This points out the need for a 

perturbation method requiring the consideration of two length scales, namely the 

boundary layer and the bulk of the domain. 

It is then reiterated that the classical NPP system attains its form on account of 

two approximations; 

1) Neglecting a possible spatial variation of the background elastic energy (usually a 

part of the standard chemical potential) 

2) Assuming a dilute concentration of defects. 

Since the main intent of this thesis is to study the effect of stress (elasticity)-defect 

transport interactions, the first assumption is relaxed, and the elastic contribution to the 

chemical potential is explicitly considered. For a thin electrolyte (planar or tubular) 

(10GDC) the MNPP system is solved. The MNPP system contains the effects of chemical 
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expansion (CCE) and the variation of elastic modulus (OSEC) through two non-

dimensional parameters. Since the maximum value of oxygen partial pressure considered 

is 1atm, the concentration of interstitials and holes was neglected in comparison to the 

concentration of vacancies and electrons [155] in the analysis performed in this chapter. 

Implicit analytical solutions are derived and it is found that the solutions, namely 

the distribution of vacancies and the electrostatic potential, show non-trivial differences 

when the effects of elasticity were considered. This showed that elasticity had an effect 

on the electrochemical fields. Moreover, the stresses induced in the electrolytes were high 

compared to the strengths of the material suggesting that the material will fail due to 

induced non-uniform chenmical strains. 

Numerical solutions are obtained for the distribution of all the field quantities in 

the boundary layer by solving the boundary layer differential equation. The main 

conclusions from the boundary layer solution once again indicated an alteration in the 

distribution profiles when the effects of elasticity were considered reinforcing the 

plausibility of interactions. In fact the overall charge density in the boundary layer was 

found to be enhanced when elasticity was considered. The chapter is then concluded by 

suggesting that elasticity effects (like applying external loads) can be used over other 

existing methods which are based on grain boundary engineering, to alter the material’s 

behavior such as its charge storage capacities and conductivities. 

5.2 Introduction 

In this chapter, we study the effects of stress-defect transport interactions on the 

distribution of electrochemical field quantities like the distribution of defects, 

electrostatic potential and mechanical stresses. In order to achieve this objective, we must 
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solve the MNPP system (introduced in section 3.5.3) of equations subjected to 

appropriate mechanical and electrochemical boundary conditions. Before discussing the 

solution procedure directly, it is useful to look at some of the features of the NPP system 

and examine the literature devoted to solving the NPP system. 

5.2.1 The NPP system-Numerical issues  

We have seen that the gradient of the electrochemical potential αμ  of the defect α 

forms the “driving force” for defect transport [27]. αμ  for the dilute case is given as  

 ( )* lnj j j jRT z Fμ μ ρ φ= + +  (5.1) 

where all the quantities have their usual meanings as in chapter 1, section 1.4. However, 

we reiterate that *
αμ  is a constant throughout the solid and contains the standard chemical 

potential 0
αμ  (from the energy for defect formation), and also a constant background 

elastic energy el
αμ  thus enabling the form in Eq. (5.1) for αμ (see ref. [38] for details). 

Eq. (5.1) holds, as long as the concentrations are small (dilute regime) [33]. If 

relation (5.1) is used, then the NPP system for one dimensional isothermal defect 

transport can be obtained from the phenomenological equations of irreversible 

thermodynamics under the assumption that the species do not interact [156]. These 

equations can be obtained from Eq. (3.75) (after setting 0, 1α ατ λ= = ) and Eq. (3.97) in 

their non-dimensional forms and is given by Eqs. (5.2) and (5.3) 

 J h d dz
D d x d x
α α

α α
α

ρ φρ= − −  (5.2) 

 ( )2
2

2
sum over all defects

q

d z z Q
d x α α

φχ ρ− = +∑  (5.3) 
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and for sake of simplicity we may say that the differential equations are subjected to 

Dirichlet boundary conditions as follows, 

 ( ) ( )0 ; 1L R
α α α αρ ρ ρ ρ= =  (5.4) 

and 
 ( ) ( )0 0; 1L Rφ φ φ φ= = =  (5.5) 

where 

Jα is the current density of the species α and is a constant for steady state diffusion 

h is the length of the domain 

x is the non-dimensional coordinate x
h

 

2 2
m DV RT

F h h
χχ ∈

= =  

Dχ  is a characteristic length  

Q is the concentration of the immobile defect (moles per mole of the solid) while zq is its 

equivalent charge 

0
εκ ε∈= , is the electrical permittivity of the solid (C2 N-1 m-2) 

Figure 5.1: One dimensional domain for the NPP system 
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φ is the non-dimensional electrical potential F
RT
φ  

 and L R
α αρ ρ  are the concentrations of specie α at the Left ( )0x =  and the Right ( )1x =  

boundaries respectively (see Figure 5.1) 

 and L Rφ φ  are the non-dimensional electrostatic potentials at the Left ( )0x =  and the 

Right ( )1x = boundary respectively (see Figure 5.1) 

To illustrate the numerical issues arising in the solution to the NPP system we 

turn our attention to the nondimensional parameter 2χ which multiplies the highest 

derivative in the Poisson’s equation. For illustration let us assume, 35εκ =  [157], 

624 10mV −= × m3 mol-1, T=1073K. Then  

 
21 11

2

7.12754 10 8.4425 10
h h

χ
− −× ×

= =  (5.6) 

even if 60.5 10 mh −= × , 6169 10χ −≈ × . The small value of χ engenders very large 

gradients in the values of the primary variables ( αρ  and φ ) near the boundaries of the 

domain. Such problems are called boundary layer problems and occur frequently in fluid 

mechanics. They require a different mathematical treatment called perturbation analysis 

[158]. Moreover if we were to use finite element or finite difference procedures to solve 

the system, the domain discretization will have to be in the order of Dχ (at least near the 

boundaries), which, for the problem at hand is impractical. It is this boundary layer 

phenomenon which gives rise to a drastic change in the charge storage capacities of nano-

crystalline materials and is the motivation for the emerging subject of nano-ionics. In 
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passing we also notice that if the size of our domain h is comparable to Dχ then the 

solutions can be obtained by straight forward applications of some numerical method.  

For macrosized domains ( D hχ << ), the general tendency is to set the LHS of 

Eq.(5.3) to zero (on account of small value of / hχ ) and use the algebraic condition, 

 ( )
sum over all defects

0qz z Qα αρ + ≈∑  (5.7) 

as a governing equation. However, this is not strictly correct, as there could be large 

gradients near the boundaries of the domain. Equation (5.7) is the so called Local 

Electroneutrality (LEN) condition.  

Another possibility is a situation where the value of χ is large enough to allow us 

to set the RHS of Eq. (5.3) to zero and obtain a constant Electric Field approximation,  

 0d d
dx d x

φ⎛ ⎞
=⎜ ⎟

⎝ ⎠
 (5.8) 

Note that d
d x
φ  is the electric field and hence the name constant Electric Field 

approximation. 

Thus the numerical issues arising in the solution of the NPP systems prevents the 

use of a direct numerical procedure like the finite element method, at least for macrosized 

domains ( D hχ << ) as will be our case.  

5.2.2 Solution to the NPP system - Review 

Several articles have been published showing either numerical [152, 159-162] or 

analytical methods [163] to solve the system (5.2)-(5.5) . As mentioned, one major 

obstacle faced in obtaining a numerical solution is due to large gradients in the primary 
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variables ( ) and iρ φ  near the boundaries for a small value of the parameter ( )1χ  

which multiplies the highest derivative in the Poisson’s equation (Eq.(5.3)). This requires 

an asymptotic analysis of the problem [159, 163-167]. In some articles [156, 168] the 

LEN condition or constant field approximation is used to obtain solutions. It can be 

shown through an asymptotic analysis that LEN and the constant field approximation are 

only consequences of the zero order term (interior solution) when χ  is small (LEN) and 

when χ  is large (constant field) respectively [165, 169], and these are valid only in the 

bulk of the material. In this work we discuss cases when 1χ  and under such 

conditions the thickness of the boundary layer is very small when compared to the 

dimensions of the solid. Under such circumstances a state of Donnan equilibrium exists 

close to the boundaries due to the thin boundary layer [165]. Donnan equilibrium refers 

to the phenomenon where the values of the primary variables suffer a “jump” close to the 

boundaries. This means that the boundary values imposed as in Eqs.(5.4)-(5.5) does not 

hold for the interior solution (zero order solution) of the NPP system. Even if a complete 

solution to the boundary layer cannot be obtained, the jump values can be calculated 

through the method of matched asymptotic expansions, and they can be used as boundary 

conditions for a complete interior solution. For details on perturbation analysis we refer 

the reader to references, [158, 170].  

The classical form of the NPP system has been revisited, and it is important to 

note that the system is derived based on certain assumptions regarding the chemical 

potential (see definition of *μ  and [38]). The material under consideration (GDC) 

conducts electrons and oxygen ions (or oxygen vacancies). Further as motivated in 

chapter 1, it also shows a significant volumetric chemical strain due to local deviations 
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from the stoichiometric vacancy concentration [148]. During functioning, these materials 

have a non-uniform deviation from stoichiometry, and hence the solid is subjected to 

inhomogeneous strains throughout their domain. Such strains when not accommodated 

through appropriate deformation can cause local stresses resulting in mechanical failure 

of the solid [94, 171]. In addition to stresses being induced, the elastic energy 

contribution to the chemical potential ( )elμ can be significant and is no longer a constant 

throughout the solid. The existence of such effects, where chemical equilibrium is 

affected due to the presence of stresses, is corroborated by recent works [17, 18, 172], 

where stress relaxation in a thin GDC sample was related to an association-dissociation 

reaction. Moreover as pointed out earlier the physical properties of GDC have also been 

shown to vary with stoichiometry [136-138]. These recent studies point out the need to 

consider interactions between defect transport and mechanics. 

We hence solve the MNPP system and quantify the level of interaction on the 

electrochemical behavior. The solutions for the interior and the boundary layers are 

obtained, and the effects of elasticity on solutions, the Donnan equilibrium conditions and 

on the current voltage relations are discussed. For the sake of simplicity a one 

dimensional steady state, isothermal (T=800oC) defect transport in 10GDC 

(Ce0.9Gd0.1O1.95-δ) with a constant concentration of immobile defect (Q=0.1) is 

considered. Further we assume that only the vacancies contribute to the eigenstrains or 

cause variations in the elastic properties in the material, hence, 0 and 0e
e ijklcη = = . 

Moreover, in this material it suffices to determine the distributions of the concentrations 

of vacancies ( )vρ , electrons ( )eρ  and the electrical potential ( )φ . It can be assumed that 
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the interstitials ( )Oρ  and the holes ( )hρ  are in negligible quantities when compared to 

the vacancies and electrons. 

5.3 The MNPP system 

5.3.1 Basic assumptions and differential equations 

5.3.1.1 Thin planar electrolyte 

Stress dependent defect transport has to be considered when local elastic fields are 

inhomogeneous and contribute to the non-configurational part of the chemical potential. 

An Eshelby stress dependent chemical potential was developed in chapter 3. In this 

section it will be shown that, for a thin electrolyte constrained on all sides as in Figure 5.2 

without any externally applied loads, analytical solutions to the MNPP system may be 

obtained. Under more general conditions, defect transport equations and the equilibrium 

equations of mechanics have to be solved simultaneously using numerical methods. 

Figure 5.2: Mechanical and electrochemical boundary conditions 
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Note that the word “thin electrolyte” has been used here with regards to an 

approximation that will be applied to the mechanical problem, basically to invoke plane 

stress approximation. The electrolyte is still several orders of magnitude larger than Dχ , 

requiring a perturbation analysis. 

Consider an electrolyte of thickness h. The cross-section of the electrolyte is 

schematically shown in Figure 5.2. It is assumed that the four edges of the electrolyte are 

all constrained in such a way that it cannot expand in the YZ plane. The only deformation 

allowed is a change of thickness uniformly. Under such constraints, the strain fields are 

given as, 

 0zz yyε ε= =  (5.9) 

Further, owing to the small value of the gas pressures (which is in the order of a 

few atms. i.e. 0.101325MPa) on either side of the plate, and the relatively large 

dimensions of the plate in the lateral (Y and Z) directions, we may assume (Plane stress), 

 0xxσ =  (5.10) 

Making use of the above approximations, Eqs. (5.9) and (5.10) in the Hooke's law 

for isotropic materials Eq. (5.11)  

 ( )
( ) ( )( ) ( )

( )( ) ( )( )0 03
2 1 1 1 2

v v
ij ij ij v v v kk v v v

E Eρ ρ ν
σ ε δ η ρ ρ ε η ρ ρ

ν ν ν
= − − + − −

+ + −
 (5.11) 

it can be easily shown that the following holds, 

 
( ) ( )0

(1 )
v v v v

yy zz

E ρ η ρ ρ
σ σ

ν

−
= = −

−
 (5.12) 

which gives, 
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( ) ( )02

(1 )
v v v v

kk

E ρ η ρ ρ
σ

ν

−
= −

−
 (5.13) 

where 

( )vE ρ is the concentration dependent Young’s modulus 

vη is the CCE for the vacancies 

0
vρ is the stoichiometric vacancy concentration for the GDC (0.05 for 10GDC and 0.1 for 

20GDC) 

At this point we reiterate that the case under consideration is of self stressed 

diffusion. Thus, the contribution to the chemical potential from mechanics as given by 

Eq.(3.71), can be reduced to a simpler form based on the argument in section 3.4.2 .This 

is given by 

 ( )el
v m v m kk vV Vμ τ σ η= = −  (5.14) 

which reduces to the following, based on Eqs. (5.10) and (5.13) 

 
( ) ( )2 0( )2
1

el v
v m v v v

EV ρμ η ρ ρ
ν

= −
−

 (5.15) 

We also agree that the specification of the boundary conditions along x=0 and 

x=h is invariant in y, allowing us to reduce the system of equations (3.95)-(3.97) in their 

non-dimensional form to a one dimensional case, as follows, 

 ( )2
1 2 2v v v

v v v
v

J h d d d P
D d x d x d x

ρ ρ φκ ρ κ ρ ρ= − − + − =  (5.16) 

 e e
e

e

J h d d N
D d x d x

ρ φρ= − + =  (5.17) 

 ( )
2

2
2 2 v e

d Q
d x
φχ ρ ρ= − − −  (5.18) 
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where 
( ) ( )

2
0 0

1

2 2
1

v m
v

V E
RT

ηκ βρ
ν

= +
−

, 
( )

2

2

4
1

v mV
RT

η βκ
ν

= −
−

 and 2vz = + , 1ez = −  as been used. 

It is the magnitude of the non-dimensional quantities 1 2and κ κ  that determines the level 

of interaction between defect transport and mechanics. Moreover since 1κ and 2κ depend 

on 2
vη , the solution to the system (5.16)-(5.18) is independent of whether the material 

expands or contracts as a result of deviation from stoichiometry, i.e. it does not matter if 

0vη > or if 0vη < . However, the stress distribution will show differences on account of its 

dependence on vη (see Eq. (5.12)).  

Note that, 0E is the Young’s modulus of the material at stoichiometry, while 

β represents the variation of the Young’s modulus with stoichiometry. Based on our 

analysis in chapter 3 we have used a linear variation for E (see Figure 4.11) as follows, 

 ( )0 0 v
vE E β ρ ρ= + −  (5.19) 

so that, 

 
v

Eβ
ρ
∂

= −
∂

 (5.20) 

5.3.1.2 Thin tubular electrolyte 

Another common form of electrolyte is the tubular electrolyte. Interestingly it is 

possible to develop the MNPP system for a long electrolyte, by invoking plane strain 

approximation of elasticity. The mechanical boundary conditions for this configuration 

are more realistic than the plane stress approximation made for the planar electrolyte. 

However, we note that the equilibrium equations are not as trivial as for the planar case. 

To develop the system of equations for the cylindrical configuration, we proceed in the 

following manner.  
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Consider a tubular electrolyte with circular a cross section. Let the inner radius be 

a and the outer radius be b. The wall thickness h is thus given by h b a= − . A cross-

section of the tube is schematically shown in Figure 5.3 where a cylindrical coordinate 

system attached to the tube is also shown. 

It is assumed that the length of the tube is much greater than its diameter so that it 

can be effectively assumed that the tube is infinitely long. This simplifies the problem 

into an axisymmetric two dimensional plane strain deformation, i.e., one only needs to 

consider 

 1 ( )ru u u r= = , 1 ( )ru u u r= = , 2 0u uθ= = , 3 0zu u= =  (5.21) 

Figure 5.3: Tubular electrolyte 
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for the deformation fields, ( )rα αρ ρ=  for defect concentrations and ( )rφ φ=  for the 

electrostatic potential. 

We begin by considering the mechanical fields. It follows from Eq.(3.13) that the 

total strain field corresponding to the displacement field described by Eq. (5.21) can be 

easily computed in the cylindrical coordinate system, 

 11
( )r

r
du r

dr
ε ε= = , 11

( )r
r

du r
dr

ε ε= = , 22
( )ru r
rθε ε= = , 33 0ε =  (5.22) 

Making use of the above in the Hooke's law Eq. (5.11), we found that, 

 ( )( )0
11 (1 ) (1 )r r v v vK θσ σ ε ν ε ν ν η ρ ρ= = − + − + −  (5.23) 

 ( )( )0
22 (1 ) (1 )r v v vKθ θσ σ ε ν ε ν ν η ρ ρ= = − + − + −  (5.24) 

 ( )( )0
33 ( ) (1 )z r v v vK θσ σ ε ε ν ν η ρ ρ= = + − + −  (5.25) 

where 

( )
( )( )1 1 2

vE
K

ρ
ν ν

=
+ −

 

All the shear stress components are zero. It is easy to show from Eq. (5.23)-

Eq.(5.25) that 

 ( )0(1 ) 3r r
kk v v v

du uK
dr r

σ ν η ρ ρ⎡ ⎤⎛ ⎞= + + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (5.26) 

For the axisymmetric problem considered here, the only non-trivial mechanical 

equilibrium equation from Eq.(3.14) (for cylindrical co-ordinate system) is 

 0rrd
dr r

θσ σσ −
+ =  (5.27) 

Substituting Eqs.(5.23)- (5.25) into Eq.(5.27) in conjunction with Eq. (5.22) yields, 
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 ( )01
1 v v v

du u
dr r

ν η ρ ρ
ν

+
+ = −

−
 (5.28) 

the integration constant is chosen so that the displacement is zero when 

0 0v v vρ ρ ρΔ = − = . Making use of Eq.(5.28) in Eq.(5.26) results in, 

 ( )
( ) ( )02
1

v
kk v v v

E ρ
σ η ρ ρ

ν
= − −

−
 (5.29) 

This is identical to Eq. (5.13). Since this is the elastic contribution to the chemical 

potential we see that the MNPP system for the cylindrical configuration also turns out to 

be similar to the planar configuration, namely, Eq. (5.16)-Eq. (5.18), where, /x r h= .  

In what is to follow we will show the boundary conditions and the distribution of 

the vacancy concentration and the electrostatic potential with the planar electrolyte in 

mind. These solutions are also valid for the tubular system except that the domain now 

ranges from a to b rather than from 0 to h. The distribution and the nature of stresses 

within the electrolyte are quite different for the two configurations and are shown in later 

sections. We now discuss the boundary conditions to which the electrolytes are subjected. 

5.3.2 Boundary conditions 

The typical boundary conditions to which the system of equations (5.16)-(5.18) 

may be subjected has been discussed in sections 3.5.2.2 and 3.5.2.3. Some comments are 

in order, especially with regards to the specification of concentrations at the boundaries. 

The regions of the electrolyte near the boundaries in which the oxidation-reduction 

reactions occur as in Eq. (3.87), act as stages for complex multistep reactions [173] and 

as buffers between the two different phases (
2OP and the electrolyte). These regions 

contain several atom layers at the most, and the continuum description of stresses cannot 
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be made without ambiguity. This means that for the boundary reactions we cannot use the 

stress-dependent electrochemical potentials without reservation. However to 

mathematically study the consequences of using a stress dependent electrochemical 

potential in specifying the boundary conditions, we use two methods of specifying the 

boundary conditions and study the effects on the solutions and the electrochemical 

behavior.  

5.3.2.1 Method 1 

First, we use expression (3.88) (restated below) to specify the concentrations at 

each boundary, 

 ( ) ( )2 R/LR/L R/L
2v eK POρ ρ=  (5.30) 

where, the superfixes R/L represent the Right or the Left boundary. Hence, at the 

boundaries, for a known value of K, 2PO and vρ ( vρ  for specific PO2 can be obtained 

from Table 2 in ref. [94] ), the electron concentration eρ  is specified. Note that Eq. (5.30) 

is obtained by equating the stress independent chemical potentials on either side of 

reaction Eq.(3.87). 

5.3.2.2 Method 2 

In the second method we use the stress dependent chemical potential to arrive at a 

mass action law that includes the stress dependent reaction constant as was introduced in 

APPENDIX C. Let us consider the reactions on the two boundaries, 

 ( ) ( ) ( )2 LL L L L
2 exp m v

v e kk

VPO KK K
RTσ

ηρ ρ σ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (5.31) 

 ( ) ( ) ( )2 RR R R
2 expR m v

v e kk

VPO KK K
RTσ

ηρ ρ σ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (5.32) 
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Using Eq.(5.31) (5.32) and then Eq.(5.13) we get, 

 
( ) ( )
( ) ( )

( ) ( ) ( )( )
2 LL L

2 22 R L L R2
12 RR R

2

exp
2

v e
v v v v

v e

PO

PO

ρ ρ κκ ρ ρ ρ ρ
ρ ρ

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 (5.33) 

If we use the LEN condition in the above equation at both the boundaries to represent the 

electron concentrations there, we arrive at an expression where the only unknowns are the 

vacancy concentrations (see Eq.(5.34)).  

 
( ) ( )
( ) ( )

( ) ( ) ( )( )
2 LL L

2 22 R L L R2
12 RR R

2

2
exp

22
v v

v v v v

v v

Q PO

Q PO

ρ ρ κκ ρ ρ ρ ρ
ρ ρ

− ⎛ ⎞= − + −⎜ ⎟
⎝ ⎠−

 (5.34) 

We may then specify the vacancy concentration at one end and determine the 

concentrations at the other by solving the nonlinear algebraic equation (Eq.(5.34)), with 

known values of partial pressures of oxygen on both sides. In what is to follow we will 

address the situation when Method1 is used as BC1 and BC2 when Method 2 is followed. 

Finally we note that the specification of the boundary conditions for the 

electrostatic potential is given by  

 
L

L
R

ln e

e

RTV
F

ρφ
ρ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (5.35) 

where we have taken the right boundary to be at zero potential. 

5.3.3  Solutions- Perturbation Method 

5.3.3.1 Interior Solution 

First, we look for approximate solution to (5.16)-(5.18) in the bulk (interior) of 

the system after expanding the primary variables in the following form, 

 0 1 ...,φ χ= Φ + Φ +  (5.36) 
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 0 1 ...v V Vρ χ= + +  (5.37) 

 0 1 ...e E Eρ χ= + +  (5.38) 

Following the standard procedure, we substitute (5.36)-(5.38) in the differential 

equations-(5.16)-(5.18), hold x  fixed and let 0χ → . This gives us the differential 

equations for the zero order interior solutions, 

 ( )( )
0 0

2 00 0 0
v1 21 2  =  dV dV V V J

d x d x
κ κ Φ

− + + −  (5.39) 

 
0 0

0 0
e=  d E dE J

d x d x
Φ

− +  (5.40) 

 ( )000 2  V E Q= − − − (LEN condition)  (5.41) 

After eliminating 
0d

d x
Φ from (5.39) and (5.40) , using the LEN condition ( to substitute 

for 0E ), and integrating, we obtain an implicit solution for 0V as follows (See Eq. (5.42)) 

 
( ) ( ) ( )

( ) ( )

0
2 24 0 0

2 1

3 30
3

3 ln v v
v

v

A BVB x R W BV BL W A BV A BL
A BL

W A BV A BL

⎛ ⎞− ⎡ ⎤= + − + + − − −⎜ ⎟ ⎣ ⎦−⎝ ⎠
⎡ ⎤+ − − −⎣ ⎦

 (5.42) 

In the above equation, 

 

( )
( ) ( )

( ) ( ) ( )

0 0 0
1 1 2 3 2

2 3
4

2 3 4

2
4 4

2 12 3 3 3 4

0 0 0 00 0

, 4 , 2 , 2 , 4 , 2 , 4

12
3

12 2 3 33 , 3
2 2

,v e v e

A T S Q B T C Q D Q E L Q W M

D A E L AC MAR B
B B B B

D E L A E LA M AMW B W B
B B B B B

T J J S J J

κ κ κ κ= + = = = = = = =

− −⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
− − − −⎡ ⎤ ⎡ ⎤

= + + = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= + = −

 (5.43) 

The integration constant is determined by a limiting process as follows, 
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 0

0
lim vx

V L
→

=  (5.44) 

Lv is the value of the vacancy concentration close to the left boundary. At this point we 

hasten to emphasize that the values of the interior solution “close to the boundaries” 

( )0, 1x x= =  are not the values “at the boundary” ( )and L R
v vρ ρ owing to the existence of 

Donnan equilibrium conditions. This will be clear when the boundary layer solutions are 

obtained.  

At this point we also define, 

 0 00 0 0

0 0 1 1 1
lim , lim , lim , lim , lime v ex x x x x

E L L V R E R Rφ φ→ → → → →
= Φ = = = Φ =  (5.45) 

Further we see that on account of Eq. (5.41), 

 2 0 and 2 0v e v eL L Q R R Q− − = − − =  (5.46) 

An explicit solution for 0Φ , in terms of 0V can be obtained by eliminating 

d x from (5.39)-(5.40), and integrating. The solution is given by, 

( ) ( )
0

2 23 0 3 0 0
2 12 2 ln

6 v v
v

R A BVB B L W BV BL W A BV A BL
Q A BLφ

⎛ ⎞− ⎡ ⎤Φ = − + − + + − − −⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦−⎝ ⎠
(5.47) 

where, 

 
( )( )
( )

0 0
2 1 2

0 0
1 2

2 2W S T B A

W S T

κ κ

κ

⎡ ⎤= − − −⎣ ⎦
= −

 (5.48) 

The integration constant in this case is obtained by using both Eq.(5.44) and the second 

limit in Eq.(5.45). 

Eq.(5.42) gives an implicit relation for the distribution of 0V . The solution is 

obtained by converging onto a value of 0V  for a given x . However, to obtain the solution, 

0T and 0S must be found. This was done by first evaluating equations (5.42) and (5.47) in 



 122

the limit as 1x →  and then eliminating the ln(…) term, between the resulting equations. 

In doing so we obtain the following expression for 0T , 

 ( ) ( ) ( ) ( )0 2 2 3 31 23
2 3v v p p p pT Q R L R L R L R Lφ φ

κ κ
= − − − − − − − −  (5.49) 

Thus we see that the sum of the non-dimensional current densities 0T  is completely 

determined by the values of the primary variables close to the boundaries. Relation (5.49) 

along with the definition of A can be used in (5.42) to obtain the value of current 

densities. However the values of , ,  and v vL R L Rφ φ are still unknown and can only be 

obtained by considering the solution to the boundary layers at the two ends. This we 

show in the next section. 

5.3.3.2 Boundary layer solution 

Let us consider the left hand boundary close to 0x = . We introduce the stretched 

coordinate, 

 x χζ=  (5.50) 

and write the field variables as,  

 ( ) 0 1
; ...v v vρ χζ χ χ= + +  (5.51) 

 ( )
0 1

; ...e e eρ χζ χ χ= + +  (5.52) 

 ( )
0 1

; ...φ χζ χ φ χφ= + +  (5.53) 

Using (5.51)-(5.53) in the differential equations (5.16)-(5.18) and performing the limiting 

process 0χ →  we get the governing equations for the zero order boundary layers at the 

left end, 
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 ( )
0 0

0 0 0

1 20 1 2  dv dv v v
d d

φκ κ
ζ ζ

= − + + −  (5.54) 

 
0 0

0
0  de de

d d
φ

ζ ζ
= − +  (5.55) 

 ( )
2

0 0

2
2d v e Q

d
φ
ζ

= − − −  (5.56) 

The first two equations (5.54) and (5.55) can be readily integrated to obtain, 

 ( ) ( ) ( )
L 20 0 02L L2
0 1

1 ln
2 2

v
Lv vv v

v
ρ κφ κ ρ ρ φ

⎛ ⎞⎛ ⎞= + − + − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (5.57) 

 
0

0

L
ln L

e

e φ φ
ρ

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
 (5.58) 

In obtaining the above two relations we have used (see Eq. (5.5)), 

 ( ) ( ) ( )0 0 0L L0 , 0  and 0 Lv ev eρ ρ φ φ= = =  (5.59) 

Now we may take the following limits on Eqs. (5.57) and (5.58) to see that, 

 ( ) ( ) ( )( )
L

0 2 2L L2
1

1lim ln
2 2

v
Lv v v v

v

L L L
Lφζ

ρ κφ κ ρ ρ φ
→∞

⎛ ⎞
= = + − + − +⎜ ⎟

⎝ ⎠
 (5.60) 

 ( )0
lim expL

Le ee L Lφζ
ρ φ

→∞
= = −  (5.61) 

as the following relations hold, 

 
0 0

0
lim lim

x
Lφζ

φ
→∞ →

= Φ =  (5.62) 

 
0 0

0
lim lim vx

v V L
ζ →∞ →

= =  (5.63) 

 
0 0

0
lim lim ex

e E L
ζ →∞ →

= =  (5.64) 

By using Eqs. (5.60),(5.61) and the first equation of (5.46) we obtain, 



 124

 ( ) ( ) ( )( )
L

2 2L L2
1

12 exp ln 0
2 2

L v
v e v v v v

v

L L L Q
L
ρ κρ κ ρ ρ

⎡ ⎤⎛ ⎞
− + − + − − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (5.65) 

The above equation may be solved for vL using an iteration procedure. vL  can then be 

used to obtain Lφ and eL from Eqs. (5.60) and (5.61) respectively. Thus we have the 

“jumps” in the values of the primary variables close to the boundary 

( L L,  and  L v v v eL L Lφ φ ρ ρ− − − ) that depend on the values at the boundary, 1κ and 2κ . For 

clarity the various regions in the domain and the variables valid at the boundaries of these 

domains are shown in Figure 5.4. 

At this point we note that, if the values of the primary variables satisfy the local 

electroneutrality condition at the boundary, 

 ( ) ( )2 = 2 0L L R R
v e v eQ Qρ ρ ρ ρ− − − − =  (5.66) 

Figure 5.4: Regions within the domain and boundary variables 
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then it is easy to verify from Eq. (5.65) and Eq. (5.61) that this is possible only if , 

, ,  L R L
v v v v e eL R Lρ ρ ρ= = = ,  and ,R

e e L RR L Rφ φρ φ φ= = = . This means that there is no 

boundary layer if the values of the concentrations satisfy LEN at the boundary and the 

values of the variables “close to the boundary” can be replaced with those “at the 

boundary” in Eqs. (5.42) and (5.47). The Method2 (BC2) of prescribing the boundary 

conditions described in section 5.3.2.2 belongs to this case. 

Now proceeding further, a differential equation governing the distribution of 

0
v can be obtained by differentiating (5.57) twice with respect to ζ and using the result in 

Eq. (5.56). We get, 

 
( )

00

2
2 10 02

0 0

2 2 0 1 2 2 00

exp
2 21 1 2 2

vv

dv d vv v Q
d dv vv

κκ

κ κ κ
ζ ζ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− +⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎝ ⎠⎝ ⎠− − + + = − −Λ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

(5.67) 

where 2
1exp

2 2

L L
L L v v
e v

ρ ρ κρ ρ κ
⎛ ⎞⎛ ⎞

Λ = +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. The non-linear differential equation (5.67) is 

subjected to the semi-infinite boundary conditions, 

 ( ) ( )0 0
0  and  limL

v vv v L
ζ

ζ ρ ζ
→∞

= = =  (5.68) 

In this work use a shooting method available in MATLAB to solve (5.67)-(5.68). In this 

method the boundary condition at infinity is specified at a finite value of ζ to first obtain 

a guess for the solution. This is then used as a guess for larger values of ζ until the value 

of the function at infinity converges so as to gain confidence that the infinity is large 

enough. For details please see [174]. The details of the solution profiles for the interior 

and the boundary layers are given in the following sections. At this point we mention that 
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the right boundary layer can also be analyzed in an entirely analogous manner by 

introducing the stretched coordinate  

 1 xζ
χ

− +
=  (5.69) 

and writing the various fields as,  

 ( ) 0 11 ; ...v v vρ ζ χ χ χ+ = + +  (5.70) 

 ( ) 0 11 ; ...e e eρ χζ χ χ+ = + +  (5.71) 

 ( ) 0 11 ; ...φ χζ χ ψ χψ+ = + +  (5.72) 

From this analysis we obtain vR , eR , Rφ  and the corresponding differential equation for 0v  

after noting that the following limiting conditions hold 

 0 0

1
lim lim

x
Rφζ

ψ
→−∞ →

= Φ =  (5.73) 

 0 0

1
lim lim vx

v V R
ζ →−∞ →

= =  (5.74) 

 0 0

1
lim lim ex

e E R
ζ →−∞ →

= =  (5.75) 

 

5.4 Distribution of field quantities and interactions 

5.4.1 Vacancies and electrostatic potential (Interior Solution) 

Table 5.1: Material properties and other constants of the problem 

 

mv 
 

me 
 2

RPO  
(atm) 

2
LPO  

(atm) 
L
vρ  R

vρ  E0 
(GPa) ν 

mol m2 J-1 s-1 

h 
(cm)

K 
10-14 

atm1/2 

β  
GPa 

Vm 
cm3/mol

10-21 1 0.05 0.15 275 0.3 10-13 10-10 0.1 8.2251 200 24 
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In this section we show the numerical results obtained from expressions (5.42) 

and (5.47). The electron concentration distribution in the interior ( 0E ) can be obtained 

from the LEN condition (5.41). We particularly examine the results (distribution of 

vacancies 0V  and the electrostatic potential 0Φ ) for three values of applied voltages 

(V=0, 0.75, 1.5V).  

 

Two values of vη (0and0.079) and β (0 and 200GPa) are considered to examine 

the effects of elasticity (that includes the effects of chemical expansion and the variation 

of Young’s Modulus) on the distributions. We further note that, if 0vη = then both 1κ  

and 2κ vanish. The boundary values and other material properties considered for this 

problem are shown in Table 5.1. 

Both the methods of specifying the boundary conditions are used and the results 

are plotted together for comparison. While using BC2, the vacancy concentration on the 

Figure 5.5: Distribution of deviation in vacancy concentration a) BC1 b) BC2 
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right end was taken as in Table 5.1 while the left boundary concentration was determined 

as described in section 5.3.2.2, Eq. (5.34). 

Figure 5.5 shows the distribution of the deviation in vacancy concentration from 

its stoichiometric value (0.05 for 10GDC) in the bulk of the material. Clearly, the non-

trivial differences in the distributions show that the effects of elasticity are noticeable. 

Further, we see that, at larger values of applied voltages, the influence of elasticity is 

weaker, and this is true for both the cases in Figure 5.6. 

From Figure 5.5a we can notice that close to the right boundary ( 1x = ) 

2

R 2110 atmOP −=  and the deviation in vacancy concentration here ( )0.05vρ −  must be 0.1. 

But from the figure we observe that this is not the case. This is due to the “jumps” in the 

values of the variables ( )R
v vR ρ−  as explained in section 5.3.3.2 due to the existence of 

the boundary layer. Further we note that, at this boundary, the value of the deviation 

depends on the local elasticity. With the elasticity effect the value is 0.94 while without 

Figure 5.6: Deviation in vacancy concentration for a large value of vη  
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it, the value is observed to be 0.92. Thus when elasticity effects are considered, the jumps 

from the boundary value of 0.1 are slightly lesser than without it. We also see that close 

to the left end, ( 0x = ), with or without the elasticity effects,
2

L 1atmOP = , the vacancy 

concentration has its stoichiometric value of 0.05 and the deviation is zero. Thus, when 

the boundary conditions are specified in such a way that they already satisfy LEN, no 

jump in the values at the boundary are observed or as mentioned earlier there is no 

boundary layer here. 

In Figure 5.5b we notice that at the right end the deviation is 0.1 as the electron 

concentration here is specified using the LEN condition (see Eq.(5.34)). Hence, there is 

no boundary layer here at the right end as per the discussion in section 5.3.3.2. On the left 

end, while 0.05 0L
vρ − =  for the case with 0vη = , this is not true for 0.079vη = . Although 

this is difficult to see in Figure 5.5b, the use of Eq.(5.34) to specify the concentration at 

the left end engenders a slightly larger value for the concentration at the left end for non-

Figure 5.7: Distribution of the deviation with β=200GPa a) BC1 b) BC2 
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zero vη . This is more clearly seen in Figure 5.6 for a larger value of 0.3vη = . Although 

such a large value of vη  is not typical for ionic solids like GDC, we have used it here 

only to illustrate the effect of specifying the boundary condition using BC2 and to convey 

what might be expected for larger values of vη (or more generally larger values of non-

dimensional parameter, 1κ ). 

Figure 5.7 compares the distribution in the deviation of vacancy concentration 

when both 1κ  and 2κ are non zero (i.e. 0.079vη = and 200GPaβ = ), to the case with 

1 0κ ≠  but 2 0κ =  (i.e. 0.079vη = and 0β = ). Clearly, there is no difference in the 

distribution. This shows that the variation of elastic modulus with stoichiometry does not 

significantly affect the distribution within the bulk of the material. This is true no matter 

how the boundary conditions are specified. Since β  has no effect, from now on we 

examine cases for only non-zero 1κ  values and let 0β = . 

Figure 5.8: Distribution of electrostatic potential a) BC1 b) BC2 
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Figure 5.8 compares the distribution of 0 RT
F

⎛ ⎞Φ ⎜ ⎟
⎝ ⎠

. Clearly the distributions are 

different when stress effects are considered, although this is true to a lesser extent when 

compared to the differences in the distribution of deviation in vacancy concentration. In 

this case, for Figure 5.8a the jumps suffered by the boundary values close to the right end 

are very small. The magnified view of the circled portion is shown as an inset. The jump 

values are 0.0025V for the case in which elasticity effects are neglected, while the jump 

values are 0.005V for the case that takes into account the elasticity effects. We can also 

notice that similar to the vacancy distribution we see that the electrostatic potential 

becomes less sensitive to the effects of elasticity at higher voltages. The jumps close to 

the boundaries (from the boundary value of 0V) are larger with elasticity effects 

considered than without them. 

From Figure 5.8b we see that at the right end the potential is at the specified 

boundary value of 0V, while at the left end the values are different when elasticity effects 

are taken into account. This is due to the fact that the electron concentration (from LEN 

condition) determining the potential here through Eq. (5.35) has different values with and 

without elasticity being considered due to Eq. (5.34). 

5.4.2 Effect on current-voltage relationships 

We have seen that the distributions of the defects and the electrostatic potential 

are affected by elasticity. In order to gauge the overall performance we look into the 

current voltage relationships. In Figure 5.9 the current densities vs. voltage plot is shown 

for the cases 0vη = and 0.079vη = for both the methods of specifying the boundary 

condition. Firstly we see that when the applied voltage is zero, electronic current 
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vanishes. The applied voltage for which the total current density vanishes within the 

MIEC is the open circuit voltage ( )OCV . 

Figure 5.9a shows that when stresses are considered in the formulation and the 

boundary conditions are prescribed as in Method1 the VOC does not change. However, we 

note that the voltage at which the ionic current vanishes ( )IV  increases by about 0.05V. 

This implies that the ionic current, for a given applied voltage is higher when stress 

effects are considered as can be observed in Figure 5.9a. Further we also notice that the 

total current density remains higher when elasticity is considered, at least until the VOC.  

The ratio of the total to the ionic current is called the current efficiency ( )Iη  and is 

defined as follows, 

 v

v

v e e
I

v

J D J D
J D

η +
=  (5.76) 

Figure 5.9: Current voltage relationships with boundary conditions a) BC1 b) BC2 
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The variation of Iη for various applied voltages for both methods of applying the 

boundary conditions is shown in Figure 5.10. Clearly we see that there is no reduction for 

the case with BC1 as both the ionic and electronic currents increase more or less 

proportionally. 

Now we turn our attention to Figure 5.9b. In this case, we notice that IV  remains 

the same whether or not stresses are considered. It can in fact be derived that, when the 

boundary conditions satisfy LEN condition, the voltage at which the ionic current 

vanishes is independent of elasticity effects [175]. This can be done by setting Jv=0 in Eq. 

(5.47) and then using Eq. (5.34) and (5.35). We also notice that the ionic current density, 

is higher when elasticity effects are considered. The total current density remains larger 

for non-zero vη for low applied voltages, and then begins to decrease. This results in a 

reduction of the current efficiency when stresses are considered (see Figure 5.10). 

The VOC, clearly decreases by about 14% when stresses are considered (Figure 

5.9b). Again, for cases when the boundary values satisfy the LEN condition, it can be 

shown that[175], 

 vOC IV t V=  (5.77) 

Figure 5.10: Current efficiency for various applied voltages <VOC a) BC1 and b) BC2 
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where, 

( )1 2
2

2

414 ln log ln
1 2 1 2 2(1 2 ) 4

R R R R
R L e v e

v v v L L L L
e v e

mm mQ POmt
m m m m PO

ρ ρ ρκ ρ ρ
ρ ρ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ +− −= − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
 

2
v

e

Dm
D

= −  

Thus a decrease in VOC and Iη is an indication of a poor electrochemical performance of 

the ionic solid when the effects of elasticity are considered.  

In concluding this section we point out that local stresses indeed affect the 

distribution of the electrostatic potential and the vacancy distributions for lower values of 

applied voltages. For higher voltages the effects of elasticity are small, as shown in 

Figure 5.6 and Figure 5.8. This behavior is seen irrespective of how the boundary 

conditions are applied to solve the MNPP system of equations. However when 

considering performance measures of the MIEC as a whole, it appears that the manner in 

which the boundary conditions are specified plays a vital role in determining whether 

stress effects are important or not. When Method 1 is used neither the current efficiency 

nor the open circuit voltage are affected. However, on using method 2 we notice that both 

the current efficiency and the open circuit voltage reduce, showing a decrease in the 

performance. Thus it might be important to consider the effects of elasticity in 

electrochemical modeling. 

5.4.3 Stress distributions 

As mentioned previously the distribution of the electrochemical fields (the 

vacancy concentration and the electrostatic potential) are identical for both the planar and 

the tubular configuration. The stress distributions are however quite different. 
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For the planar case, the stresses are given by, Eq. (5.12) and are plotted in Figure 

5.11 for three values of applied voltages. The distributions obtained by specifying the 

boundary conditions using method 1 (BC1) is used here. 

It can be seen that at the right end the deviation is maximum and the stresses are highest 

there. The stresses are close to -2.75GPa which are very high. This is on account of 

constraining the planar electrolyte as done shown in Figure 5.2. If the constrained are 

placed such that the electrolyte can bend about the XY plane, then the stresses will not be 

as high. 

For the tubular electrolyte, the expressions for the stresses cannot be obtained 

without solving the equilibrium equation given by Eq. (5.28). The solution can be easily 

obtained once the vacancy distribution is calculated; the displacement field solved from 

Eq. (5.28) is given by, 

Figure 5.11: Stress distributions for the planar case 
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 1 2 ˆ

1 1( ) ( )
1

x

v va
u x C x C h d

x
ν η ξ ρ ξ ξ
ν

+⎛ ⎞= + + Δ⎜ ⎟−⎝ ⎠∫  (5.78) 

where vρΔ  is the vacancy deviation from stoichiometry, and 1C  and 2C  are integration 

constants to be determined from the boundary conditions. To this end, we calculate the 

stress components from Eqs. (5.23)-(5.25) as, 
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Enforcing zero traction on the inner and the outer ends we obtain 
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where 

 
ˆ

( )
b

v va
dρ ξ ρ ξ ξ= Δ∫  (5.83) 

Substituting Eq.(5.82) back to Eqs. (5.79) - (5.81) yields the stresses in terms of the 

vacancy concentration, 
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Note that the stoichiometry independent Young’s modulus has been used here. Further, 

the non-dimensional limits of integration, are given as, ,a ba bh h= = .  

The radial stresses are negligibly small (in the order of few tens of MPa) and is 

not shown. The hoop stresses θθσ  is however significant and is shown in Figure 5.12. The 

calculations were performed for the electrolyte with a=0.3cm and b=0.4cm with the 

boundary conditions once again specified using method I (BC1). 

The stresses are still very high and in the order of a few GPa. The interesting 

aspect of the stress distributions for the tubular electrolyte is that the stresses change from 

being tensile in the inner radius (cathode) to being completely compressive at the outer 

radius (anode). This behavior was not seen in the planar case (where stresses where only 

compressive throughout). High tensile stresses at the inner radius suggest that the radial 

Figure 5.12: Hoop stresses for various values of applied 
voltages. 
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cracks which may exist as a result of manufacturing processes may grow and cause the 

electrolyte to fail during the functioning. 

To have a better appreciation for the magnitude of the oxygen vacancy induced 

stresses, the hoop stress induced in the electrolyte by the thermal mismatch between the 

cathode, anode and electrolyte of a typical tubular solid oxide fuel cell is shown in Figure 

5.13 . For this computation we have considered the electrolyte to be of the same 

dimensions and material (10GDC) as was done earlier. For the anode, Ni-GDC is 

considered with 26% porosity having a 50% volume fraction of Ni [176] and with an 

inner and outer radii of 0.2 and 0.3 cm respectively. The cathode is assumed to be made 

of Lanthanum manganite with 40% porosity [177] with inner and outer radii of 0.4 and 

0.6 cm respectively. Their thermomechanical properties are shown in Table 5.2. A 

uniform temperature increase of 7750C is considered to compute the thermal mismatch 

Figure 5.13: Comparing chemically induced and thermally induced 
stresses 
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stresses. 

Table 5.2: Thermomechanical properties of the electrodes 
Eeff 

(Cathode) 
GPa 

Eeff(Anode) 
GPa 

Cathodeν
 

Cathodeν
 

CathodeTCE  
610− K-1 

AnodeTCE  
610− K-1 

116 168.35 0.3 0.3 9.36 10 
 

We see from Figure 5.13 that the stresses induced by oxygen vacancy are in the 

same order or even larger magnitude as those induced by thermal mismatch. Thus it is 

important that both stresses should be considered in the design and reliability analysis of 

tubular fuel cells. Unfortunately, only the thermal mismatch stresses are considered in 

current cell designs. This inevitably leads to significant error and can cause the failure of 

the electrolyte. 

From the results of this section, one can conclude that non-stoichiometric vacancy 

concentration generates significant mechanical stresses in a tubular cell. In return, these 

stresses affect adversely the electrochemical field quantities. Therefore, it is important to 

consider the effects of coupling between the electrochemical and mechanical fields in 

designing tubular solid oxide fuel cells, when the electrolyte has a high CCE such as 

GDC. 

In the next section we plot the boundary layer solutions of the MNPP system. 

Once gain the ensuing solutions are the same for both the tubular and the planar cases. 

5.5 Boundary layer distribution and charge layers 

In the previous section the solutions in the bulk of the ionic solid were discussed. 

We now discuss the boundary layers which are solutions to the system (5.67) subjected to 

the boundary conditions given by(5.68). This gives the distribution of vacancy 

concentration. The potential and the electron concentration distributions can be obtained 
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from Eqs. (5.57) and (5.58) respectively. As we mentioned earlier, there are no boundary 

layers close to the left end when BC1 is used, and at both the ends when BC2 is used, as 

the values of the concentrations at these boundaries satisfy the LEN condition. The 

distribution of the vacancy concentration, electron concentration and the potential close 

to the right boundary is shown in Figure 5.14a b and c respectively. The quantities are  

plotted vs. the non-dimensional parameter ζ  and the physical dimensions may be 

obtained from Eq. (5.69). We clearly see that the effects of considering elasticity in the 

formulations play a role in altering the value of the primary variables in the bulk of the 

material. As observed before, the effect of considering the variation of elastic modulus 

with stoichiometry ( )β  does not affect the results as much as considering chemical 

expansion does. 

To look at the net charge distribution in the boundary layer, the equivalent charge 

is plotted in  Figure 5.15 With a dielectric constant of 35 [157] the characteristic length  

Figure 5.14: Boundary layer solutions of a) Vacancy concentration b) Electron 
concentrations c) Electrostatic potential 



 141

Dχ  is 118.44 10 m−× . We see that for the stress independent case ( )0vη = , at about 7χD 

≈0.6 nm from the right boundary the equivalent charge is zero and the LEN condition 

begins to be valid. For the case when stress effects are considered ( 0.079vη =  and 0β = ) 

this happens at about 10χD ≈0.844 nm and finally when even the elastic modulus varies 

with stoichiometry ( 0.079vη =  and 200GPaβ = ) the distance is still about 0.844 nm. 

We can see from Figure 5.15 that there is a penetration of the charge layer into the 

material. This is in fact more pronounced if elasticity effects are considered. The surface 

charge per unit area ( )Θ  in this region can be obtained by performing the following 

integral, 

 ( )0 0 02D

m

F v e Q d
V
χ ζ

−∞
Θ = − −∫  (5.87) 

For the three cases the value of Θ is shown in the figure. Although the absolute 

magnitude of the surface charge densities is rather small we can see that there is a 

Figure 5.15: Equivalent charge distribution in the 
boundary layer 
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substantial enhancement in the charge storing capacity among the three cases. Although 

the small extent of penetration of the charge layer is not of much consequence for macro 

sized domains, we can ascertain that at smaller sizes these effects can be significant and 

can lead to larger charge storing capacities of the ionic solids thus finding useful 

applications in capacitors.  

Recently there have been several efforts to develop new materials with larger 

charge storage capacities when compared to existing ones[178]. Other studies focus on 

altering the properties of the material itself, like for example the ionic conductivity [179]. 

These ideas are almost always addressed in light of grain boundary engineering as a 

means to alter the material’s behavior, either by modifying grain sizes and reducing them 

to the nano-regime or by altering the chemical behavior of the grain boundaries by 

doping or sometimes both. The current work, we believe motivates the consideration of 

elasticity as a means to alter material behavior. We have shown that the self stresses 

induced in the material due to chemical eigenstrains can alter the electrochemical 

behavior by affecting the distribution of the field quantities or by affecting the 

performance itself. It may be possible that the presence of external stimuli in the form of 

applied loads, the behavior of the material can be improved or deteriorated.  

Another area where the ideas presented here can be useful is in considering 

coherency strains (which are also eigenstrains) occurring between adjacent grains of 

nano-crystalline materials. An analogous treatment of the problem may be possible. This 

can be important when the excess energy associated with the interfacial elasticity arising 

as a result of incoherency, spatially varies and contributes to the non-configurational part 
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of the chemical potential [180]. This effect will probably be more pronounced for 

materials with larger values of vη (CCE) and β  values.  

5.6 Conclusions 

Stress dependent MNPP equations have been introduced and solved using a 

combination of analytical and numerical methods. 10GDC was considered as the material 

of interest. The analytical method mainly involved solving the differential system by 

asymptotic expansion and using the method of matched asymptotes due to the existence 

of boundary layers. Implicit analytical expressions are obtained for the interior solutions 

while a differential equation is presented and solved numerically for the boundary layer.  

The results of this study indicate mainly two important results with regards to the 

bulk. Firstly, the distribution of primary variables when stress effects are considered 

shows a significant difference when compared to the stress independent case. Secondly, 

the stresses induced are very high that can lead to the failure of the electrolyte. In 

particular, the tubular case showed tensile hoop stresses at the high partial pressure side 

which can cause the cracks to grow radially causing the failure of the electrolyte. 

With respect to the boundary layer we see that there is a greater penetration of the 

space charge into the material when stress effects are included. These effects clearly 

motivate the use of elasticity to enhance the charge storage capacities of ionic solids in 

addition to other existing methods that use grain boundary engineering.
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CHAPTER 6. EFFECT OF INTERACTION ON MECHANICS 

6.1 Chapter abstract 

In this chapter, the interior 2-D MNPP system is solved using the finite element 

method through a User ELement subroutine for the ABAQUS commercial finite element 

code. 10GDC with flaws (cracks and voids) of various configurations subjected to 

electrochemical boundary conditions is studied. Two specific crack configurations are 

considered, namely vertical and horizontal crack in the center of the domain. 

The results from the solutions are then post-processed for the stresses and the 

strain energy release rates. The material force approach is used for determining the strain 

energy release rate, which is a generalization of the conventional J-integral. These 

calculations are based on the occurrence of other conservation laws in mechanics in 

addition to the equilibrium equations. 

The main conclusions for the vertical crack configurations suggest that the stress 

distributions in the vicinity of the crack are very high, leading to possible failure of the 

electrolyte. Further, the crack always opened for all the values of applied voltages. The 

variation of the strain energy release rate with applied voltage shows a maxima for an 

applied voltage of about 0.6V. The strain energy release rates are also plotted as a 

function of the difference in electrostatic potential rather than the applied voltage. This is 

done to allow the development of an expression for the strain energy release rate as a 

function of the applied electrochemical boundary conditions (partial pressure and applied 

voltage). This expression can be used by designers for specifying limits on safe operating 

voltages if vertical crack configurations are unavoidable as a result of manufacturing.  
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For the horizontal crack configurations the results also suggested higher values of 

stresses at the crack tip. However, in this case, the stresses are tensile only when the 

applied voltage is less that 1V. For voltages greater than 1V the stresses were 

compressive, thus closing the crack. The strain energy release rate is plotted against the 

electrostatic potential at the boundary. These plots reveal that the right crack tip (Crack 

tip that is closer to the anode or low partial pressure side) is the most sensitive region 

indicating that the crack would grow into the material towards the anode. Similar to the 

vertical crack configuration, an expression is obtained for the strain energy release rate as 

a function of the applied electrochemical boundary conditions for use in design 

specifications. 

6.2 Introduction 

In this chapter we discuss the role of interactions between stresses and defect 

transport on mechanical behavior. In particular, we examine two kinds of flaws that are 

common in electrolytes, namely cracks and voids. We examine the stress distributions 

near the crack tip and the void. We also calculate the strain energy release rates for the 

cracked electrolyte sample that is subjected to electrochemical boundary conditions. 

Three different crack lengths and two configurations for each length are analyzed. The 

issue of stress-defect transport interactions will be handled using the framework 

developed in chapter 3. Unlike the previous chapter, no simplifications with regard to the 

form of el
αμ will be made. Under such conditions defect transport and elasticity are 

completely coupled. Analytical solutions as in the previous chapter become impossible 

due to the coupled nature of the differential equations. To be precise, the defect transport 

equations and the mechanical equilibrium equations must be solved simultaneously to 
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obtain a solution for the displacement field, the concentrations of the defects and the 

electrostatic potential. The main objective of this chapter is to numerically study the 

effects of such interactions on the strain energy release rates (for the cracks) and stress 

distributions (for both void and cracks) in a GDC specimen. 

6.2.1 Review of pertinent literature 

Some of the articles mentioned in this section have probably been cited previously 

in this thesis, especially in the previous chapter. Here, we cite them again for the sake of 

completeness and to provide a smooth transition in to the subject. Many studies have 

been performed to numerically predict the distribution of defects [99, 168, 181, 182] and 

electrostatic potentials in ionic solids. Separate studies have also been conducted to 

analyze stresses arising as a result of temperature gradients [19] and non-stoichiometry 

[94, 171]. In [85] non-stoichiometry generated stresses was considered by neglecting the 

drift component of diffusion because of which the electrostatic potential does not enter 

the formulation. As a result, electrical behavior and coupling between electrical and 

mechanical behavior cannot be studied. All the above mentioned works while providing 

significant insight into the defect transport or the mechanics problem, neglect coupling, 

which can be important especially for a material showing large chemical expansion. In 

addition it is also crucial to realize that some of these works deal with one dimensional 

defect transport. While this may be appropriate for systems without geometric 

singularities, it is not for those that have cracks due to the complicated nature of the 

stresses in the vicinity of the crack tip. 
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6.2.2 Contribution in this work 

To the best of the author’s knowledge, no study has been performed to assess the 

fracture severity under defect transport conditions, nor have studies been performed to 

analyze the consequences of interactions occurring between defect transport and elasticity 

on the strain energy release rate. It is well known that ionic solids in solid state devices 

will have manufacturing flaws or other flaws that arise as a result of stresses generated 

from thermal mismatch between the electrolyte and the electrodes. Thus it is crucial to 

understand and also quantify the mechanical response when a solid with a flaw like a 

crack or a void is subjected to electrochemical loading.  

Calculation of strain energy release rates in this work is based on the material 

force approach and is founded on the concept of forces on elastic singularities first 

introduced by Eshelby [67]. The problem at hand has three types of elastic singularities 

[183]. Firstly, point defects or vacancies which cause local eigen expansions, secondly 

variation of Young’s modulus with defect concentration causes material inhomogeneities 

and thirdly a geometric singularity due to the presence of the crack tip. The advantages of 

using the material force approach in this problem over the more common J integral [184] 

or the virtual crack extension approach [185] is that one need not know a-priori the crack 

growth direction or perform multiple finite element analyses [186] for each crack length 

in order to determine the strain energy release rates. Also, the presence of material 

inhomogeneities causes the J integral to be path dependent [187]. In analyses such as 

those performed in this work, the stress distribution in the vicinity of the crack tip is 

complicated, and knowledge of the crack growth direction can be difficult to assume. The 

material force approach requires post processing of the finite element solutions [188-190] 
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and gives a vectorial representation of forces on the crack tip [191]. The strain energy 

release rate is then the magnitude of this vector, while the ratio of its components gives 

the direction of crack growth. 

6.3 Differential equations and boundary conditions 

6.3.1 Differential equations – Interior equations 

The differential equations used in this chapter have been stated in chapter 3, 

section 3.5.3 and the Eshelby stress dependent chemical potential as in Eq. (3.68) is used. 

However, owing to the complicated nature of the problem we make several assumptions 

in solving the coupled set of equations in a two dimensional domain. 

1) Firstly as in the previous chapter, we neglect the presence of any interstitials or holes 

(the point defect) in the system. This has been shown to be a valid approximation in ceria 

if the partial pressure of oxygen is not more than 1atm [155]. Therefore in Eq. (3.95) and 

Eq. (3.96) we may set, 0O hμ μ∇ = ∇ = and obtain, 

 ( )10
2 v v vD

FRT
ρ μ−

= ∇ ∇i  (6.1) 
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2 e e eD

FRT
ρ μ−
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On using the expressions for vμ and eμ from Eq. (3.61)-(3.64), allowing the dilute 

approximation ( αλ =1) and assuming that only vacancies cause chemical expansion 

( )0e
e ijklcη = = we obtain the 2-D defect transport equations as,  
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Note that, for an isotropic material we have,  
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E is given by Eq. (5.19) and cJ by Eq. (3.26) and Eq. (3.27).  

2) We solve the system of equations Eq. (6.3)-(6.4) only in the bulk/interior of the 

domain. Thus the Poisson’s equation (Eq. (3.97)) is replaced by the LEN condition 

introduced in the previous chapter (see Eq. (5.7)). In other words we have in Eq. (6.3)- 

(6.4), 0
v Vρ = and 0 02e E V Qρ = = −  as in section 5.3.3. In this manner the requirement 

to modify numerical schemes to capture the steep gradients in the field variables near the 

boundaries is avoided.  

6.3.2 Boundary conditions 

The mechanical boundary conditions will be clear from the next section. The 

manner of specifying boundary conditions for concentrations of vacancies and the 

electrostatic potentials requires some comments.  

As mentioned in chapter 5 (BC1), “at the boundaries”, for the boundary reactions, 

continuum quantities are difficult to describe. However, “close to the boundaries”, in the 

differential equations for the boundary layer (Eq. (5.65)) we were able to bring in the 
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stress dependence due to the simple form of the stress dependent chemical potential. Not 

only were we able to specify the boundary conditions to solve the interior problem 

( ),, ,v vL L R Rφ φ , we were also able to solve for the boundary layer distributions (see 

Eq.(5.67) ). In this chapter since we use the complete form of the stress dependent 

chemical potential (Eq. (6.5)) we are unable to obtain any analytical expression to specify 

the boundary values to solve for the interior system. To handle this we make the 

following assumption. Since we are interested in a crack that is located far away from the 

boundary region, we first assume that close to the boundaries (where we have to specify 

the concentrations and the potentials) all fields are one dimensional. We also neglect the 

effect the stresses have on the boundary layer equation (i.e. 1 2 0κ κ= = for Eq. (5.54)). In 

essence we use the method described in section 5.3.3.2 (Eq.(5.65)) with 1 2 0κ κ= =  and 

its analogue for the right end) in conjunction with BC1 to specify the boundary values for 

the interior system. 

6.4 Geometrical considerations and finite elements 

6.4.1 Geometry, flaw configurations & boundary conditions 

6.4.1.1 Electrolyte and crack geometries 

As a first step in an effort to study fully coupled defect transport and mechanics in 

a MIEC, we consider a stand alone GDC (without the accompanying electrodes) for the 

study. Under the applied electrochemical boundary conditions the steady state defect 

distribution, electrostatic potential distribution, stress distributions are governed by Eqs. 

(6.3), (6.4), LEN and the equilibrium equations of mechanics (Eq. (3.14)).Then the strain 

energy release rates for specific crack configurations can be post processed from the 
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resulting solutions. We show how variation of crack length and applied external voltage 

bias affects the values of the strain energy release rates. Then, the stress distributions in 

the vicinity of the void are studied for various values of applied voltages. 

Several configurations of cracks and of the electrolyte itself can be considered. In 

this work we primarily deal with configurations of the electrolyte used in planar Solid 

Figure 6.1: Crack configurations and boundary conditions (a) Vertical (b) 
Horizontal cracks 
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Oxide Fuel cells (i.e. the planar electrolyte). Cracks in such configurations mainly occur 

at the interfaces between the electrodes and the electrolyte due to thermal mismatch 

effects [19] (also see Figure 7.2). Other cracks or voids may be present within the 

material and may form as a result of manufacturing chemical strains or other loadings. 

We will study only the latter in this work. The former type of flaws may also be studied 

by extending the methods developed in this work. 

Figure 6.1a and b shows the geometry, boundary conditions and the crack 

configurations while Figure 6.2 shows the configuration with the void. Further, it is 

assumed that thickness of the sample (l) is 0.001m, and the cracks and the void penetrate 

the entire width (b) of the sample. Since in generalb l , a state of plane strain is 

assumed ( )0zzε =  reducing our analysis to the XY plane. We have further taken the 

height of the sample to be 2l (not shown in the figure). Vertical and horizontal cracks of 

Figure 6.2: Void configuration and boundary conditions 
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total lengths 4 4 40.4 10 m,0.8 10 m and 1.0 10 m− − −× × × are considered to study the effect of 

varying crack lengths while the applied voltage is varied between -3V and +3V. The void 

is considered to have a diameter of 41.0 10 m−× as shown in Figure 6.2. 

6.4.1.2 Boundary conditions 

Mechanical 

The mechanical boundary conditions are evident from Figure 6.1 and Figure 6.2. 

The left end is roller-supported so that 0xu = there. The bottom end is such that 0yu = . 

The other surfaces including the crack faces and the void surfaces are traction free. 

 

Electrochemical 

GDC is subjected to differential partial pressures on either side as shown 

with, 2 2
R LPO PO  (where the super scripts L and R denote Left and Right) and external 

voltage is applied. The concentrations at the boundaries are specified using BC1 (section 

5.3.2.1) in conjunction with the arguments presented in section 6.3.2. The other two 

sides, the crack faces and the void surface are considered, so that the component of the 

currents normal to these faces is zero (insulating), allowing us to use symmetry as shown 

in the figures. 

6.4.2 Finite element considerations 

The governing differential equations are solved using the finite element method 

[192] through an isoparametric user element subroutine for the ABAQUS commercial 

finite element code [193]. ABAQUS requires the element’s contribution to the Jacobian 

of the resulting algebraic equations resulting from the finite element discretization. 

Although quadratic and linear, quadrilateral and triangular element libraries are 
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developed, we have used quadratic, quadrilateral elements for all the simulations to 

achieve higher accuracy. The mathematical details of the finite element model and the 

Jacobian are shown in APPENDIX E. A sample input file that can be used with the user 

element is provided in APPENDIX F. 

The vertical cracks are modeled as a seam so that different nodes with the same 

coordinates are created on the crack faces (see Figure 6.3). By this method the continuity 

of the primary variables is not enforced across the crack faces, and the crack opening can 

be modeled. However, if the cracks close, contact between the disjointed crack faces 

must be enforced. In this analysis, we have mostly considered cases where the 

deformation results in opening the vertical crack, and no contact modeling is needed.  

The modeling of the horizontal crack is straightforward and simply involves 

specifying a traction free surface as mentioned in section 6.4.1.2. As will be mentioned 

later, we found that there were values of applied voltages for which the horizontal cracks 

closed. Since we have not modeled the entire geometry (but used symmetry), the contact 

that might occur between the two faces of the horizontal crack is not captured. Hence 

Figure 6.3: Vertical crack modeled as a seam 
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after the analysis, the reports of the strain energy release rates are given only for those 

values of applied voltages for which the cracks remained open. 

The primary nodal unknowns in the problem are, the concentration of vacancies 

( 0V ), the electrostatic potentials φ  and the two displacements fields ux and uy. Once the 

finite element equations are solved, the obtained primary unknowns are post-processed 

for the secondary variables (stresses, strain, currents, material forces etc.) using 

MATLAB. At this point we note that we are aware of crack tip singular elements that are 

used to capture the 1/ r  singularity existing at the crack tip exactly [194, 195]. 

However, we found on using these elements that the analyses had difficulty in converging 

to a solution, which we attribute the high degree of non-linearity due to the coupling in 

the problem. To this end we have used a fine mesh in the vicinity of the crack tip to 

capture the gradients in the solutions as accurately as possible. 

6.4.3 One way vs. two way interactions 

As indicated, the purpose of this chapter is to study the effect of stress defect 

transport interactions on the stress distributions and the strain energy release rate of 

cracked ionic solids that are subjected to electrochemical driving forces. Two methods of 

performing the coupled analysis must be detailed. In one method, we may first solve the 

defect transport equations, completely independent of elasticity (i.e. independent of the 

equilibrium equations of mechanics). The resulting defect distributions (and hence the 

resulting eigenstrain distributions) can be used as an input to the constitutive equations of 

linear elasticity. The mechanical equilibrium equations can then be solved to predict the 

ensuing mechanical fields and responses. Clearly in this case, the differential equations 

governing defect transport are solved independently of the mechanics equations and may 
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be said to represent a “one way” coupling. This is the solution methodology that is 

currently being followed to perform stress analysis of ionic solids while still considering 

the effect of chemical strains. However, we have seen that elasticity can have a 

contribution to the non-configurational part of the chemical potential, and in this case 

both the governing differential equations (defect transport and mechanics) are fully 

coupled and will be referred to as the “two way ” coupling. In this chapter the effect of 

performing a “one way” interaction is studied and the results are compared to those from 

a “two way” interaction.  

6.5 Material forces and strain energy release rates 

6.5.1 The concept of material forces 

A detailed introduction to material forces is beyond the scope of our current 

discussion. For this, the reader is referred to the fundamental works of Eshelby [67, 89]. 

Here, we give a very brief description of the material forces approach and the use of the 

finite element method to calculate these forces. We begin by stating that several 

conservation laws appear in mechanics [183]. Conservation laws are divergence 

expressions occurring naturally in an associated physical problem. In mechanics, under 

static deformation one encounters the most common conservation law, which is the 

vanishing of the divergence of the second order stress tensor or (equilibrium) when there 

are no body forces acting. If body forces are present, then the divergence equals the 

negative of the body force [88] (also see Eq. (3.18)).  

  ∇• 0σ + f = 0  (6.8) 

In the above expression, 0σ  is the first Piola-Kirchhoff stress tensor, while f is the 

body force. The choice of the stress tensor (Cauchy or Piola Kirchhoff) depends on the 
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problem at hand. Here, we use this choice for convenience, as the expressions are more 

condensed. Other conservation laws also emerge from elastostatics but are however 

obtained only if (6.8) is satisfied. (This is so because Eq. (6.8) is also the Euler-Lagrange 

equation of the system, see, [183] for details). 

The relevant conservation law in our case is the vanishing of the divergence of the 

material stress or Eshelby stress tensorΣ  introduced in chapter 3. 

 0∇•Σ =  (6.9) 

However, similar to 0σ , Eq. (6.9) holds only as long as there are no material body 

forces. Material body forces are caused by singularities such as inclusion, defects, cracks, 

material inhomogeneities etc. Hence, when such singularities are present, we have, 

 ∇•Σ = M  (6.10) 

where in Eq. (6.10), M is the material body force vector.  

The Eshelby stress Σ  is a function of 0σ  and the deformation gradient F through 

the relation, 

 T 0Σ = WI - F σ  (6.11) 

where W is the strain energy density per unit volume of the reference configuration, and I 

the identity tensor. Note that the Eshelby stress as introduced in chapter 3, (Eq. (3.61)) 

has a slightly different form owing to the approximations involved in Eq. (3.33) i.e. 

expansion of the elastic strain energy about stoichiometric concentrations and neglecting 

higher order terms in the concentrations. Thus the derived Eshelby stress in chapter 3 

may be viewed as that for dilute defect concentration. If we do not make this 

approximation then, the form attained for Eshelby stress is given by Eq. (6.11). Eq. (6.9) 

or Eq. (6.10) may be viewed as additional conditions that the deformation and stresses 
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need to satisfy if Eq. (6.8) holds. Therefore, in a typical mechanics problem, once we 

have solved for the stress field by solving equation Eq. (6.8), we may check if Eq. (6.9) is 

satisfied. If it does, then we may conclude that no singularities exist in the material. 

Otherwise, the resulting vector M is the body force caused due to the singularity, and 

integrating the components of M around a singularity (a crack tip for example) gives the 

actual material force. 

For infinitesimal strain theory, the difference between the reference and the 

current configuration is not important, and we may approximate 0σ  as the Cauchy’s 

stressσ . Thus we may write, when no body forces are acting, Eq.(6.8) and Eq.(6.11) as 

 ∇•σ = 0  (6.12) 

 ( )T
∇Σ = WI - I + u σ  (6.13) 

where u is the displacement field. Using Eq. (6.12) and Eq. (6.13) in Eq. (6.10) we have, 

 ( )T∇• ∇ =WI - u σ M  (6.14) 

To see how M can be related to the Rice’s J integral or the strain energy release 

rate, see APPENDIX G. In general the strain energy release rate is given as, 

 G
b

=
MF

 (6.15) 

where, 

 ,
M

i i ij j
V V

F M dV dV= = Σ∫ ∫  (6.16) 

and the direction of crack growth will be opposite to that pointed by FM (see [187]).  

6.5.2 Finite elements and material forces 

For 2-D, Eq.(6.16) reduces to, 
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 ,
M

i ij j
A

F b dA= Σ∫  (6.17) 

The integral on the RHS of Eq. (6.17) may be easily computed using the common gauss 

quadrature procedure often used in the finite element method. Basically, the integral is 

computed over each finite element to obtain the nodal material forces. This is then 

assembled to obtain the global material force vector at all the nodes. This process is 

represented as [186], 

 ,
,

11
det(J)

e nN N
M NODES

i ij j i j
n i je

F b w wψ
==

= Σ∑∑∑∪  (6.18) 

where, 

∪ denotes the assembly procedure 

nN is the number of nodes per element 

eN is the total number of elements 

wi and wj are the Gaussian weights 

, jψ is the derivative of the shape function evaluated at the Gauss points of the finite 

element 

det(J)  is the determinant of the Jacobian that transforms the integral from the master to 

the actual finite element. 

Thus, once FM is calculated at the nodes, G is calculated at the crack tip from Eq. 

(6.15).  

At this point a few comments related to the materials force approach and finite 

elements is in order. As noted earlier in the introduction, the problem has several kinds of 

singularities. Hence, whether or not a crack is present, material forces will always exist in 

the problem under consideration. We will use this method only in light of the crack tip in 
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the domain. Forces due to other singularities are calculated but do not have a physical 

interpretation like the crack tip forces. All they indicate is that the material is 

inhomogeneous and that point defects are present. 

Spurious material forces are also known to occur when the finite element method 

(FEM) is used to solve the differential equations [190]. This is because FEM only 

approximates the solution. This fact has been used for structural optimization and 

adaptive remeshing procedures [188, 196]. In this work, no adaptive mesh refinement is 

performed, as it is impossible to separate the spurious material forces from the actual 

ones due to the various singularities.  

We hence conclude this section by reiterating that the material force analysis is 

only a post processing routine and can be easily performed after the direct problem is 

solved. 

6.6 Results and discussion- Crack configurations 

The field equations introduced in section 6.3 subjected to boundary conditions as 

described in section 6.4.1.2 were solved using the FEM. The material properties used are 

similar to those in Table 5.1. First we discuss the distribution of the various field 

quantities like defect concentration and stresses for three values of applied voltages (3,-1, 

+3V) to describe general features of the problem. The electrostatic distributions are not 

shown, as they do not directly affect the mechanical behavior. Moreover, the behavior of 

the strain energy release rate curves for various applied voltages is more intuitive by 

examining the distribution of the vacancies for the applied voltages. For the distribution 

of the field quantities we show the results only for the crack length 41.0 10 m−× . Other 
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crack lengths showed a qualitatively similar behavior. Then the strain energy release rate 

values for the various cracked configurations for all the applied voltages are shown.  

6.6.1 Vacancy concentration & crack tip stresses 

6.6.1.1 Vertical crack configuration 

Figure 6.4 shows the distribution of vacancies for three values of the applied 

voltages (+3, -1 and -3V) for the vertical crack (Figure 6.1a) configuration. This figure is 

to give an idea as to how the distribution actually looks. First, one can observe that the 

concentration distribution varies monotonically with applied voltage just like the 1D case 

analyzed in the previous chapter. For large negative voltages, the distribution in most of 

the domain is uniform, and it attains higher gradients only in the vicinity of the low 

partial pressure side (Anode side for a fuel cell). For large positive voltages the exact 

opposite seems to be happening, where larger gradients are found in the higher partial 

Figure 6.4: Distribution of vacancy concentration for three values 
of applied voltages 
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pressure side (Cathode in a fuel cell). For intermediate voltages, the distributions are in 

between the two extremes.  

A discontinuity in vacancy concentration appears due to zero current conditions at 

the crack faces. This manifests as the disturbances in the contour plot (Figure 6.5) very 

close to the crack tips as shown. Far away from the cracks, the vacancy concentrations 

reaches the far field values and can be analyzed more or less using a 1-D approximation. 

All three plots show the same region ( 51 10−− × X<  51 10 m−< × and 45 10−− × Y<  

41 10 m−< − × ) very close to the crack.  

 

Figure 6.5: Filled contour plots of vacancy concentration near the crack 
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 Figure 6.6 shows the stress distributions. We observed that the magnitudes of the 

stresses were high when the applied voltage was 1V. For other voltages the stresses 

showed qualitatively a similar behavior, although the magnitudes of the stresses were 

smaller. For this reason only the stress distributions for an applied voltage of 1V are 

shown. We can see that the most important component is the xxσ component. It has a 

value as high as 900MPa in the vicinity of the crack tip. The other components, although 

Figure 6.6: Stress distributions near the crack when applied voltage is 1V 
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of a smaller magnitude in comparison to xxσ  are still quite high (especially yyσ ). Further, 

for the vertical crack configuration, the stress component xxσ  was always positive for all 

the values of the applied voltages. This meant that the cracks always opened in this case. 

This was not true for the horizontal crack configuration, as will be shown in the next 

section.  

6.6.1.2 Horizontal crack configuration 

The vacancy distribution profiles for the three values of applied voltages are 

shown in Figure 6.7. The profiles are very similar to the vertical crack configuration 

except near the crack. Due to the zero current conditions in the face of the crack, there are 

discontinuities in the vacancy profile. The disturbances that manifest as a result are 

shown in Figure 6.8. 

 

Figure 6.7: Vacancy distribution for three values of 
applied voltages 
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Clearly we see that the disturbance in the contours is not severe for the -3V and 1V cases. 

However, it is quite high for the 3V case. Although a direct analysis for this behavior is 

difficult owing to the coupled nature of the problem, it could be said that at high voltages 

the deviations in the vacancy concentrations are large and that creates higher stresses 

which in turn alter the vacancy concentrations even more significantly near the crack tips.  

Figure 6.8: Filled contour plots of vacancy concentration near the crack 
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Further, for this crack configuration, the crack remained open when the applied 

voltages were between -3 and 1V. For higher values of applied voltages the crack closed. 

This can be seen from the distributions of yyσ in Figure 6.9 near the crack tips for the 

three values of the applied voltages. Clearly when the applied voltage is -3V, the stresses 

are close to 1GPa, especially near the right crack tip. When the voltage is 1V, the stresses 

are compressive in the right tip, while negligibly small in the left tip. For 3V, the stresses 

are compressive on both the crack tips. These results basically point out that if a solid 

electrolyte has a central horizontal crack as considered, then under applied 

Figure 6.9: Distribution of yyσ (Pa) for three values of applied voltages 

 



 167

electrochemical conditions, the crack is more likely to grow towards the anode or the low 

partial pressure side. This will also be clear when we examine the strain energy release 

rate results for the horizontal crack configuration.  

6.6.2 Strain energy release rates (G) 

The material forces at the crack tips and the strain energy release rates were 

calculated for each of the crack lengths and the various applied voltages, using the 

method described in section 6.5.2. For both the crack configurations we show the G vs. 

Lφ (see Eq. (5.35)) instead of the more intuitive G vs. V (applied voltage) curve. Note 

that Lφ is the dimensional (physical) electrostatic potential on the left end and 0Rφ = . 

Once the function is fit in this manner, we may use the relation given by Eq. (5.35) along 

with the mass action law (Eq. (5.30)) to arrive at an expression for G completely in terms 

of the applied boundary conditions. This is done with the same idea as is usually done in 

traditional fracture mechanics where, for example, G is related to remote loading and 

geometry. The expression so developed can then be used directly by designers while 

building fuel cell components in order to specify safe working conditions for known 

crack geometries. It can also be used to assess mechanical reliability with the knowledge 

of just the crack length, location and the boundary conditions (applied partial pressure 

and external voltage).  

In the next sub-section the strain energy release rate values are plotted and the 

results are discussed. As mentioned earlier (see section 6.4.3), we compare the results 

obtained using a two way interaction with that obtained from performing just a one way 

analysis. The error is plotted against various values of applied voltages for both crack 

configurations. 
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6.6.3 Vertical crack 

The G vs. Lφ  curve for the vertical crack configuration is shown in Figure 6.10. In 

the figure the dots indicate the results obtained using the two way interaction, while the 

triangles from considering only one way interactions. The lines represent the fitted curve 

(to two way interaction). We clearly see that the strain energy release rate curve shows a  

maxima, at approximately 1.06L Vφ ≈ −  (which corresponds to an applied voltage of 

0.6V) for all the three crack lengths. For large negative or positive values of applied 

voltages, G seems to decrease to zero. This behavior may be explained on the basis of the 

observed nature of the variation of the distribution of the vacancy concentrations with 

applied voltages. We have seen that, for large positive or negative voltages the vacancy 

Figure 6.10: Strain energy release rate curves (Vertical crack configuration) 
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concentration attains higher gradients only close to either end (cathode/anode) and is 

more or less uniform in the central domain where the crack is present. Due to this, the 

strains and hence stress magnitudes are small near the crack tip for large 

positive/negative voltages. For certain voltages the distribution is such that the gradients 

are large (see V=1V case) resulting in large stresses. This is the reason for the bell shaped 

curve that is observed. We also observe that for a given applied chemical boundary 

condition, G increases with crack length.  

The results obtained from one way interactions (the triangles) consistently lie 

below the results which are obtained using the two way interaction. The error incurred in 

calculating G using only; a one way interaction for the three crack lengths is plotted in 

Figure 6.11. The error is as high as 45% and as low as 5% in the voltage range studied. 

Clearly, this indicates that, the two way interaction, (in other words the stress-defect 

transport interactions) has a significant effect on G. It also means that the design of the 

ionic solid with a vertical crack configuration subjected to electrochemical loading as in 

this study would be safer if the design analysis was performed using the two way coupled 

theory rather than the routinely performed one way analysis.  

Figure 6.11: Error incurred in performing a one way analysis 
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Figure 6.12 shows the material force at the crack tips for the applied voltage of 

0.6V (note that the arrows have been exaggerated for clarity). We observe that the crack 

does not necessarily grow along the Y axis (θ=90o), but has a component in the X 

direction, although small. The variation of the angle θ  for different applied voltages and 

crack lengths is plotted below in Figure 6.13. It can be seen that the angle of crack 

growth can be as high as 115o for the larger crack at 0.6V. However for most of the cases 

we see that it is close to 90o. 

 

Figure 6.12: Crack tip material force and possible direction of 
crack growth 

Figure 6.13: Variation of direction of crack growth with applied voltage 

θ
− MF
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As mentioned earlier in this section, a mathematical relationship was obtained for 

the dependence of strain energy release rate on electrochemical boundary conditions. 

This was done by first fitting the obtained values of G (for the two way interaction) vs. 

Lφ , to the Gaussian type function (Eq. (6.19)),  

 
2 2

1 2
1 2

1 2

exp exp
L Lb bG a a
c c

φ φ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (6.19) 

where, a1, b1, c1, a2, b2, c2 are constants depending on the crack lengths and are shown in 

Table 6.1. 

Table 6.1 Fitting parameters for the expression (6.19) 
a (10-4m) a1 a2 b1 b2 c1 c2 

0.4 4.073 5.971 -1.138 -0.9523 0.7121 2.654 
0.8 7.77 13.58 -1.069 -0.8804 0.6175 2.577 
1 9.917 17.63 -1.028 -0.8956 0.5627 2.499 

 

Expression (6.19) may easily be modified to so as to obtain G completely in terms 

of the boundary conditions by first using Eq. (5.35) to substitute for Lφ . Then using mass 

action law (Eq. (5.30) or even (5.33) we obtain a formula for G that contains the partial 

pressure, vacancy concentrations at the boundaries and the applied voltage. When the 

vacancy concentration can in general be expressed as a function of the partial pressure of 

oxygen, then the expression for G can be given completely in terms of just the partial 

pressure and the applied voltage. 

6.6.4 Horizontal crack 

The G vs. Lφ curve for horizontal crack configurations is plotted in Figure 6.14. 

We have shown earlier that the cracks closed when the applied voltage is greater than 1V  
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Figure 6.14: G vs. Lφ curves for horizontal crack configuration at both tips 
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(See section 6.6.1.2); therefore we plot the curves only for values of Lφ which 

corresponds to an applied voltage less than 1V. The plots are shown for both the left and 

the right crack tips in Figure 6.14 . In all cases G exhibits single maxima at around 0.2V 

and approaches zero for values less than 0.2V. As the crack lengths are increased the 

values of G also increase for a given voltage. We also notice that the differences in the G 

values between the left and right crack tips increase with crack lengths. Clearly, the 

values of G for the right tip are higher than those obtained for the left for most of the 

applied voltages. Hence it can be said that the right tip will grow towards the anode side 

(low partial pressure side) for the considered voltage range. Also it can be noted that, 

similar to the vertical crack configuration, the G values predicted from one way 

interaction are lower than those predicted from the two way case. This once again means 

that safer standards can only be set if design analyses are performed using a two way 

response rather than a one way response. 

The error incurred in using only a one way interaction to predict G is plotted in 

Figure 6.15: Error incurred in performing a one way 
analysis 
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Figure 6.15. It can be seen that the error remains around 35% when the applied voltage is 

between -3 and -1V. Then, there is a steep decrease to a minima at about 0.6V, after 

which a precipitous increase is observed. These results once again indicate that the two 

way interaction affects the values of G significantly. 

The direction of crack growth for this case was analyzed similar to the vertical 

crack configuration. It was found that the crack will grow into the material at both the 

tips horizontally. The vertical components of the material force vectors were found to be 

one order of magnitude smaller than the horizontal components. 

A curve was fit to obtain G as a function of the applied electrochemical boundary 

conditions. The best fit for all crack lengths was obtained for the function of the 

following form given by Eq. (6.20). 

 ( ) ( )( )1 1 2 2exp exp expL LG a b a bφ φ= − − − −  (6.20) 

where, a1, b1, a2 and b2 are all functions of crack lengths and are shown in Table 6.2.  

Table 6.2: Fitting parameters for the expression (6.20) 
LEFT TIP 

410 m−  a1 b1 a2 b2 

4 71.94 -2.801 -11.86 -0.7266 
8 73.77 -3.147 -8.929 -0.4988 
10 69.36 -3.145 -8.802 -0.4735 

RIGHT TIP
410 m−  a1 b1 a2 b2 

4 114.8 -3.329 -9.38 -0.6127 
8 167.6 -3.814 -7.671 -0.3993 
10 204.8 -4.017 -7.441 -0.3615 

 

As done previously for the vertical crack configuration, the expression Eq.(6.20) 

can be easily modified into a form that is entirely in terms of the boundary conditions. 
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6.7 Results and discussion- Void configurations 

Voids can be other common forms of flaws that occur in manufacturing 

processes. Voids may be present at several locations in the domain and can lead to 

premature failure due to stress concentrations occurring as a result of chemically induced 

stresses. In this work the void is considered to be located in the central domain of the 

material just like the crack configurations.  

This section is to very briefly analyze the magnitudes of the stresses near the void 

and compare it to a case which does not have a void, for the same electrochemical 

boundary conditions. Further, the most important component of the stresses in this case is 

the hoop component about the void’s surface. The variation of these stresses along the 

surface is shown and compared to the case when no void is present. We also show the 

variation of the maximum value of the hoop stresses induced, as a function of the applied 

voltage. 

Results from the previous analysis for the crack configurations clearly indicate 

that two-way interactions predict larger values of the strain energy release rates when 

compared to that predicted by the one way interaction. This meant that the designs would 

be safer if analysis were performed by considering a two way interaction. Thus, for the 

void configurations only the results from the two way analysis are presented. 

6.7.1 Hoop stresses 

Figure 6.16 shows the variation of hoop stress for various values of applied 

voltages. Figure 6.16a shows the result for the case with the void while Figure 6.16b 

shows the same results at exactly the same radial coordinate (0.00005m) for the case 
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without the void (the shaded semi circle indicates the presence of material there). The 

results are shown for four values of applied voltages (0, 1, 3 and -3V).  

Figure 6.16: Variation of θθσ  with θ  for various values of applied voltages 
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Clearly, the hoop stresses are very high for the case with the void, which is 

expected due to stress concentration. The stresses are as high as 1GPa when the void is 

present, while only a few hundred MPa when there is no void for the same values of 

applied voltages. When there is no void we see that the stress distributions vary 

monotonically with the applied voltage. For large negative voltages, the stresses are 

tensile and gradually change to being completely compressive at larger positive voltages. 

As observed they all show maxima at almost the same value ofθ . For the case with the 

void, the stress distribution shows maxima for three different values of θ  (0, 180 and 

80o).  

Figure 6.17 compares the maximum values of hoop stresses occurring at the void 

with that obtained for the case without the void at the same radial coordinate (0.00005m). 

Clearly when there is no applied voltage (electrolyte is functioning purely as a fuel cell), 

the stresses are highest in both the cases. The stresses are as high as 1.2GPa if void is 

Figure 6.17: Variation of maximum hoop stress with applied voltage 
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present when compared to about 600Mpa without the void.  

Recent studies [197] show that the fracture strength of oxide ceramics can depend 

on several factors including method of manufacture, dopant concentrations and sintering 

temperatures. For 10GDC they report the values of fracture strength between 180MPa 

and 300MPa. The analyses in this section clearly indicate that the hoop stresses arising 

due to chemical expansion is high even when flaws like voids are not present in the 

electrolyte (>500MPa) and even higher when voids are present (>1GPa). These high 

stresses can nucleate cracks or propagate existing radial cracks from the flaw and lead to 

a failure of the electrolyte. Thus, it is important to consider the chemical stresses in GDC 

or in other materials showing significant chemical expansion.  

6.8 Conclusions 

The interior MNPP system of equations that was introduced in chapter 3 was 

solved in conjunction with the mechanical equilibrium equations. The stresses, vacancy 

concentrations were obtained under two way interactions existing between defect 

transport and elasticity. The results were presented in light of the mechanical response of 

the ionic solid. It was found that stresses have a significant effect on the distribution by 

studying both the distribution of vacancy concentrations and the strain energy release 

rates for two configurations of cracks of various lengths and for several applied voltages. 

The strain energy release rate (G) was determined using the material force approach, and 

its advantages in this particular problem were mentioned. The finite element solution was 

developed through a user element subroutine for ABAQUS. The user element can serve 

as a useful tool to predict mechanical and electrochemical behavior under stress-defect 

transport interactions in ionic solids. 
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It was found that the stresses for the vertical crack can be as high as 900MPa near 

the tip and can result in failure of the ionic solid. Further, it was seen that the crack 

always experiences a tensile stress, resulting in the opening of the crack for all values of 

applied voltages. To study the effect of stresses on the values of G, both one way and two 

way interaction studies were carried out. It was seen that the error incurred in carrying 

out only a one way interaction was as high as 50%. Furthermore, cracks were found to 

grow at an angle due to complex stresses at the tip. 

The strain energy release rates for both the horizontal and the vertical crack 

configurations exhibited maxima at specific applied voltages. For other voltages, G was 

shown to display an asymptotic behavior decreasing to zero. This was related to the 

behavior of the variation in distribution of vacancies with the applied voltages. The 

values of G are reported to be consistently lower when only one way interaction is 

considered. As a consequence of this, safer design of the electrolyte for mechanical 

reliability is possible if a two way interaction is considered. Thus, while modeling solid 

state components showing significant chemical expansion for mechanical stability, a two 

way interaction must be considered. 

Simple mathematical expressions are shown to predict G accurately. These 

expressions can be directly used by designers to assess the failure behavior of solid 

electrolytes. Basically, if critical values of G are known, then it would be possible to 

specify safer operating voltages and partial pressures using the expressions developed in 

this work. Thus the expressions developed prove to be a useful tool to predict the failure 

propensity of ionic materials or to give bounds of the safe operating voltages if the 

critical strain energy release rate values and the crack configurations are known. 
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Finally, the stresses in the vicinity of a small void were analyzed. It was seen that 

the stresses there can be as high as 1GPa and can potentially lead to crack nucleation or 

crack growth. In particular, the highest values of the stresses occur when no voltage is 

applied, i.e. when the electrolyte is functioning in a typical fuel cell environment. 
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CHAPTER 7. SUMMARY AND RECOMMENDATIONS FOR 

FUTURE RESEARCH 

7.1 Overview and findings 

7.1.1 Introduction 

This thesis addresses the issue of interaction between elasticity and transport of 

charged point defects in ionic solids. The material GDC was chosen for this study for its 

prospective role as an electrolyte in low temperature solid oxide fuel cells and for two of 

its interesting traits that make the interaction possible; 1) Large chemical coefficient of 

expansion and 2) Variation of elastic properties with vacancy concentration. The main 

part of this thesis begins with the definition of chemical potential of point defects in ionic 

solids and a very brief introduction to molecular simulations in chapter 2. The remainder 

of this thesis builds on these fundamentals to develop continuum framework (chapter 3), 

to determine material properties using MD (chapter 4), to solve a system of differential 

equations (chapters 5 &6) and finally to post process the results from the solutions to 

numerically quantify the extent of the interactions (chapters 5 & 6). Before we give a 

detailed summary for each chapter the major findings of this work are listed. 

7.1.1.1 Findings 

1) Stresses and defect transport indeed interact significantly in materials with 

large CCE like GDC. 

2) The magnitude of the stresses induced in both the planar and the tubular 

electrolytes are high. In particular, the tubular electrolyte shows tensile stresses 

at the cathode side due to chemical strains, and these are in the order of 
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stresses generated as a result of thermal mismatch with the electrodes. These 

may cause cracks to grow radially along the thickness of the ionic solid while 

functioning as an electrolyte. This means that along with thermal mismatch 

effects, the chemically induced stresses must also be considered while 

designing these electrolytes. 

3) Stresses in the vicinity of flaws are also large when compared to the tensile 

strengths of the material. These stresses are functions of the applied 

electrochemical loadings like voltage and partial pressures. Hence, in the 

regular design of ionic solids or during their reliability analysis, the thermal 

and chemically induced stresses must be taken into account. 

4) The effect of interaction between stresses and defect transport also affects the 

strain energy release rates of the cracked electrolyte significantly. The error 

incurred in estimating the values of the strain energy release rates using the 

regular methods can be as high as 50%. This hence reinforces the need to 

consider stress-defect transport interactions while designing ionic solids for 

their applications.  

7.2 Chapter summaries 

7.2.1 Chapter 3- Continuum framework 

This chapter provides the necessary framework to couple defect-transport and 

mechanics in a typical oxide ceramic. The Eshelby stress dependent chemical potential is 

derived and is used to develop the framework which essentially consist of 

differential/algebraic equations and associated boundary conditions. The solution to this 

boundary value problem enables us to study the interactions. Unlike the existing theories, 
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the equations developed here provide a fully coupled framework for investigating the 

interactions between mechanical and electrochemical fields. In all other previous studies, 

the electrochemical potentials depend on only the hydrostatic stress or explicitly on the 

Cauchy’s stress.  

As discussed, the quantities of significance in this chapter are the Eshelby stress 

and two material properties, namely the CCE and OSEC which make the interaction 

possible. All stress components are involved in the electrochemical potentials, making 

the problem fully coupled. This requires the diffusion equations to be solved 

simultaneously with the equilibrium equations of mechanics, even when small strain 

deformation is assumed. 

7.2.2  Chapter 4 – Atomistic simulations for material properties 

The material properties introduced in chapter 3 (CCE & OSEC) were determined 

using a combination of analytical and MD simulations. This was done by relaxing MD 

simulation cells of defective GDC at various temperatures. While the determination of 

the CCE was straightforward, this was not the case for the OSEC on account of possible 

inner elastic contributions due to the non-primitive nature of defective GDC lattices. On 

examining the elastic constants it was found that only C11 varied with non-stoichiomtery. 

A possible reason for this was given by examining the contribution of the short range and 

the long range parts of the interatomic potential to the elastic constants. 

The numerical values of the CCE and the Young’s modulus were found to be 

reasonably close to existing experimental data. It was found that the CCE was in the 

range of 0.069-0.079 for a wide range of temperatures for both 10 & 20GDC and the 

polycrystalline Young’s modulus varied with a clope of about -200GPa with 
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stoichiometry. The Poisson’s ratio was found to be insensitive to stoichioemetry. Further 

both CCE and the OSEC were found to be insensitive to temperature. 

These values of CCE and stoichiometry dependent Young’s modulus were then 

used in the subsequent chapters to solve the differential equations introduced in chapter 3. 

7.2.3 Chapter 5- The 1D MNPP system –Interactions on defect transport 

In chapter 5 a modified form of the NPP system was introduced and solved for 

two common configurations of the electrolyte, namely planar and tubular. The singular 

nature of the Possion equation rendered numerical solutions in the entire domain 

impossible when the size of the domain was much greater than a characteristic length. 

This pointed out the need for a singular perturbation method using the method of matched 

asymptotic expansions.  

Implicit solutions were possible for the interior system because the stress 

dependent chemical potential possessed a simple form due to the condition of plane self-

stress. The solutions were examined for two methods of applying boundary conditions. It 

was found that the solutions, namely the distribution of vacancies and the electrostatic 

potential, showed non-trivial differences when the effects of elasticity were considered. 

This showed that elasticity had an effect on the electrochemical fields. The stress 

distributions were also examined and it was found that these were in the same order or 

even higher than stresses induced as a result of thermal mismatch between the electrodes 

and the electrolyte. This suggested that both thermal and chemically induced stresses 

must be taken into account while designing ionic solids for applications. 

Numerical solutions were obtained for the distribution of all the field quantities in 

the boundary layer by solving the boundary layer differential equation. The boundary 
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layer solution once again indicated an alteration in the distribution profiles when the 

effects of elasticity were considered. In fact it is found that the overall charge density in 

the boundary layer was found to be enhanced when elasticity was considered. The 

chapter was then concluded by suggesting that elasticity effects (like applying external 

loads) can be used over other existing methods, based on grain boundary engineering, to 

alter the material’s behavior. 

7.2.4 Chapter 6 – The 2D MNPP system -Interactions on mechanics 

The interior 2-D MNPP system was solved using the finite element method. The 

specification of the boundary conditions was based on a one dimensional approximation 

of the boundary layer equations without the effects of elasticity being considered. 2-D 

domains of electrolytes with commonly occurring manufacturing flaws were used for the 

study. 10GDC with two different crack configurations (vertical and horizontal) and a 

void was subjected to electrochemical boundary conditions for the study. The GDC 

electrolyte was subjected to a wide range of applied voltages in order to determine the 

deformation, stresses and the strain energy release rates for the cracked configurations. It 

was indicated that the complexity of the stresses in the vicinity of the crack tip required 

the material force approach, which is a generalization of the conventional J-integral.  

The main conclusions in this chapter were that the stresses in the vicinity of the 

flaws were very high in comparison to the strengths of these materials. While the vertical 

crack showed variations in the crack growth direction, the horizontal cracks were always 

found to grow horizontally into the domain towards the anode side for certain voltages. 

For both the vertical and the horizontal crack configurations, the strain energy 

release rates were determined using both the “two way interaction” and a “one way 
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interaction” analyses. The “one way” interaction refers to an analysis that does not 

involve the use of stress dependent chemical potential, but that which considers the effect 

of chemical strains generated as a result of deviation from non-stoichiometry on 

elasticity. The comparison of these results showed that the one-way interaction 

consistently predicted lower values of the strain energy release rates, suggesting that safer 

designs would require two way interactions to be considered.  

7.2.5 Contributions 

The major contributions of this work are: 

1) Development of the Eshelby stress dependent chemical potential for point defects in 

ionic solids within the dilute approximation. 

2) Development of an MD simulation based methodology to calculate CCE and elastic 

constants in defective lattice structures. 

3) Introduction and solution of a new form of the NPP system that accounts for the 

effects of elasticity. 

4) Development of a user element subroutine for ABAQUS to solve coupled stress-defect 

transport problems in ionic solids. 

5) Development of expressions for the strain energy release rates as a function of applied 

electrochemical boundary conditions to specify safer operating voltages in ionic solids 

functioning under fuel cell environment. 

Although the various contributions were discussed with GDC as an example, the 

methodologies developed can be easily extended to other materials of interest. 
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7.3 Recommendations for future research 

7.3.1 Introduction 

This thesis consists of several broad areas like continuum thermodynamic 

modeling, molecular simulations, defect chemistry and solid state ionics. All these areas 

have been useful in laying the fundamental foundations for studying the multiphysics 

problem of stress defect transport interaction. There are several points where this thesis 

can branch out leading to interesting research topics which may be of both practical and 

academic importance. Some of these obviously originate in relaxing some of the 

assumptions made in this thesis. The various branches are described and some references 

that can be useful starting points are recommended for further reading.  

7.3.2 Relaxation of the requirement of dilute approximation 

In this work it has been consistently assumed that the concentrations of defects 

are small. This causes the chemical potential to have a Boltzmann type distribution (see 

Eq.(2.15)). While this is true for most of the materials, interesting features of stress-

chemistry interaction have been reported in materials with large concentration of defects 

in [17, 18]. Under such circumstances a Fermi-Dirac type statistics is required (see. Eq. 

(2.14)). It will be of considerable interest to see how the differential equations governing 

defect transport turn out and what solutions may predict, especially on using the coupled 

formulation.  

In addition to acquiring a Fermi-Dirac distribution, the large concentration of 

defects can result in defect-defect interaction forming clusters. Theoretical modeling of 

the chemical potential of defects that interact by forming complex clusters remain limited 

to date and some them can be found in [44, 51, 52]. However, it has been shown that the 
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effects of these clusters have a pronounced effect on the ionic conductivity of electrolytes 

used in fuel cells [198].This occurs because, the otherwise mobile point defect like a 

vacancy is trapped by the cations, especially when their concentrations are high. Even 

molecular simulations have been able to show the presence and the effect of these 

clusters [47, 48]. 

Thus modeling, by relaxing the dilute approximation can open up at least two 

branches in the theoretical modeling aspect of defect transport/thermodynamics of ionic 

solids. 

7.3.3 The intermediate configuration & differential geometry 

In chapter 3, the intermediate configuration was introduced to develop the 

Eshelby stress dependent chemical potential. For several years, this differential manifold 

has been treated like any other using the Kronecker delta as the metric. However, [199] 

points out that such a manifold might not be as straightforward to deal with as other usual 

spaces encountered in elasticity, due to its non-Euclidean nature. This topic addresses the 

deeper philosophical discussions pertaining to differential geometry which completely 

branches out from the theme of investigation followed in this work. To gain better 

appreciation for ideas on this aspect of the problem the reader is referred to [200] and 

references therein.  

7.3.4 Alternate materials and MD related recommendations 

GDC is the material of interest in the current work. Other materials like doped 

Lanthanum (LSC- La1-xSrxCoO3-δ) and Barium oxides (BSCF- Ba0.5Sr0.5Co0.8Fe0.2O3-δ) 

are also known to be of use in solid oxide fuel cell electrodes. While LSC is used as 

anodes BSCF is used as a cathode material. Similar to GDC, they also undergo, 
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significant, chemical expansion (see [12, 201] and [11] for more information). The 

theoretical frame work developed in chapter 3 and the methodologies developed in 

chapter 4, can be easily extended to study these material systems as well. 

While it was shown that the contribution of inner elasticity towards the elastic 

constants was small for GDC, it may not be the case for other materials due to 

complicated crystal structure. The methodologies and the codes written for GDC can also 

be used for the material systems introduced in this section.  

Determination of CCE was based on the simple methodology of comparing the 

relaxed MD cell volumes. Some recent works use micromechanics concepts to more 

rigorously compute the formation volume of the defects in Silicon based materials. For 

details the reader is referred to [121, 202, 203]. These techniques, while requiring 

knowledge of micromechanics [149] may lead to more elegant homogenization 

procedures for atomistic- continuum coupling, in contrast to the simple but “brute force” 

approached employed in this work. 

It was mentioned in passing, in section 1.4 that in addition to the formation 

volume, the migration volume of the defect may also be affected by stresses. The 

migration volume is related to the physical change in the volume as the atom squeezes 

through the lattice to reach another lattice point having a minimum energy. This has not 

received much attention with defect transport in ionic solids. It would be interesting to 

perform molecular calculations based on MD by examining the energy land scape in the 

vicinity of point defects in order to measure the extent of stress dependence on the 

migration volume of the defects. The Nudged Elastic band method (NEB) is used to find 

minimum energy path ways for chemical reactions. The details of this relatively new 



 190

approach can be found in [204] and references therein. The migration volume is directly 

related to the diffusion coefficient (or more generally the Onsager coefficients). Once the 

stress dependence of these coefficients is determined, they can be used in the theoretical 

framework developed in this work to solve fully coupled stress defect transport problems. 

7.3.5 Size effects 

In this work a macroscopic solid with point defects was considered in most part 

(except in chapter 4, where a polycrystalline aggregate was used to determine the 

homogenized Young’s modulus). With the advent of nano-technology, smaller sized 

structures have shown different properties when compared to their macroscopic 

counterparts. The effect of sizes is pronounced, not only on the mechanical properties 

like stiffness [139, 205] or yield strength [206, 207] of the material but also on the 

conductivity values, conductivity type, mass and charge storage capabilities [29] of 

solids. The effects of surfaces dominate in nano-crystalline materials and hence the 

contributions of elasticity to interesting phenomenon in these confined systems cannot be 

ruled out. 

Figure 7.1: Size effect on charge storage 
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In addition to the so called “trivial size” effect just discussed (augmentation of 

altered property due to the size of grains in the material) a “true size” effect can occur 

[33]. Chapter 5 contains a hidden motivation for this topic, although it does not explicitly 

deal with nano-sized/nano-crystalline material. To look at this aspect in a simple yet 

detailed manner we refer the reader to Figure 5.15. Here the regions close to the surface 

are charged while the interior or the bulk is not. This is the case because charge neutrality 

holds in the bulk of the material owing to the fact that, the material was of macroscopic 

size, making the perturbation analysis possible. The perturbation approach enables 

delineation of the domain clearly into The bulk where (LEN is valid) and The boundary 

layer which is charged. If our material and domain were such that / 1hχ ≈ or even 

/ 1hχ >  then the perturbation method and the semi-infinite conditions as in Eq. (5.68) 

would cease to be valid. A sketch of what happens as the sizes are reduced is shown in 

Figure 7.1. Clearly as we see, the reduction in size causes the charge of the bulk of the 

domain to deviate from the LEN condition. This clearly means that the charge density 

(charge per unit volume) can be enhanced if the size is made smaller. Consequently, in 

materials with nano-sized grains the size effect just explained can occur in all the grains 

enhancing the overall charge storage capacity. In addition the surfaces /interfaces of the 

grains in the material start to perceive each other, leading to the true size effect.  

The effects of elasticity can also be significant in ionic solids with nano-sized 

grains due to structural interference effects. The adjacent grains on account of their 

misorientation, are subjected to structural misfit (eigen) strains. In this case the formation 

energy of the defect varies spatially from the grain boundary to the interior of the grain, 

resulting in a contribution to the non-configurational part of the chemical potential. Thus 
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we see that in polycrystalline materials the effects of size and of elasticity can have an 

influence in altering the over all material properties. 

The effects of size described in this section are all motivated based on the 

discussions in chapter 5. Chapter 5 provides some of the fundamentals and ideas 

associated with the size effect; however, the extension to treat size effect issues cannot be 

achieved without solving the complete NPP or the MNPP, system which can be 

numerically challenging. 

7.3.6 Other crack configurations in electrolytes 

In chapter 6 a user element was written and the governing differential equations 

were solved over a domain with a vertical and horizontal crack whose existence was 

attributed to manufacturing flaws. As mentioned in section 6.4.1 other crack 

configurations may exist. As shown in Figure 7.2 vertical cracks and delamination cracks 

can occur near the electrolyte-electrode interface. 

Figure 7.2: Showing various types of cracks in the electrolytes [208] 
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The extension of the analyses performed in this work to consider these kinds of cracks is 

straightforward. The only difference lies in specifying the concentration and the 

electrostatic potential at the crack faces instead of specifying a zero current condition. 

However, the issue of a boundary layer still exists while specifying Dirichlet type 

boundary conditions (specification of concentrations and potentials). This may be 

handled in the same manner as done in this work for the left and right boundaries (see 

section 6.3.2 for details). Similar to what was done in chapter 6, strain energy release rate 

curves for applied voltages may yield useful results suggesting safer operating voltages or 

design modifications for extended life of the ionic solid. 

7.3.7 Recommendations for experimental verifications 

This thesis is entirely theoretical with motivations of possible stress-chemistry 

interactions drawn from experiments conducted in [17, 18, 22, 209]. In order to 

complement and verify the phenomena of stress-defect transport interactions in ionic 

solids, some suggestions are given below. In this regard, we would like to state that the 

experimental methods of electrochemistry are not completely familiar to the author and 

hence we cautiously mention a few approaches that seem possible. Moreover, it seems 

quite a challenge to develop experimental methods to verify the problems exactly as they 

appear in chapter 5 or chapter 6. For this reason, the methodology is provided only to 

verify if stress has an effect. The quantitative values of the various measures might still 

be different from the ones obtained numerically in this work on account of the different 

mechanical boundary conditions. 
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7.3.7.1 Measuring the voltage-Indirect load method 

The set up that may be used in order to perform an experiment to determine the 

effect of stresses on transport of defects in ionic solids is shown in Figure 7.3. The 

experiment involves inserting a planar electrolyte (with a large CCE) of circular shape 

into a hollow tube made of a low TCE, high modulus material. During operation at high 

temperature, the tube exerts a compressive stress on the electrolyte due to thermal strains. 

The amount of compressive stress can be controlled by varying the wall thickness of the 

tube. The voltage reading may be observed and compared to the values when no alumina 

ring is used (or when a high TCE material is used). Any variation in the reading (with and 

without the alumina ring) indicates that stresses and defect transport interact. It might 

also be possible to use an ammeter to measure the current for various values of the 

applied voltages. The value of the voltage at which the current is zero is the open circuit 

Figure 7.3: Experimental set up for the indirect load method 
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voltage (VOC). The comparison of this quantity with and without the alumina ring can 

also indicate the effects of stresses on the electrochemical performance. 

7.3.7.2 Measuring the voltage-Direct load method 

Alternatively instead of using thermal stresses to load the electrolyte, we may 

directly apply forces similar to the procedure followed in [209] and measure the voltage. 

The set up is shown below in Figure 7.4. 

As opposed to the previous method, this method more easily establishes a 

quantitative relation between the applied load and the resulting voltage. Note however 

that the stresses induced in the electrolyte are a combination of loads due to eigenstrains 

from chemical expansion, thermal expansion and the applied forces.  

Using these methods, the effects of stresses on the electrochemical performance 

may be at least qualified. However, it must be kept in mind that the elastic energy 

induced, must alter the defect transport rather than cause failure of the material. Thus the 

extent of interaction is contingent upon how the elastic energy in the material dissipates. 

Figure 7.4: Experimental set up for the direct load method 

O2H2

Load

Al2O3 Tube
Electrolyte

(GDC)

Load
cellV

Cathode

Anode

Furnace

Seal



 196

The presence of minor flaws may cause failure of the electrolyte by growth of cracks 

resulting in the failure of experiment. Thus the material must be defect free as far as 

possible.  
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APPENDIX A. DERIVATION OF ESHELBY STRESS 

In this appendix the expression for the Eshelby stress (second equality in Eq. 

(3.60)) is derived. The following two matrix identities come in handy while performing 

the derivation,  

 Ji
iJ

J Jf
F
∂

=
∂

, Ji
Jk Li

kL

f f f
F
∂

= −
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 (A.1) 

where 
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It follows from the second of (A.1) that 
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Thus, 
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is the second Piola-Kirchhoff stress written in the intermediate configuration. 

Furthermore, making use of Eq. (3.24), we obtain 
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where the third equality follows from Eq. (3.16) and 0
ˆˆNmσ  is the first Piola-Kirchhoff 

stress written in the intermediate configuration. It is expressed in the natural 

configuration by Eq. (3.17), 
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Making use of (A.6)-(A.7) in (A.4) yields 
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Substituting (A.8) into (A.2) leads to 
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This completes the proof. 
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APPENDIX B. GIBB’S APPROACH TO DERIVE MASS ACTION 

LAWS 

In this appendix the relation between the electrochemical potential of various 

species in the solid and also between an external gas and the solid is derived based on the 

variational principle. These relations transform to mass action laws (Eq. (3.88), Eq.(3.90) 

and Eqs. (3.99)). 

According to Gibbs [210], For the equilibrium of any isolated system it is 

necessary and sufficient that in all possible variations of the state of the system which do 

not alter its energy, the variation of its entropy shall either vanish or be negative. 

Consider an isolated system comprising an oxide in contact with oxygen gas. Let 

the internal energy density of the solid sπ  be a state function of the deformation gradient 

iJF , entropy density s, concentrations (in mole fractions) of oxygen ions X
oO

ρ , charged 

vacancies 
OV

ρ •• , interstitial vacancies X
iV

ρ , charged interstitial oxygen ions "
iO

ρ , electrons 

eρ  and holes hρ .The internal energy of the gas phase gπ  is assumed to be a state 

function of the molar volume gV , the entropy density gs  and the composition, e.g., 

oxygen concentration
2Oρ . Let the solid-gas interface be denoted by S. The total internal 

energy of the solid-gas system can be written as 

 "
2

( , , , , , , , ) ( , , )X X
s go O i i

T s iJ s e h g g g oV VO V V O
F s dv V s dvπ ρ ρ ρ ρ ρ ρ π ρ••Π = +∫ ∫  (B.1) 

Strictly speaking, a surface integral containing the excess energy associated with the 

interface should also be included in the total internal energy expression (B.1). However, 
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inclusion of the surface energy term has no effect on the interfacial conditions we are 

trying to derive [54]. Therefore, for simplicity, it is not included here. 

According to the Gibbs variational principle, the equilibrium state minimizes the 

internal energy subject to the following constraints:  

Constant number of oxygen lattice sites throughout the solid 

 ( ) 1X
o O

s
O V

V
dv Kρ ρ ••+ =∫  (B.2) 

Constant number of interstitial lattice sites through the solid 

 ( )" 2X
i i

s
V O

V
dv Kρ ρ+ =∫  (B.3) 

Electroneutrality condition under equilibrium 

 ( )"2 2 0
O i

s

e hV O
V

dvρ ρ ρ ρ•• − − + =∫  (B.4) 

Constant number of oxygen ions in the entire system (solid and gas) 

 ( )"
2 42 X

i o
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o O O
V V

dv dv Kρ ρ ρ+ + =∫ ∫  (B.5) 

Constant total entropy of the system, 

 
s g

s g
V V
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These constraints can be relaxed by using the Lagrange multipliers, iλ  (i = 1 to 5), i.e. 
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Note that 
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2 2g g g g O Op V T sδπ δ δ μ δρ= − + +  (B.9) 

where 0
Jiσ  is the first Piola-Kirchhoff stress, sT  is the absolute temperature, αμ  

( ,X
o oO Vα ••=  etc.) are the electrochemical potentials of various species, in the solid phase, 

while p is the pressure, sT  is the absolute temperature and 
2Oμ  is the oxygen 

electrochemical potential, in the gas phase. 

Substituting (B.8) - (B.9) into (B.7) and collecting like terms yield 

 1 4X
oO

μ λ λ= + , 1 32
OV

μ λ λ•• = + , 2X
iV

μ λ= , " 2 3 42
iO

μ λ λ λ= − +  (B.10) 

 3eμ λ= − , 3hμ λ= ,
2 42oμ λ= , 5sT λ= , 5gT λ=  (B.11) 

There are nine equations in (B.10) - (B.11) containing five Lagrange multipliers. 

Eliminating the Lagrange multipliers in these equations, we arrive at the following four 

relations among the electrochemical potentials, 

 "X X
i o O iV O V O

μ μ μ μ••+ = + , 0e hμ μ+ =  (B.12) 

 s gT T= , 
2

12
2X

o O
e OO V

μ μ μ μ••= + +  (B.13) 

The relations in Eq.(B.12) involve electrochemical potentials in the solid only. Utilizing 

the expressions of chemical potentials, the two equations in Eq. (B.12) lead directly to the 

two equations in Eq.(3.99); these equations represent the mass action laws for the Frenkel 

equilibrium and electron-hole condition, respectively. 

The first of Eq. (B.13) gives the thermal equilibrium of the solid-gas interface, 

i.e., the temperature across the interface must be continuous at equilibrium. The second 

of Eq. (B.13) describes the solid-gas interaction at the interface. Making use of the 
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expressions of chemical potentials, one can easily show that (B.13) leads to the interfacial 

condition as shown in Eq.(3.88). 

It should be mentioned that, in the above formulation, it has been assumed that 

electrochemical reactions are relatively much faster than the diffusion of species so that 

at any given instance, an instantaneous state of quasi-equilibrium can be achieved for 

diffusion analysis. 
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APPENDIX C. STRESS DEPENDENT EQUILIBRIUM CONSTANT 

We now derive stress dependent equilibrium constant for the defect reactions. We 

do this using the boundary reaction (gas solid reaction) as an example. For simplicity, we 

assume that the effect of compositional change on the elastic compliance is negligible 

( 0ijklsα ≈ ), and all the stresses are generated by defect deviation from stoichiometry 

( 0 0ijkl ij klS σ σ ≈ ).Therefore, it follows from Eq. (3.73) that the stress dependent 

electrochemical potential for a speciesα  can be written as,  

 ( )0 ln m kkRT V z Fα α α α α αμ μ γ ρ η σ φ= + − +  (C.1) 

where 0
αμ  is the chemical potential at some standard state. The activity coefficient takes 

into account the interaction among the defects and is considered a unity for a dilute 

solution where such interactions are negligible. Substituting (C.1) into the second of 

Eq.(B.13) yields, 
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Eq. (C.2) also be written in terms of the equilibrium constant KS1, 

 2

2

1 0
VO

X
O

e O

S

O

P
K k Kσ

ρ ρ

ρ
••

= =  (C.3) 

where 
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0
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X
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e OO V
k
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μ μ μ μ••

⎛ ⎞− − −⎜ ⎟
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

 (C.4) 

is the stress-independent part of the equilibrium constant and 

 exp m v
kk

VK
RTσ

η σ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (C.5) 

is the stress-dependent part of the equilibrium constant. 

The above derivation may also be carried out for the Frenkel and Schottky 

equilibrium reactions in order to establish relations among the various defects. Since we 

have considered only two kinds of defects in this work, these reactions are not required. 
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APPENDIX D. INNER ELASTICITY 

D.1 Derivation of Inner Elastic Constants 

In this section we derive the expressions for the elastic constants in a concise 

manner. We follow the derivation in [130] closely. Consider a crystal system with N 

different sub-lattices. The site of the atoms in different sub-lattices may or may not have 

the inversion center as one of its symmetry elements. As explained earlier, in those 

crystals that are primitive it is not necessary to consider inner elasticity as there will be no 

preferential displacement of the sub-lattices with respect to each other. In cases where the 

crystal is non-primitive, inner elasticity has to be accounted for as the sub-lattices move 

on application of a homogenous strain as shown in Figure 4.4, for two kinds of sub-

lattices.  

On subjecting a primitive crystal (all atoms have inversion as a symmetry 

element), with N sub-lattices to a homogenous Lagrange strain (E), any vector ro, joining 

two atoms in the undeformed state, transforms to the deformed state of r through the 

relation,  

 or= rF  (D.1) 

where, 

F is the deformation gradient 

ro is the position vector between two atoms before deformation 

r is the position vector after deformation 

The homogenous Lagrange strain is given by, 

 T1E = F F - I
2
⎡ ⎤⎣ ⎦  (D.2) 
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where, I is the identity tensor  

If the system is governed by a central kind of interatomic potential (interaction between 

atoms depends only on the magnitude of distances between the atoms), then the total 

energy density (u) is given as, 

 
1 1

1 ( )
2 = =

≠

= ∑ ∑
Ω

N N
pq

p q
q p

u e r  (D.3) 

where,  

e(rpq) is the potential energy due to the interaction between atom p and q due to both the 

short range and the Coulombic forces. 

rpq is the magnitude of the distance between atom p and q 

Ω is the MD cell volume 

The contribution from the long range coulombic interaction to the energy e(rpq) and its 

derivatives for the calculation of elastic constants, is evaluated using Wolf sum [211]. 

This method is used here as it can be applied even to highly disordered ionic systems. 

The elastic constants Cijmn for the primitive lattice system are given using the formulae, 

 
2

1 1
0 0

1 1 ( )
4

ij ij

pq pq pqN N

ijmn pq pq pq
p q

ij mn ij mnq pE E

u e r s sC
E E s r r E E= =

≠= =

⎛ ⎞∂ ∂ ∂ ∂ ∂
= = ∑ ∑ ⎜ ⎟⎜ ⎟∂ ∂ Ω ∂ ∂ ∂ ∂⎝ ⎠

 (D.4) 
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2 = =

≠
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⎡ ⎤⎧ ⎫∂ ∂⎪ ⎪⎢ ⎥= −∑ ∑ ⎨ ⎬⎢ ⎥Ω ∂∂⎪ ⎪⎩ ⎭⎣ ⎦o

pq pqN N
o pq o pq o pq o pq

ijmn i j m npq pqpq pqp q
p q

r r

e r e rC r r r r
r rr r

 (D.5) 

where  

[ ]o pq
ir  refers to the ith component of the position vector from atom p to q at zero strain and 

 [ ] [ ] [ ]2= +ab o ab o ab
mn mn m ns E I r r  (D.6) 

is the square of the magnitude of the distance between atom a and b.  
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Eq. (D.5) is the common expression used to determine elastic constants, directly from the 

interatomic potential, when inner elasticity can be neglected. For a non-primitive crystal, 

preferential displacement of sub-lattices is allowed and Eq. (D.1) is no longer correct and 

the following relation must hold (see Figure 4.4),  

 [ab] o[ ]r  =Fr δ δ+ −a bs sab  (D.7) 

Where, δ as is read as the relative displacement of sub-lattice to which atom ‘a’ belongs. 

The relative displacements are always taken with respect to the reference atom in the Nth 

sub-lattice. We also note that δ as =0 if the sub-lattice to which ‘a’ belongs is the same as 

the one to which N belongs. This is true because the atoms belonging to a particular sub-

lattice suffer a rigid body preferential displacement with respect to the reference atom. 

Now, the square of the magnitude of the distance between the two atoms is given by,  

 [ ] [ ] [ ] [ ] 12 2 [2 ]ξ ξ ξ ξ ξ ξ−⎡ ⎤= + + − + − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦
a b a b a bs s s s s sab o ab o ab o ab

mn mn m n m m m p p pr pr r rs E I r r r E I (D.8) 

where, 

 δ ξ=a as s
ij i jF  (D.9) 

In using the above relation a new set of inner displacement variables, ξ as
j , is introduced to 

ensure that the strain energy/strain energy density is rotationally invariant [130].  

Let the internal energy density u, be a function of the applied homogenous Lagrange 

strain (E) and the 3(N-1) rotationally invariant inner displacement variables ξ k
i  k=1, 2, 3, 

4, 5,…..N-1. We have dropped the sa superscript on the 'ξ s  for notational simplicity. 

Hence we obtain,  

 ( )1 2 3 1, , , ..........ξ ξ ξ ξ −= N
iju u E  (D.10) 

where 
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ξ k is a vector with three components 1
kξ , 2

kξ and 3
kξ  

Expanding (D.10) using Taylor’s series, we can write, 

1 1 .....   
2 2α α αβ α β α αξ ξ ξ ξ− = + + + + +o k k kl k l k k

ij ij ijmn ij mn ij iju u T E A C E E B D E higher order terms  (D.11) 

Summation convention is used for both the super script (identifying the sub-lattice 

index) and also the subscript (identifying components of Cartesian coordinates). Greek 

letters are used to denote the components of the vectors and tensors arising from 

differentiating with respect to the components ofξ k . Clearly in Eq. (D.11), T would be 

the stress while C is the stiffness for primitive crystals. Although no geometric relation 

exists between theξ k ’s and Eij, both strive to minimize the energy at equilibrium. So, for 

an applied strain E,ξ  takes a value that minimizes the energy, or we may write,  

 ( )   1, 2,3, 4... -1α αξ ϕ= =k k
mnE for k N  (D.12) 

Implying that the equilibrium values of the inner displacement variables,ξ ’s, are 

functions of a given applied homogenous strain. Expanding Eq.(D.12) in Taylor’s series 

we get,  

 ....   α α αξ = + +k k k
mn mn mnpq mn pqP E G E E higher order terms  (D.13) 

P is called the internal strain tensor. When a crystal is subjected to a homogenous 

strain E, the components of the internal displacements αξ
k  can be obtained from Eq.(D.13) 

uptown terms linear in the strain (sufficient for small strain where, 0mn pqE E ≈ ). Since ξ  

minimizes u  at equilibrium, we have by differentiating u in Eq.(D.11) with respect to 

each of λξ
h  (h=1,2,3,4…..N-1, while λ=1,2,3),  

 0λ λβ β λ λβ β⎡ ⎤+ + + =⎣ ⎦
h hl l h hl l

mn mn mn mnrs mn rsA B P D E B G E E  (D.14) 
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Since the coefficient of each power of E must be zero we have, to the first order 

in strain, ( 0mn pqE E ≈ ),  

 
0

0
λ

λβ β λ

=

+ =

h

hl l h
mn mn

A
B P D

 (D.15) 

From the first of Eq.(D.15) we can see that the stress T  is unaffected by inner elasticity. 

Let us now define an inverse of B and call it g, then  

 κλ λβ κβ=th hl tlg B I I  (D.16) 

pcI = 1 if p and c belong to the same sub-lattice, zero otherwise 

αβI is equal to 1 if α=β, zero otherwise 

We may obtain P as,  

 κ λ κλ= −l h hl
mn mnP D g  (D.17) 

Using Eqs. (D.13),(D.15) and (D.17) we can write (D.11) as,  

 1
2 α αβ β⎡ ⎤− = + −⎣ ⎦

o k kr r
ij ij ijmn ij mn ij mnu u T E C D g D E E  (D.18) 

The Brugger’s Total elastic constants (CT) are given as,  

 T
α αβ β= − k kr r

ijmn ijmn ij mnC C D g D  (D.19) 

If u is of the form given by Eq. (D.3), then it can easily be shown that, C is given by 

Eq.(4.8) while D and B are given by, 

( ) ( ) ( )
2 2

[ ] [ ] [ ]
2 2

1 1

1 1 ( ) 1 ( )
2 α α

αξ = =
≠

⎡ ⎤∂ ∂ ∂⎢ ⎥= − − =⎡ ⎤∑ ∑ ⎣ ⎦∂ ∂ Ω ∂⎢ ⎥∂⎣ ⎦

pq pqN N
o pq o pq o pq pb qb b

u v uvb pq pqpq pqp q
uv q p

u e r e r r r r I I D
E r rr r

 (D.20) 
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1 1 ( ) 1 ( )
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α β

αβ αβ

ξ ξ = =
≠

⎡ ⎤∂ ∂ ∂⎢ ⎥= − − −⎡ ⎤ ⎡ ⎤∑ ∑ ⎣ ⎦ ⎣ ⎦∂ ∂ Ω ∂⎢ ⎥∂⎣ ⎦
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pq pqN N
pb qb pc qc o pq o pq

b c pq pqpq pqp q
p q

pq
pb qb pc qc bc
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r rr r

e r I I I I I B
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 (D.21) 
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As mentioned previously, crystals that are defective must be considered as being non-

primitive and in the calculation of elastic constants must include possible contributions 

from inner elasticity. Thus, Eq. (D.19) must be used to evaluate the elastic constants of 

the crystal. 

Next, in order to verify the codes written to perform the computations we 

compare the internal strains P, of pure fluorite structure (CaF2). We show that internal 

strains suffered by the two oxygen sub-lattices are equal and opposite as required by the 

fluorite structure [134]. We also compare the values of the internal strains of the oxygen 

sub-lattices, to data from literature, validating our codes both qualitatively and 

quantitatively. 

D.2 Validation of codes 

CaF2 belongs to space group 3Fm m just like CeO2 (see section 4.4.1) with Ca in 

Wyckoff position (4a) while the two oxygen ions in positions (8c). The lattice constant of 

CaF2 is 5.44Å. The symmetry of inner strain tensor, P is directly related to the point 

group of the Wyckoff position [128, 131]. Position (4a) belongs to the point group 3m m  

while (8c) to 43m . Clearly, since (4a) contains an inversion center ( )3 3 1= +  [129] , this 

sub-lattice (Ca4+) does not show any inner displacement. However, the position (8c) does 

not posses the inversion center and hence undergoes preferential displacement when the 

crystal is subjected to a homogenous strain. On referring to Table 2.2 of reference [127] it 

can be noticed that, for this site the nonzero components of the internal strain are 

14=25=36.  

To validate our codes, CaF2 was relaxed at 300K in an NST ensemble. The 

Buckingham interatomic potential was used. The potential parameters were taken from 
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ref. [212] and are given in Table D.1. The potential predicts the elastic properties of CaF2 

with good accuracy [212]. 

Table D.1: Potential parameters for CaF2 
Ion-Pair A(eV) ρ(Å) C(eV Å6 ) 

Ca-F 1272.80 0.299700 0.00 

F-F 99731834 0.120130 17.02 
  

The internal strains Pn, calculated for the two oxygen sub-lattices (n=1, 2) is 

shown below,  

 1

0 0 0 0.165 0 0
P 0 0 0 0 0.165 0

0 0 0 0 0 0.165

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (D.22) 

 2

0 0 0 0.165 0 0
P 0 0 0 0 0.165 0

0 0 0 0 0 0.165

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (D.23) 

where Voigt notation [88] has been used to represent the tensor. Clearly the only non-

zero components are 14=25=36. Also, it is easily verified that for a given applied strain, 

inner displacements as predicted by Eq. (D.17), up to terms linear in strain, are equal and 

opposite for the two sub-lattices as required by the fluorite structure. This qualitatively 

validates our codes. Further, results from [134] show that the inner displacements of the 

two sub-lattices are in the range 0.031 0.024±  (in units of lattice constant). Assuming a 

lattice constant of 5.44Å the range can be given as 0.1684 0.024± . Clearly the obtained 

values here are close to what was obtained in literature thus validating our codes 

quantitatively as well. 
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D.3 Why not label all atoms in the MD cell as a sub-lattice? 

In computationally determining the contribution of the inner elastic constants, 

several matrices must be populated. One of the major hassles faced in this particular 

problem is the inversion procedure in Eq. (D.16) to determine the tensor g. The matrix B 

which is inverted to obtain g is of the following form (Table D.2) 

where N is the number of sub-lattices in the system. If we had all the atoms in the system 

as a sub-lattice, then clearly the size of this matrix would be very large and 

computationally more demanding than if we construct periodically repeating defective 

unit cells (D-unit cells) in the manner constructed for this work (maximum of only 60 

sub lattices pure ceria is needed). 

 

 

Table D.2: Form of the B matrix 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 111 11 11 12 12 12
11 12 13 11 12 13 11 12 13

1 1 1 1 1 111 11 11 12 12 12
21 22 23 21 22 23 21 22 23

1 1 1 1 1 111 11 11 12 12 12
31 32 31 31 32 31 31 32 31

21 21 21
11 12 13
21
21 22

  ....................

N N N

N N N

N N N

B B B B B B B B B
B B B B B B B B B
B B B B B B B B B

B B B
B B

− − −

− − −

− − −

=B

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 1 2 1 2 122 22 22
11 12 13 11 12 13

2 1 2 1 2 121 21 22 22 22
23 21 22 23 21 22 23

2 1 1 1 2 121 21 21 22 22 22
31 32 31 31 32 31 31 32 31

1 1 1 1 1 1
11 12 13

1 1 1 1 1 1
21 22 23

31

   ..................

.

.

N N N

N N N

N N N

N N N

N N N

N

B B B B B B
B B B B B B B

B B B B B B B B B

B B B
B B B
B

− − −

− − −

− − −

− − −

− − −

−( ) ( ) ( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 1 1 1 1 1
11 12 13

1 1 1 1 1 1
21 22 23

1 1 1 1 1 1 1 1 1 1 1 1
32 31 31 32 31

.................................

N N N N N N

N N N N N N

N N N N N N N N

B B B
B B B

B B B B B

− − − − − −

− − − − − −

− − − − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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        .
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APPENDIX E. FINITE ELEMENT FORMULATIONS 

In this appendix we formulate the finite element model for the system of 

equations given by Eqs.(6.3) and (6.4). Note that we will also need the equilibrium 

equations of mechanics (its plane strain formulation) to solve the coupled problem. The 

finite element formulation and the Jacobian are given only for the defect transport 

equations. The development for the plane strain mechanics problem can be found in any 

standard text like [192].  

Let use first take the defect transport equations (Eq.(6.3)-(6.4)) and let v and e be 

the weight functions for the two equations. Then, for a finite element domain eΩ  the 

weak form reads, 

 

0 0
0 0 0 0

0 0
0 0 0 0

2 2

2

e

e

v

v p x y

v V V VD V V V V dxdy
x x x x y y y y
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τ φ τ φ

τ φ τ φ
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⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + =∫ ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + + + +∫ ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (E.1) 

and 
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⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
− + − =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

− + −⎢ ⎥⎜ ⎟ ⎜ ⎟∫ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (E.2) 

Note that in the above two equations m vV
RT
ττ = , F

RT
φφ =  and ( )0, ,x yu u Vτ τ= . 

Clearly we can see that,  

 
0 0

0 0 0 02 2v x v y

V VD V V n D V V n
x x x y y y

τ φ τ φ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + + + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

vJ  (E.3) 



 

 214
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0 0
ee x e y

E ED E n D E n
x x y y

φ φ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

J  (E.4) 

Examining the LHS of equations (E.1) and (E.2). These contribute to the stiffness 

matrix. We interpolate the primary variables of the above two equations, ( 0 and V φ ) 

using their nodal values as follows,  

 
0 0

i i

i i

V Vψ
φ ψ φ

=
=

 (E.5) 

Also note that due to electroneutrality condition we will have,  

 0 0 02 2 i iE V Q V Qψ= − = −  (E.6) 

The LHS of the ith algebraic equation (the finite element model) corresponding to 

just the two differential equations (Eq. (E.1) and Eq.(E.2)) are given by,  
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 (E.7) 
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− − +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎢ ⎥= ∫ ⎢ ⎥∂⎛ ⎞∂ ∂⎢ ⎥− −⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 (E.8) 

Now let us derive the Jacobian of the algebraic equations. At each node we have 

four degrees of freedom, they are, 0, , ,x yu u u v V φ= = . Interpolating u and v similar to 

Eq.(E.5) at the nodes, the Jacobian (JJ) of the various degrees of freedom from just the 

above two equations (E.7) and (E.8) are given as,  
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 ( ) ( )0 0 0

e

V u i i
ik v j j j j

k k

JJ D V V dxdy
x u x y u y
ψ ψτ τψ ψ

Ω
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 (E.9) 
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e

V i k i k
ik v j j j jJJ D V V dxdy
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Ω
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 (E.12) 

where, 
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V q i
ik
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EJJ
q

∂
=

∂
 (E.13) 

Note that in the above equation, the superfixes 0V indicate that the Jacobian is 

obtained from the equations governing vacancy defect transport equations i.e. Eq. (E.7) 

and q is the degree of freedom 0, ,x yu u u v V= = orφ . 

In a similar manner we obtain for the other equation (governing the electrostatic 

potential), 

 0u
ikJJφ =  (E.14) 

 0v
ikJJφ =  (E.15) 

 
0

2 2 2 2
e

p j pV i k k
p pik eJJ D dxdy

x x x y y y
φ ψ ψ ψψ ψ ψφ φ

Ω

⎡ ∂ ∂ ∂ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= − + −∫ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (E.16) 
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∂⎡ ⎤⎛ ⎞∂ ∂ ∂⎛ ⎞= − − + − −∫ ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
 (E.17) 
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Where we again have, 

 q i
ik

k

EJJ
q

φ
φ ∂

=
∂

 (E.18) 

indicating that the Jacobian elements ( )q
ikJJφ  correspond to equations governing the 

electrostatic potential. 
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APPENDIX F. SAMPLE INPUT FILE FOR ABAQUS 

In this appendix a sample input file that can be used with the user element is 

given. The input file is for a vertical crack configuration. Note that a basic knowledge of 

ABAQUS finite element code is assumed. For details the reader is referred to the 

ABAQUS user manuals [193]. 

*HEADING 
**Two Dimensional Elasticity-Defect Transport Coupling 
**DOF -1 U-DISP, DOF -2 V-DISP, DOF -3 Normalized Vacancy Concentration (Normalized with 
**the concentration of immobile defect Q, DOF-9 Normalized Potential (Normalized with the 
**thermal voltage (F/RT)) 
*NODE, NSET=OUT,INPUT=NODES.inp 
*USER 
ELEMENT,NODES=8,TYPE=U1002,PROPERTIES=10,COORDINATES=2,VARIABLES=41,UN
SYMM 
1,2,3,9 
*ELEMENT,TYPE=U1002,ELSET=EALL,INPUT=ELEM_Q.inp 
*USER 
ELEMENT,NODES=6,TYPE=U3002,PROPERTIES=10,COORDINATES=2,VARIABLES=31,UN
SYMM 
1,2,3,9 
*ELEMENT,TYPE=U3002,ELSET=EALL,INPUT=ELEM_T.inp 
**NODE SETS (FOR SPECIFYING BOUNDARY CONDITIONS) 
*Nset, nset=BOTTOM 
** NODE NUMBERS CORRESPONDNG TO BOTTOM BOUNDARY  
*Nset, nset=LEFT 
** NODE NUMBERS CORRESPONDNG TO LEFT BOUNDARY  
*Nset, nset=RIGHT 
** NODE NUMBERS CORRESPONDNG TO RIGHT BOUNDARY  
*Nset, nset=TOP 
** NODE NUMBERS CORRESPONDNG TO TOP BOUNDARY  
**END NODE SETS 
**ASSIGN ALL ELEMENT PROPERTIES 
** abs indicates “absolute” 
** BETA is the change of the Young’s Modulus with vacancy concentration 
*UEL PROPERTY,ELSET=EALL 
**abs(Equivalent charge on vacancy), abs(Equivalent charge on electron),abs(Equivalent charge 
**on the immobile defect),Concentration of immobile defect,CCE,BETA,Temperature (K) 
2.0,1.0,1.0,0.1,0.079,0.05,0.0,1073.0 
** Young’s Modulus at stoichiometry, Poisson’s ratio 
275.0e+9,0.3 
*BOUNDARY 
**CONSTRAIN DOF 1, 3, 9 for LEFT NODES 
**CONTRAIN DOF 2 for BOTTOM 
LEFT,1,1 
LEFT,3,3 
LEFT,9,9 
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BOTTOM,2,2 
*STEP,INC=10000,NAME=PART1,EXTRAPOLATION=PARABOLIC 
*STATIC 
0.000001,1,0.000001,0.1 
*BOUNDARY,TYPE=DISPLACEMENT 
RIGHT,3,3,0.9203 
** NOTE THAT THE RIGHT POTENTIAL IS GIVEN WITH RESPECT TO THE LEFT 
RIGHT,9,9,11.54024 
*OUTPUT,FIELD 
*NODE OUTPUT,NSET=OUT,VARIABLE=ALL 
*OUTPUT,HISTORY 
*ENERGY OUTPUT,ELSET=EALL,VARIABLE=ALL 
** DAT FILE 
*ENERGY PRINT,ELSET=EALL 
ALLSE 
**MESSAGE FILES 
*PRINT,FREQUENCY=1000,SOLVE=YES 
*EL PRINT,FREQUENCY=1000 
SDV 
*CONTROLS,PARAMETERS=TIME INCREMENTATION 
10,20,15,20 
*END STEP 
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APPENDIX G. J-INTEGRAL FROM MATERIAL FORCES 

To see how, M in Eq.(6.14) can be related to the Rice’s J integral or the strain 

energy release rate we write Eq.(6.14) in indicial form as, 

 ( ), , ,i i p i pj j
M W u σ= −  (G.1) 

Explicitly M1 is written as, 

 ( )1 ,1 ,1 ,p pj j
M W u σ= −  (G.2) 

On integrating M1 about the tip of the crack (Figure G.1), we have, 

 ( )1 ,1 ,1 ,

M
p pjA j

F b W u dAσ⎡ ⎤= −∫ ⎣ ⎦  (G.3) 

where b is the thickness of the specimen. Using divergence theorem, we can rewrite Eq. 

(G.3) as, 

 ( )1 1 ,1 ,

M
p pj jj

F b Wn u n dσΓ= − Γ∫  (G.4) 

  
 ( )1 1 ,1,

M
p j pF b Wn u t dΓ= − Γ∫  (G.5) 

Figure G.1: Contour integral about the 
crack tip 
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The Cauchy relation, ij j in tσ = and Eq. (6.12) are used to arrive at Eq.(G.5). Here, 

ti is the traction vector. Clearly 1 /MF b in Eq. (G.5) is nothing but the conventional J- 

integral [213]. This happens to be a scalar quantity only because we have considered M1 

component from Eq.(G.1). For a crack that is known to propagate only along the X axis, 

M2=0 and hence it suffices to use the J-integral alone. In general, for an arbitrary crack 

we may state that the material force is a more generalized J- integral and its components 

( )M
iF  give us a measure of the crack tip forces. The strain energy release rate G, is then 

given by, 

  

 G
b

=
MF

 (G.6) 
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